

Lecture Notes in Computer Science 5308
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Liqun Chen Mark D. Ryan Guilin Wang (Eds.)

Information and
Communications
Security

10th International Conference, ICICS 2008
Birmingham, UK, October 20 - 22, 2008
Proceedings

13

Volume Editors

Liqun Chen
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford, Bristol BS34 8QZ, UK
E-mail: liqun.chen@hp.com

Mark D. Ryan
Guilin Wang
University of Birmingham
School of Computer Science
Edgbaston, Birmingham B15 2TT, UK
E-mail: {m.d.ryan, g.wang}@cs.bham.ac.uk

Library of Congress Control Number: 2008936716

CR Subject Classification (1998): E.3, D.4.6, K.6.5, K.4.4, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-88624-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88624-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12539420 06/3180 5 4 3 2 1 0

Preface

The 10th International Conference on Information and Communications Security
(ICICS) was held in Birmingham, UK, during 20–22 October 2008. The ICICS
conference series is an established forum that brings together people working
in different fields of information and communications security from universities,
research institutes, industry and government institutions, and gives the attendees
the opportunity to exchange new ideas and investigate state-of-the-art develop-
ments. In previous years, ICICS has taken place in China (2007, 2005, 2003,
2001, 1997), USA (2006), Spain (2004), Singapore (2002), and Australia (1999).
On each occasion, as on this one, the proceedings were published in the Springer
LNCS series.

In total, 125 papers from 33 countries were submitted to ICICS 2008, and 27
were accepted covering multiple disciplines of information security and applied
cryptography (acceptance rate 22%). Each submission to ICICS 2008 was anony-
mously reviewed by three or four reviewers. We are grateful to the Programme
Committee, which was composed of 57 members from 12 countries; we thank them
as well as all external referees for their time and valued contributions to the tough
and time-consuming reviewing process.

In addition to the contributed speakers, the programme also featured three
invited speakers. We are grateful to Joshua Guttman (The MITRE Corporation,
USA), Peng Ning (North Carolina State University, USA), and Nigel Smart
(University of Bristol, UK) for accepting our invitation to speak.

ICICS 2008 was organised by the University of Birmingham and Hewlett
Packard Laboratories. We gratefully acknowledge sponsorship from the UK En-
gineering and Physical Sciences Research Council (EPSRC), as well as Hewlett
Packard and the University of Birmingham.

Organising a conference is difficult and time-consuming work. We are very
grateful to Andy Brown, who worked tirelessly in making arrangements with the
Hyatt Hotel and with the University of Birmingham, as well as maintaining the
conference website. Also thanks to Ben Smyth for making a great job of collecting
the papers together for these proceedings. Thanks also to Hasan Qunoo for
helping with many local details. Finally, we would like to thank all the authors
who submitted their papers to ICICS 2008, and all the attendees from all over
the world.

October 2008 Liqun Chen
Mark Ryan

Guilin Wang

Organisation

ICICS 2008

10th International Conference
on Information and Communications Security

Birmingham, UK
October 20–22, 2008

Organised by

School of Computer Science, University of Birmingham, UK

Sponsored by

Engineering and Physical Sciences Research Council (EPSRC)
Hewlett-Packard Laboratories

University of Birmingham

In co-operation with

International Communications and Information Security Association (ICISA)

General Chair

Mark Ryan University of Birmingham, UK

Programme Chairs

Liqun Chen Hewlett-Packard Laboratories, UK
Mark Ryan University of Birmingham, UK
Guilin Wang University of Birmingham, UK

Programme Committee

Mikhail Atallah Purdue University, USA
Tuomas Aura Microsoft Research, UK
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Feng Bao Institute for Infocomm Research, Singapore
Elisa Bertino Purdue University, USA
Alex Biryukov University of Luxembourg, Luxembourg
Colin Boyd Queensland University of Technology, Australia
Srdjan Capkun ETH Zurich, Switzerland

VIII Organisation

Chin-Chen Chang Feng Chia University, Taiwan
Hao Chen University of California at Davis, USA
Kefei Chen Shanghai Jiaotong University, China
Edward Dawson Queensland University of Technology, Australia
Robert Deng Singapore Management University, Singapore
Dengguo Feng Chinese Academy of Science, China
Steve Furnell University of Plymouth, UK
Dieter Gollmann Hamburg University of Technology, Germany
David Grawrock Intel, USA
Hongxia Jin IBM Almaden Research Center, USA
Engin Kirda Institute Eurecom, France
Steve Kremer ENS de Cachan, France
Chi-Sung Laih National Cheng Kung University, Taiwan
Dong Hoon Lee Korea University, Korea
Ninghui Li Purdue University, USA
Qun Li College of William and Mary, USA
Yingjiu Li Singapore Management University, Singapore
Javier Lopez University of Malaga, Spain
Wenbo Mao EMC Research, China
Catherine Meadows Naval Research Laboratory, USA
Chris Mitchell Royal Holloway, UK
Sang-Jae Moon Kyungpook National University, Korea
Yi Mu University of Wollongong, Australia
Peng Ning North Carolina State University, USA
Eiji Okamoto University of Tsukuba, Japan
Akira Otsuka AIST, Japan
Kenneth Paterson Royal Holloway, UK
Giuseppe Persiano Università di Salerno, Italy
Raphael Phan Loughborough University, UK
Sihan Qing Chinese Academy of Sciences, China
Kui Ren Illinois Institute of Technology, USA
Eike Ritter University of Birmingham, UK
Bimal Roy Indian Statistical Institute, India
Peter Ryan University of Newcastle, UK
Kouichi Sakurai Kyushu University, Japan
Steve Schneider University of Surrey, UK
Wenchang Shi Renmin University of China, China
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Future University Hakodate, Japan
Bogdan Warinschi Universtiy of Bristol, UK
Andreas Wespi IBM Zurich Research Laboratory, Switzerland
Duncan S. Wong City University of Hong Kong, China
Yongdong Wu Institute for Infocomm Research, Singapore
Alec Yasinsac Florida State University, USA
Moti Yung Columbia University, USA

Organisation IX

Yuliang Zheng University of North Carolina at Charlotte, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Sencun Zhu Penn State University, USA

Organising Committee

Andrew Brown University of Birmingham, UK
Hasan Qunoo University of Birmingham, UK
Ben Smyth University of Birmingham, UK
Guilin Wang University of Birmingham, UK

Publication Chairs

Ben Smyth University of Birmingham, UK
Guilin Wang University of Birmingham, UK

External Reviewers

Isaac Agudo
Cristina Alcaraz
Man Ho Au
Jean-Philippe Aumasson
Vicente Benjumea
Shaoying Cai
Giacomo Cancelli
Jianhong Chen
Carlos Cid
Andrew Clark
Nathan Clarke
Yvonne Cliff
Xuhua Ding
Rong Du
Markus Duermuth
Marie Duflot
Serge Fehr
Marcel Fernandez
Carmen Fernandez-Gago
Ernest Foo
Clemente Galdi
Juan Gonzalez
Jae-Cheol Ha
Manabu Hagiwara
Keisuke Hakuta
Hao Han

Wei Han
Keith Harrison
Nick Hoare
Xuan Hong
Yoshiaki Hori
Cătălin Hriţcu
Qiong Huang
Xinyi Huang
Jung Yeon Hwang
Manabu Inuma
Yoon-Chan Jhi
Qingguang Ji
Ashish Kamra
Takashi Kitagawa
Shinsaku Kiyomoto
Ilya Kizhvatov
Boris Köpf
Ji-Seon Lee
Fagen Li
Gaicheng Li
Jun Li
Bing Liang
Huo-Chong Ling
Joseph Liu
Yu Long
JiQiang Lu

Di Ma
Wenbo Mao
Miodrag Mihaljevic
George Mohay
Ian Molloy
Shiho Moriai
Qun Ni
Chihiro Ohyama
Elisabeth Oswald
Maria Papadaki
Jong Hwan Park
Serdar Pehlivanoglu
Jason Reid
Mohammad-Reza

Reyhanitabar
Bo Sheng
Nicholas Sheppard
SeongHan Shin
Taizo Shirai
Leonie Simpson
Hui Song
Graham Steel
Makoto Sugita
Ashwin Swaminathan
Chiu Tan
Hitoshi Tanuma

X Organisation

Alberto Trombetta
Ivan Visconti
Yongtao Wang
Xinran Wang
Haodong Wang
Qihua Wang

Gaven Watson
Jian Weng
Zhe Xia
Liang Xie
Fengyuan Xu
Guomin Yang

Yanjiang Yang
Ng Ching Yu
Rui Zhang
Jinmin Zhong
Jakub Zimmermann

Table of Contents

Invited Talk

Attestation: Evidence and Trust . 1
George Coker, Joshua Guttman, Peter Loscocco, Justin Sheehy, and
Brian Sniffen

Authentication

A Novel Solution for End-to-End Integrity Protection in Signed PGP
Mail . 19

Lijun Liao and Jörg Schwenk

Unclonable Lightweight Authentication Scheme . 33
Ghaith Hammouri, Erdinç Öztürk, Berk Birand, and Berk Sunar

Threat Modelling in User Performed Authentication 49
Xun Dong, John A. Clark, and Jeremy L. Jacob

Access with Fast Batch Verifiable Anonymous Credentials 65
Ke Zeng

Side Channel Analysis

Quantifying Timing Leaks and Cost Optimisation . 81
Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky

Method for Detecting Vulnerability to Doubling Attacks 97
Chong Hee Kim and Jean-Jacques Quisquater

Side Channel Analysis of Some Hash Based MACs: A Response to
SHA-3 Requirements . 111

Praveen Gauravaram and Katsuyuki Okeya

Cryptanalysis

Key Recovery Attack on Stream Cipher Mir-1 Using a Key-Dependent
S-Box . 128

Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, and Tomoyasu Suzaki

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 141
Deniz Toz and Orr Dunkelman

XII Table of Contents

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle
Attack . 157

Jiali Choy, Khoongming Khoo, and Chuan-Wen Loe

Access Control

Beyond User-to-User Access Control for Online Social Networks 174
Mohamed Shehab, Anna Cinzia Squicciarini, and Gail-Joon Ahn

Revocation Schemes for Delegation Licences . 190
Meriam Ben-Ghorbel-Talbi, Frédéric Cuppens,
Nora Cuppens-Boulahia, and Adel Bouhoula

Reusability of Functionality-Based Application Confinement Policy
Abstractions . 206

Z. Cliffe Schreuders and Christian Payne

Towards Role Based Trust Management without Distributed Searching
of Credentials . 222

Gang Yin, Huaimin Wang, Jianquan Ouyang, Ning Zhou, and
Dianxi Shi

Software Security

BinHunt: Automatically Finding Semantic Differences in Binary
Programs . 238

Debin Gao, Michael K. Reiter, and Dawn Song

Enhancing Java ME Security Support with Resource Usage
Monitoring . 256

Alessandro Castrucci, Fabio Martinelli, Paolo Mori, and
Francesco Roperti

Pseudo-randomness Inside Web Browsers . 267
Zhi Guan, Long Zhang, Zhong Chen, and Xianghao Nan

System Security

Verifiable and Revocable Expression of Consent to Processing of
Aggregated Personal Data . 279

Henrich C. Pöhls

Embedding Renewable Cryptographic Keys into Continuous Noisy
Data . 294

Ileana Buhan, Jeroen Doumen, Pieter Hartel, Qiang Tang, and
Raymond Veldhuis

Table of Contents XIII

Automated Device Pairing for Asymmetric Pairing Scenarios 311
Nitesh Saxena and Md. Borhan Uddin

Applied Cryptography

Algebraic Description and Simultaneous Linear Approximations of
Addition in Snow 2.0. 328

Nicolas T. Courtois and Blandine Debraize

Towards an Information Theoretic Analysis of Searchable Encryption . . . 345
Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker

A Bootstrap Attack on Digital Watermarks in the Frequency
Domain . 361

Sam Behseta, Charles Lam, and Robert L. Webb

Improved Data Hiding Technique for Shares in Extended Visual Secret
Sharing Schemes . 376

Rabia Sirhindi, Saeed Murtaza, and Mehreen Afzal

Security Protocols

Efficient Multi-authorizer Accredited Symmetrically Private
Information Retrieval . 387

Mohamed Layouni, Maki Yoshida, and Shingo Okamura

Specification of Electronic Voting Protocol Properties Using ADM
Logic: FOO Case Study . 403

Mehdi Talbi, Benjamin Morin, Valérie Viet Triem Tong,
Adel Bouhoula, and Mohamed Mejri

Publicly Verifiable Remote Data Integrity . 419
Ke Zeng

Author Index . 435

Attestation: Evidence and Trust

George Coker, Joshua Guttman, Peter Loscocco, Justin Sheehy,
and Brian Sniffen

The MITRE Corporation
{guttman,justin,bsniffen}@mitre.org

National Security Agency
{gscoker,loscocco}@nsa.gov

Abstract. Attestation is the activity of making a claim about proper-
ties of a target by supplying evidence to an appraiser. We identify five
central principles to guide development of attestation systems. We argue
that (i) attestation must be able to deliver temporally fresh evidence;
(ii) comprehensive information about the target should be accessible;
(iii) the target, or its owner, should be able to constrain disclosure of in-
formation about the target; (iv) attestation claims should have explicit
semantics to allow decisions to be derived from several claims; and (v)
the underlying attestation mechanism must be trustworthy. We propose
an architecture for attestation guided by these principles, as well as an
implementation that adheres to this architecture. Virtualized platforms,
which are increasingly well supported on stock hardware, provide a nat-
ural basis for our attestation architecture.

1 Introduction

Much economic activity takes place on heterogeneous networks of computers,
involving interactions among autonomous principals, including individuals, retail
companies, credit card firms, banks, and stock brokerages. Because the amount
of money in these activities is large and increasing, the networks are attractive
targets for criminals.

In many attacks, the adversary inserts software remotely, without physical
access to the devices, and this software compromises secrets. For instance, in
March 2008, an attack was announced against the large American grocery store
chain Hannaford Brothers. Unauthorized code had been inserted on the servers
in each of the company’s 300 stores. This code retained the credit card informa-
tion for each transaction occurring at a store, and periodically transmitted the
information to a third party. As a consequence, over 4,200,000 credit and debit
cards were compromised. At least 2,000 fraudulent transactions have been iden-
tified as results. Even though Hannaford’s systems were designed not to store
customer payment details, and to adhere to compliance standards of the credit
card companies, changes to their application software led to large disclosures [15].

An even larger case led to indictments in August 2008. Over 40 million card
numbers were stolen from US companies such as TJX, a clothing distributor

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G. Coker et al.

and retailer, and other large firms. According to the indictment papers, eleven
criminals collaborated in this group of attacks. Members were located in the US,
Estonia, Ukraine, Belarus, and China. In these attacks, wireless access points
were the initial entry point. Newspapers described the inserted software as snif-
fers. However, the indictments mention that an insecure wireless access point at
a Marshall’s retail store in Florida allowed the defendants to compromise data
stored in servers at TJX, located in Massachusetts [24].

In both of these cases, the inserted software appears to have remained unde-
tected for months.

There are three characteristics of these attacks. First, the attacks are exe-
cuted remotely, apparently without physical access to the computers attacked.
Second, the computers are standard, general purpose systems, rather than spe-
cialized devices such as automated teller machines. Third, the networks involve
transactions among independent organizations, such as a retailer, a distributor,
and the credit card firms. No one organization controls the software configu-
rations on all the relevant systems. The ubiquitous attacks that insert malware
onto individually owned computers, to sniff for bank account and password infor-
mation, share these characteristics. The bank cannot control the configurations
of its customers’ computers. Nevertheless, there would be benefits shared by the
bank and its customers if the bank could ascertain that the customer’s computer
was free of malware, before allowing the customer to enter the account number
and password.

Attestation means providing reliable evidence about the state of software ex-
ecuting on a system. Many computing problems could be solved if attestation
were reduced to practice, particularly attestation that provides evidence of the
behavioral properties similar to those mentioned in the attacks we have men-
tioned. To achieve this goal, attestation must make sense for general-purpose
systems, running varied configurations, and under the control of different indi-
viduals and organizations. The participant’s privacy goals must be respected,
while providing evidence that distributed transactions are not being subverted.

One might think that attestation in this sense would be impossible. What
evidence of a good state can be provided to a remote party, that could not be
synthesized by bad software? We do not—by analogy—ask someone we suspect
of being a scam artist whether he is honest, or at least we do not count it as
evidence when he says that he is. However, a starting point for trust appraisal
now exists, in the form of the Trusted Platform Module (TPM), introduced by
the Trusted Computing Group (TCG) [2]. The TPM provides primitive cryp-
tographic capabilities, and some long-term storage that is secure from remote
attacks, which can be used to provide signed evidence from Platform Configu-
ration Registers that reflect key events of the software controlling the machine.

Existing attestation proposals, including those put forth by the TCG, are gen-
erally aimed at specific use-cases and typically lack flexibility to address a more
general attestation problem. Further, existing definitions of attestation primar-
ily focus on describing the particular properties [19] desirable in those use-cases.
For example, in [7], the author uses the term attestation to specifically mean

Attestation: Evidence and Trust 3

the process of transmitting a sequence of hashes of certain system components
and a digital signature of that sequence; in Microsoft’s “NGSCB” [6] it refers
to identification and authentication of known code via digital signatures; Copi-
lot [13] makes use of direct hashes of kernel memory, and so on. We prefer a
general definition of platform attestation that abstracts from specific desired
properties [3].

In this paper, we describe a flexible attestation architecture, based on a few
guiding principles. Systems built according to this architecture can be composed
to carry out attestation scenarios. We believe that this attestation architecture
provides the mechanisms needed for systems to interrogate each other before
sensitive interactions, so as to ensure that those interactions will be safe.

2 Attestation

Our approach to system attestation departs significantly from the notion put
forth by the TCG, in great part due to increased flexibility. Emphasis is placed
on attestation based upon properties of the target, useful in a variety of scenarios,
rather than solely on attestation based upon identity.

Terminology. An appraiser is a party, generally a computer on a network,
making a decision about some other party or parties. A target is a party about
which an appraiser makes such a decision.

The trust decision made by an appraiser often supports an access request made
on behalf of the target, and is usually a decision about the expected behavior
of that target. To make a decision on this basis, a diligent appraiser needs a
significant amount of information—essentially, the knowledge that the state of
the target is such that it will not transition into an unacceptable state while the
appraiser still continues to trust it. There is some inevitable tension between the
human organizations behind the appraiser and target, as the appraiser’s owner
wishes to have complete and correct information about any given target while
the target’s owner wishes to give up no more than the minimal information
necesssary for the success of its request (and perhaps even less).

Terminology. Attestation is the activity of making a claim to an appraiser
about the properties of a target by supplying evidence which supports that claim.
An attester is a party performing this activity. An appraiser’s decision-making
process based on attested information is appraisal.

In the most commonly addressed class of attestations, each attestation provides
a means for appraisers to infer that the target of the attestation will not engage in
a class of misbehaviors. For example, if the target reports its kernel is unmodified,
the attester has reason to trust reports from the target, and some appraiser
trusts information provided by the attester, then that appraiser can infer that
the target will not engage in misbehaviors that might have occurred had the
target’s kernel been corrupted at the time of its measurement. It is important to
note that not all attestations are about lack of misbehaviors, even though most
of the commonly discussed use cases are in that class.

4 G. Coker et al.

This broader point of view makes a rich understanding of the related concepts
of system measurement, attestation protocols, and system separation vital to
successful attestation. Here there is a distinction between the measurement of a
target system (the evidence) and the attestation itself.

Terminology. To measure a target means to collect evidence about it through
direct, local observation.

Attestation about a target system will report measurements or conclusions in-
ferred using measurements and possibly also other attestations. In this paper,
measurement is discussed only as necessary to support our architecture for
attestation.

Terminology. An attestation scenario is a cryptographic protocol involving a
target, an appraiser, and possibly other principals serving as trust proxies. The
Trusted Platform Module residing on the target may also be considered a principal
in an attestation scenario. The purpose of an attestation scenario is to supply
evidence that will be considered authoritative by the appraiser, while respecting
privacy goals of the target (or its owner).

Evidence may be attested to in a number of equivalent but semantically different
forms depending on the attestation scenario. For example, the attestation may
report raw evidence as directly observed, as reduced evidence (e.g. a hash of
the raw evidence), or by substitution with a credential provided by a third
party evaluator of the raw evidence. For example, an SSL certificate authority
consumes many attestations as to the identity and practices of a target, then
produces a certificate attesting to the quality of a target [3].

Also, a given target may wish to provide different information to different
appraisers depending on the current trust relationships it has with those par-
ties. A worthwhile desire in developing an attestation system is to resolve the
mutual tension as well as posssible given the contradictory nature of the parties’
interests. One approach to defusing this tension is for the appraiser to demand
frequent repeated attestations, re-evaluating its trust decisions often. It may be
possible to determine that a party will be sufficiently trustworthy for the 15
minutes after performing a given attestation, but not feasible to determine that
it will be so for a day.

3 Principles for Attestation Architectures

Five principles are crucial for attestation architectures. While an ideal attesta-
tion architecture would satisfy all five, they may not all be satisfiable in some
kinds of systems. Thus, attestation mechanisms may emphasize some features
over others. The five principles motivate the architecture presented in Section 4.

Principle 1 (Fresh information). Assertions about the target should reflect
the running system, rather than just disk images. While some measurement tools
may provide start-up time information about the target, others will inspect the

Attestation: Evidence and Trust 5

current state of an active target. An attestation architecture should ensure access
to the live state of the target. ��

The architecture cannot predict the uses to which appraisers will put the infor-
mation it delivers. Appraisers may need to make very different decisions, and—to
justify them—need to make different predictions about the future behavior of
the target. This suggests the next principle.

Principle 2 (Comprehensive information). Attestation mechanisms should
be capable of delivering comprehensive information about the target, and its full
internal state should be accessible to local measurement tools. ��

With comprehensive information come worries about the consequences of disclo-
sure. Disclosure may cause loss of privacy for a person using the target platform.
It can also subject the platform to attack, for instance if the attestation discloses
an unpatched vulnerability to an adversary.

Principle 3 (Constrained disclosure). Targets should be able to enforce poli-
cies governing which measurements are sent to each appraiser. ��

Hence, an attestation architecture must allow the appraiser to be identified to the
target. Policies may distinguish kinds of information to be delivered to different
appraisers. The policy may be dynamic, relying on current run-time information
for individual disclosure decisions. For instance, a target may require that the
appraiser provide an attestation of its own state, before the target discloses its
own.

Principle 4 (Semantic explicitness). The semantic content of attestations
should be explicit. ��

The identity of the target should be included, so an appraiser can collect attes-
tations about it. The appraiser should be able to infer consequences from several
attestations, e.g. when different measurements of the target jointly imply a pre-
diction about its behavior. Hence, attestations should have uniform semantics,
and so that they are composable using valid logical inferences.

Principle 5 (Trustworthy mechanism). Attestation mechanisms should pro-
vide evidence of their trustworthiness. In particular, the attestation architecture
in use should be identified to both appraiser and target. ��

There will be a good deal of natural variation in how different systems meet
these principles, and in the choices they make when some principles are only
partially satisfied. In specific situations, it may be sufficient to satisfy these
principles only partly. For instance, limited forms of evidence about the target
may suffice for an appraiser, or evidence that has aged to an extent may be
accepted. When different degrees of adherence to the principles are designed
into a system, then the variation is static. When the system adjusts at runtime
to provide different degrees of evidence in different situations, or when different
peers are the appraiser, then the variation is dynamic.

6 G. Coker et al.

4 Proposed Attestation Architecture

There are five main constraints, imposed by the principles of Section 3, that
provide the content for the proposed architecture. In this section, each constraint
is briefly described in the context of how it is motivated by the principles. A
system designed according to this architecture must have the following abilities:

1. To measure diverse aspects of the target of attestation;
2. To separate domains to ensure that the measurement tools can prepare their

results without interference from the (possibly unreliable) target of attesta-
tion;

3. To protect itself, or at least a core trust base that can set up the domain
separation mechanism, ensuring that it cannot be weakened without this
fact being evident from the content of attestations;

4. To delegate attestation so that attestation proxies can collect detailed mea-
surements and convincing evidence, and summarize them to selected peers,
when the target would not permit the full facts to be widely shared;

5. To manage attestation to handle attestation queries by invoking suitable
measurement tools, delivering the results to the appraiser or a proxy as
constrained by policies.

These constraints are discussed in turn.

4.1 Measurement Tools

Providing comprehensive information about a system (satisfying Principle 2)
requires the ability to provide a collection of tools that (jointly) comprehensively
measure the target.

Comprehensive measurement of a system requires more than simply the abil-
ity to read all of the data contained in that system. It also means that some
measurement tools must understand the structure of what they are measuring.
For example, just being able to scan and hash the memory used by an operating
system kernel may not suffice to provide useful measurements of it. Usefulness,
here, is in the eye of the appraiser, and typically involves evidence about the
past or future behavior of the target. The state of a program changes during
execution, and therefore cannot be measured by simple hashing. For this reason,
measuring complex system components requires knowing the structure of the
targets. Some trust decisions require these structure-sensitive measurements.

As a result of this, there cannot be a “one size fits all” measurement capability
for attestation. Different measurement tools must be produced for measuring
components with different structure. Further, the complete set of such tools
that will be desired is not knowable ahead of time without restricting the target
systems from ever adding any new future applications.

Our architecture must support a collection of specialized measurement tools,
and in order to be able to provide evidence for arbitrary future attestations it
must also support adding new tools to that collection over time.

Attestation: Evidence and Trust 7

In addition to measurement capacity being comprehensive, freshness is also
a goal. (Principle 1) This means that our measurements cannot always be per-
formed a priori – one must be able to measure various parts of a system on
demand. These demands are made from the point of view of an appraiser. A
remote party must be able to trigger measurement; it is insufficient to only have
runtime measurement occur via periodic automatic remeasurement triggered by
the measurement system or tools.

4.2 Domain Separation

For a measurement tool to provide information about a target of attestation, the
measurement tool must be able to deliver accurate results even when the target
is corrupted. This is an important consequence of Principle 5.

There are two parts to this. First, it must have access to the target’s state
so as to be able to distinguish whether that target is corrupted or uncorrupted.
This state includes the target’s executable code but also modifiable data struc-
tures that determine whether its future behavior will be acceptable. Second, the
measurement tool’s state must be inaccessible to the target, so that even if the
target is corrupted, it cannot interfere with the results of the measurement.

There are different ways that this separation can be achieved. One is to virtu-
alize the target, so that the measurement tool runs in a separate virtual machine
(VM) from the target [12]. The virtual machine monitor must then be able to
control cross-VM visibility so that the measurement tool has read access to the
target. It must also ensure that the target does not have any control over the
measurement tool. There may be a message-passing channel established between
them, but the hypervisor/VMM must be able to ensure transparent visibility of
the measurement tool into the target and protection of those tools from the
target.

Alternatives are possible. For instance, CoPilot (Section 7) uses a form of
hardware separation in which the measurement tool runs on a coprocessor and
the visibility constraints are expressed via hardware instead of being based on
the configuration of a hypervisor.

Given the improved virtualization facilities that new processors from Intel
and AMD provide, the VM approach seems like a natural approach that makes
minimal requirements beyond standard commodity hardware.

4.3 Self-protecting Trust Base

We have established that domain separation is necessary in order to have trust in
attestations and specifically in the integrity of our measurement tools. This raises
a question: how to produce assurance for the integrity of the domain separation
itself?

The core of our system’s trust must come from components which are simple
enough or sufficiently evaluated that one can be convinced that they do not
require remeasurement after they have been running. Part of this core must
obviously include the hardware used as our Trusted Computing Base. Any other

8 G. Coker et al.

component must either be measurable from a place that it cannot control or
must be sufficiently measured via a static startup measurement taken before it
begins operating.

Note that what is needed here is more than just a trusted static subset of our
system. The difficulty here is that our trust base must be sufficiently simple and
static to not require remeasurement, but also sufficiently rich to bootstrap our
measurements and attestations. Anything performing measurement and attes-
tation on the platform will in turn require measurement and attestation about
itself in order to convince an appraiser of its trustworthiness. It must be ensured
that this chain “bottoms out” at something sufficient to perform certain essential
measurements and attestations to support the chain above it while being simple
enough that static startup-time measurements are sufficient to determine trust.

It is not trivial to determine the content of this static trust base. One of the
difficulties arises around the element of domain separation. It is preferable for
the domain separation mechanism to be simple and secure enough to belong in
this element, but no hypervisor exists today that satisfies those properties and
is also rich enough to provide the services desired. This difficulty is addressed
in Section 6. One possible alternative is that a hardware component provides
runtime measurements of the domain separation mechanism.

4.4 Attestation Delegation

In practice, the appraiser will need to delegate many aspects of determining
the quality of the target to specialists called attestation proxies. There are two
essential reasons for this.

First, Principle 2 contains an intrinsic conflict with Principle 3. The former
states that comprehensive insight into the state of the target must be available.
The latter says that the target should be able to choose and enforce a policy on
the disclosure of information about its state.

A natural way to reconcile these two principles is to allow appraiser and target
to agree on an attestation proxy that is partially trusted by each [3]. The target
trusts the proxy to disclose only information about its state which is of limited
sensitivity. The appraiser trusts the proxy to make statements only when they
are warranted by appropriately fresh and comprehensive information about the
target.

The second reason why attestation proxies are important is that they can
function as specialists. Enormous expertise is needed to interpret detailed mea-
surements, such as those needed to predict behavioral properties about an oper-
ating system. An appraiser may get more reliable information and more usable
information from an attestation proxy than it would be able to extract on its
own from the comprehensive data. The maintainers of an attestation proxy can
ensure that it has up-to-date information about the strengths and weaknesses of
specific system versions or configurations.

Naturally, these delegations require protocols that allow the principals to en-
sure they are communicating with appropriate proxies. These protocols must

Attestation: Evidence and Trust 9

supply the principals with messages that unambiguously answer the principals’
questions. The design of such attestation protocols may follow the methods of
the strand space theory [9], and may use the strand space/trust management
connection from [11,10].

These delegations, combined with attestations satisfying Principle 4, enable
a powerful new capability. An appraiser may compose separate layered or or-
thogonal attestations, involving different proxies, in order to make a judgment.
Another approach, “Layering Negotiations [14],” has been proposed for flexible
and composable attestation. We have used many of the same tools as this work,
such as Xen and SELinux. The layered negotiations have a fixed two-level struc-
ture and are intended to enable distributed coalitions. Our approach is intended
to enable general, arbitrarily flexible composability regardless of application us-
age model.

4.5 Attestation Management

A goal of our architecture is flexibility. It is essential that our system be able
to respond meaningfully to different requests from different appraisers without
having pre-arranged what every possible combination of attestations might be.

One way to support this notion is with an architectural element referred to
as the Attestation Manager. A component realizing this idea contains a registry
of all of the measurement and attestation tools currently on the platform, and
a description of the semantic content produced by each. As a consequence of
Principle 4, this component can select at runtime the appropriate services needed
to answer any query which could be answered by some subset of the measurement
and attestation capabilities currently on the system.

As an Attestation Manager will clearly be involved in nearly every remote
attestation, it is also a natural place to enforce some of the constrained disclosure
called for by Principle 3. It can restrict the services it selects based on the
identity of the party the information would be released to, according to locally-
stored access policies. In order to defend this capability from both the untrusted
target of attestations and also from potentially-vulnerable measurement tools,
the Attestation Manager must be protected via domain separation.

Our attestations will have to use cryptography in order to protect commu-
nications from adversaries. This same protection, taken together with domain
separation, means that the target can be safely used as an intermediary for com-
munication with appraisers or proxies. This leads to the very beneficial result
that an Attestation Manager can be a purely local service; it does not need to
be directly accessible by any remote parties.

4.6 The Elements of the Architecture

One might envision the elements of our architecture fitting together conceptually
like so:

10 G. Coker et al.

Fig. 1. Attestation Architecture

5 Composable Attestation Platform

An implementation of our attestation architecture has been developed and is
illustrated in Figure 2. The hypervisor, together with the CPU, serves as the
self-protecting trust base; however, the representation here is abstract, as the
implementation is not tied to features specific to any one virtual machine monitor
or microprocessor. The Supervisor guest (S guest) contains the platform support
package, while the User guest (U guest) runs the user’s “normal” operating
system. The TPM hardware resource has been virtualized (“vTPM”) to provide
TPM capabilities for both the S and U environments. Both environments possess
measurement and attestation services (“M&A”).

The construction and operation of the hypervisor and each guest coincides
with the collection of evidence reportable in attestations of the platform. The
reason for multiple separate M&A capabilities is that evidence reported from a
single party may not be sufficient.

To manage a diversity of measurement and attestation requirements, a vir-
tual machine is dedicated to measurement and attestation (M&A) of a guest.
The hypervisor is integral to the trust base for the system, controlling sharing
and providing domain separation. Additional domain separation and controlled
sharing requirements are met by instrumenting the M&A on SELinux [16]. The
separation of the M&A and guest environments is transparent to the target and
the attestation. Upon receiving attestation requests, the guest directs the in-
coming request to its M&A and proxy responses from that M&A back out to
appraisers. To deeply assess the platform, one may need to connect attestations
together across the S and U environments. This need can only be satisfied with
semantically explicit attestations as described by Principle 4.

Attestation: Evidence and Trust 11

An M&A consists of three components: attestation manager (AM), attestation
protocols (APs), and attestation service providers (ASPs) The AM manages the
attestation session, listening for incoming attestation requests and using a “se-
lector” subcomponent for initiating APs. An AP is a running instance of an at-
testation protocol initiated by the Selector in response to an attestation request.
The ASPs are subcomponents of the attestation protocol. Each ASP performs a
well-defined service in the attestation protocol and as defined serve a critical role
in satisfying Principles 1- 5 for the platform. Some example ASPs are integrity
measurement systems, wrappers for calls to a TPM/vTPM, or invocation of other
services. As a result of separating these key services into ASPs which may be used
by different APs, and abstracting over APs using the AM, we gain an extensible
system with the ability to add new services and protocols without the need to
redesign or re-evaluate the entire system for each addition.

The Selector is the mechanism for enforcing the policy of the client by instan-
tiating APs and ASPs that conform to the policy for a given scenario thereby
satisfying Principle 3. The implementation uses a method referred to as “Call
by Contract” [17] for the Selector.

S Guest

M&A

vTPM

M&A

vTPM

U Guest

hypervisor

TPM/CPU

Fig. 2. Composable Attestation Platform

Attestations may be chained across the platform by the use of ASPs that
make attestation requests to the other M&A environments and relay or use the
attestation responses. Figure 3 shows a possible set of components that might
be used in an attestation, including an ASP in the User M&A which makes an
attestation request to the Supervisor M&A, enabling attestations which satisfy
Principle 5.

The attestation research to date has focused exclusively on the attestation of
the User OS kernel and the core platform (the Supervisor guest and hypervisor
components). The attestation of these components forms the trust base for the
attestation of higher level components, i.e. User guest applications. To support
attestation of User guest applications, one could instrument an M&A in user-
space that is similar in form and function to the M&A described above. The
user-space M&A may be chained to the User and Supervisor M&A’s to enable
complete platform attestations. Furthermore, the implementation is guest OS
agile, as the only guest specific components exist entirely within the individual
ASPs and the future user-space M&A.

12 G. Coker et al.

Attestation Request/Response

ASP1 ASP2 ASP3

SelectorAM

ASP1 ASP2 ASP3

AP

SelectorAM

AP

Fig. 3. Composable Measurement and Attestation (M&A) Architecture

Mutual attestation is an important area to consider, and our architecture
provides a natural place for this. APs within an M&A may demand attestations
as well as providing them, and may use ASPs for verification of the properties
asserted by such attestations.

6 Open Problems

Even with our architectural constraints and system design, some aspects of the
attestation problem remain difficult to solve. The most difficult principles to sat-
isfy with today’s technology are the Trustworthy Mechanism and gathering
Comprehensive Information.

The Trusted Platform Module and related technology from Intel (TxT) [5] and
AMD (SVM) [4] are useful means for bootstrapping certain aspects of a self-pro-
tecting trust base, but a richer trust base is needed than can be provided by this
sort of hardware alone. The emergent hardware technologies only start the prob-
lem from a known origin, the core root of trust for measurement, but ultimately
the integrity of the trust base depends on the assurance of the “hypervisor” imple-
mentation. Specifically required is a means to establish domain separation in order
to support a trustworthy mechanism for attestation. Our current implementation
uses an off-the-shelf virtualization system – but none of those available today of-
fer the desired balance between flexibility and security. Solutions to this problem
might be found either by extending traditional separation kernels or possibly by
producing a small, assurance-focused virtual machine hypervisor.

The major problem in gathering comprehensive information is that in order
to establish trust in application-level software one first needs to establish trust
in the operating system that the software depends on. Today’s mainstream oper-
ating systems were not designed with assurance or measurement in mind. They
are large and complex, containing many dynamic features that make them very
difficult to analyze even in the absence of a hostile party. It seems unlikely that
this situation will improve until there is either a major shift in the structure
of mainstream operating systems or the adoption of a new operating system
designed from the beginning with measurement and assurance as a design goal.

Attestation: Evidence and Trust 13

7 Existing Approaches to Attestation

There are several early steps toward system attestation in the research commu-
nity and commercial market today. It is clearly a major component and focus of
work being done within the Trusted Computing Group [25] [26] [8], Microsoft [6],
and multiple independent researchers [13] [21]. Many of these solutions may act
as useful components in a general attestation architecture as described in this
paper. Still, none of them fully address this broader notion of attestation or the
needs of a flexible architecture.

Trusted Network Connect. Trusted Network Connect (TNC) is a specifica-
tion from the Trusted Computing Group [26] intended to enable the enforcement
of security policy for endpoints connecting to a corporate network.

While Trusted Network Connect is an architecture for attestation, it is of much
narrower scope than our approach. Its purpose is to provide trust in endpoints
connecting to a network [26], and for this reason it is generally seen as supporting
activity at network layers 2 or 3. For this reason, the TNC architecture makes
some assumptions about the relationships between parties that make it of limited
value for application-level attestations. Once a party has network access, it moves
outside the scope of TNC.

In our framework, TNC is best seen not in comparison to our entire archi-
tecture but as a special kind of attestation manager. Much of the purpose of
the TNC Client (TNCC) is to select the appropriate Integrity Measurement
Collectors (IMCs) based on requests from Integrity Measurement Verifiers.

Useful domain separation is not possible in TNC. At load time, each IMC
registers what kinds of messages it wishes to receive from the client. If it registers
0xffffffff then it will receive all messages delivered to all IMCs [27]. Further, it
is explicit in the specification that IMCs are loaded into the same memory space
as the TNCC, and that a rogue IMC can read and write memory in the TNCC or
in other IMCs, misusing credentials, privileges, and message data arbitrarily [27].
Thus, even if the overall TNC process is separated somehow from the target, it
is clear that no separation is possible between measurement tools and either
the attestation management function or other measurement tools in a system
compliant with TNC.

The notion of attestation delegation exists in TNC, but in a very constrained
way. The relationships between Policy Enforcement Points and Policy Decision
Points is made explicit, making arbitrary delegation difficult at best.

TNC can provide identification of the appraiser to the target, though it is
constrained to one very specific identification. Before the integrity measurements
are taken, “mutual platform credential authentication” [26] can occur. In the
TCG context, this means that the two parties can each verify that the other has
a valid unrevoked TPM AIK. However, truly mutual authentication is impossible
in TNC due to its nature as a network access protocol. Given that the “server”
implicitly already has access, no attestations from the server to the client other
than this initial credential exchange is possible. If the client only requires a basic
identification then this may be sufficient, but if clients wish to negotiate with

14 G. Coker et al.

servers and proceed differently depending on attested properties, then TNC is
unsuitable.

It should be noted that TNC is not a networking or messaging protocol, but
rather is intended to be tunneled in existing protocols for managing network
access, such as EAP [1].

Due to the asymmetric nature of TNC and the protocols it expects to live
within, implementation of complex attestation protocols or nested attestations
is unlikely to occur in a way that interoperates with TNC.

Pioneer and BIND. Pioneer and BIND are attestation primitives developed
at CMU with very specific design constraints.

BIND [22] is a runtime code attestation service for use in securing distributed
systems. It centers around a specific measurement capability which binds a proof
of process integrity to data produced by that process. For embedded systems
which without flexible attestation needs, BIND may be useful.

Pioneer [21] is an attempt to provide a “first-step toward externally-verifiable
code execution on legacy computing systems.” Here, legacy means systems with
no hardware trust base – Pioneer attempts to solve the attestation problem en-
tirely in software. This faces serious challenges in the presence of a malicious OS,
and at least one method is known for an OS to fool Pioneer. Also, the success
of Pioneer on any given system requires an immense degree of knowledge about
(and control of) the underlying hardware. A trusted third party must know the
exact model and clock speed of the CPU as well as the memory latency. The sys-
tem must not be overclocked, must not support symmetric multi-threading, and
must not generate system management interrupts during execution of Pioneer.
This level of dependency suggests that an attacker with sufficient understanding
of the hardware might subvert attestation. In specific, at least one such attack
is known in the case of systems with 64-bit extensions. The specific weaknesses
referred to are acknowledged by the authors as implementation issues [20].

Another requirement for Pioneer is that the checksum code is the most time-
optimal possible code that performs its checksum. No proofs of such optimality
exist for any Pioneer-sufficient checksum functions. It remains to be seen if Pi-
oneer can succeed, as newly emerging hardware optimizations will continue to
provide attack vectors and make it very difficult to be certain that a given piece
of code is time-optimal on all architectures that a user may care about.

Copilot. CoPilot [13] is a system for detecting root kits in a Linux kernel.
It periodically computes hashes over key parts of memory that impact kernel
execution, compares against a known value, and reports to an external system
that enables manual decisions to be made regarding detected changes. CoPilot
runs on a PCI add-in card, accessing system memory using DMA. It uses a
dedicated port to communicate with the appraiser.

CoPilot does well with respect to some of our principles. It is protected due
to existing on separate hardware and via a direct connection to the appraiser.
It produces fresh information about a running system.

CoPilot is an advance in attestation technology, but it has limitations. It does
not provide a truly comprehensive measurement of the target system because the

Attestation: Evidence and Trust 15

measurements it produces do not include important information residing in the
kernel’s dynamic data segment. In addition, since CoPilot does not have direct
access to the CPU’s registers, it only is able to perform measurements at known
memory locations and cannot associate any of its measurements with what is
actually running on the processor. Also, the timing of measurement cannot be
coordinated with actions on the target. This means that appraisal is difficult
as any given measurement might be taken during a moment of inconsistency.
Achieving any kind of constrained disclosure is not possible, as there is exactly
one appraiser (connected by a cable) and there is no opportunity for the target
to participate in the attestation process.

CoPilot is a very specialized kind of attestation system, but it strangely does
not take advantage of this. The discussion in Section 4.4 mentioned that spe-
cialists can be valuable because of their ability to make use of knowledge of the
structure of the object being measured. CoPilot, even though it is only used to
measure Linux kernels, does not perform structural analysis of data – it only re-
ports hashes of kernel memory. As a result, changes are detected but the meaning
of those changes is not feasible to determine. The way that CoPilot’s special-
ized nature is implemented (via dedicated hardware) also means that supporting
nested attestation is impossible.

The fact that CoPilot runs on add-in hardware may increase trust in the
attestation mechanism and avoid impact on target execution, but at the cost of
requiring extra hardware for every target system.

Nexus. Nexus [23] is an effort at Cornell to develop an operating system with
particular attention to “active attestation.” It enables separation via secure
memory regions and moves device drivers into userspace. It introduces “label-
ing functions,” a mechanism for providing dynamic runtime data to appraisers.
Measurement tools may be sent to the target system by the appraiser and do
not need to be pre-integrated with the base system.

As it involves an entirely new microkernel-based operating system, there are
clearly adoption hurdles in the path of Nexus. It is perhaps most useful to think of
Nexus not in the role of a guest operating system in our framework, but rather
as something one might use for separation purposes instead of a traditional
hypervisor. This relationship seems even more relevant in light of the fact that
the Nexus project intends to be able to run Linux on top of a Nexus process.

Nexus is not yet released, but one can imagine it playing a part in a variant
of our architecture. The ideas of fresh information, comprehensive information,
constrained disclosure, and a trustworthy mechanism would clearly resonate with
the developers of Nexus. While it does not account for some of the elements in
our architecture, it also does not appear to be contradictory with them. As this
work emerges into public view it will be worth watching in order to determine
how it might be used to satisfy attestation needs.

Property Based Attestation. Our concept of delegated attestation and ap-
praisal is a more general variant of the idea known as Property-based Attesta-
tion. Jonathan Poritz [18] and Sadeghi and Stüble [19] have each pointed out
that the end consumer of an attestation ought to care about security proper-

16 G. Coker et al.

ties of the attester, as opposed to the specific mechanisms employed to achieve
those properties. As should be clear from this paper, we strongly agree with this
fundamental idea.

Poritz suggests that a solution might include virtualization and trusted third
parties, but does not propose a concrete approach. Sadeghi and Stüble go farther,
suggesting multiple approaches. Their abstract model of the TCG specifications
takes an unusual view of the TPM Seal [25] functionality, which may impact
the viability of the proposed solution. Some of their other suggestions for PBA
are attractive but require significant changes to the TPM or the TCG software
stack.

These authors and several others go on to propose a protocol for performing
such property-based attestations [3]. This protocol could be implemented as an
AP/ASP combination in our system, as long as some specialist appraiser for it
was also implemented.

We go farther than the capabilities shown in work thus far, showing that there
can be multiple layers of delegated attestation, that there can be arbitrarily many
layers of the platform being appraised, and that the proper appraisers for each
of these may be different. The data stored in a hardware TPM is not the only
data for which one would wish to delegate the appraisal. Data in virtual TPMs,
and even data stored at higher levels in the operating system of a host may be
appropriate to delegate to specialists and describe via abstract, property-based
attestations.

8 Conclusion

Attestation is an area which will see many technological innovations and develop-
ments in the near future. In particular, since the major vendors are introducing
improved support for virtualized systems, architectures such as ours should be
increasingly easy to implement in a trustworthy way. The semantic explicitness
and freshness of the attestations that we propose should allow a common vocabu-
lary across many architectures. Constrained disclosure should encourage systems
owners to allow their systems to participate in attestations. Comprehensive infor-
mation should encourage appraisers to place credence in well-supported claims,
particularly given underlying trustworthy attestation mechanisms. We have at-
tempted to clarify the way that existing work can be used to contribute to our
goals.

References

1. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Au-
thentication Protocol (EAP). RFC 3748 (Proposed Standard) (June 2004)

2. Balacheff, B., Chen, L., Pearson, S., Plaquin, D., Proudler, G. (eds.): Trusted
Computing Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper
Saddle River (2003)

Attestation: Evidence and Trust 17

3. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.-R., Stüble, C.: A
protocol for property-based attestation. In: STC 2006: Proceedings, First ACM
Workshop on Scalable Trusted Computing, pp. 7–16. ACM Press, New York (2006)

4. AMD Corporation. Amd64 architecture programmer’s manual volume 2: System
programming rev 3.11 (January 2006),
http://www.amd.com/usen/assets/content type/white papers and tech docs/
24593.pdf

5. Intel Corporation. Intel trusted execution technology (November 2006),
http://download.intel.com/technology/security/downloads/31516803.pdf

6. Microsoft Corporation. Ngscb official page (2007),
http://www.microsoft.com/resources/ngscb/default.mspx

7. Grawrock, D.: The Intel Safer Computing Initiative. Intel Press (2006)

8. TCG Best Practices Group. Design, Implementation, and Usage Principles for
TPM-Based Platforms. Version 1.0 (May 2005)

9. Guttman, J.D.: Authentication tests and disjoint encryption: a design method for
security protocols. Journal of Computer Security 12(3/4), 409–433 (2004)

10. Guttman, J.D., Herzog, J.C., Ramsdell, J.D., Sniffen, B.T.: Programming cryp-
tographic protocols. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS,
vol. 3705, pp. 116–145. Springer, Heidelberg (2005)

11. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,
B.T.: Trust management in strand spaces: A rely-guarantee method. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004)

12. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation – a virtual ma-
chine directed approach to trusted computing. In: Proceedings of the Third virtual
Machine Research and Technology Symposium, May 2004, pp. 29–41. USENIX
(2004)

13. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: USENIX Security Symposium, pp. 179–
194. USENIX (2004)

14. Katsuno, Y., Watanabe, Y., Yoshihama, S., Mishina, T., Kudoh, M.: Layering ne-
gotiations for flexible attestation. In: STC 2006: Proceedings, First ACM Workshop
on Scalable Trusted Computing, pp. 17–20. ACM Press, New York (2006)

15. Kerber, R.: Advanced tactic targeted grocer: ‘Malware’ stole Hannaford data. The
Boston Globe p. 1, 18 March (2008)

16. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the
linux operating system. Technical report, NSA, NAI Labs (April 2001)

17. Millen, J., Guttman, J., Ramsdell, J., Sheehy, J., Sniffen, B.: Call by contract for
cryptographic protocol. In: FCS-ARSPA (2006)

18. Poritz, J.A.: Trust[ed — in] computing, signed code and the heat death of the
internet. In: SAC 2006: Proceedings of the 2006 ACM symposium on Applied
computing, pp. 1855–1859. ACM Press, New York (2006)

19. Sadeghi, A.-R., Stüble, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: NSPW 2004: Proceedings, 2004 Work-
shop on New Security Paradigms, pp. 67–77. ACM Press, New York (2004)

20. Seshadri, A.: Pioneer web page, http://www.cs.cmu.edu/

21. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: Ver-
ifying integrity and guaranteeing execution of code on legacy platforms. In: Pro-
ceedings of ACM Symposium on Operating Systems Principles (SOSP), October
2005, pp. 1–16 (2005)

http://www.amd.com/usen/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/usen/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://download.intel.com/technology/security/downloads/31516803.pdf
http://www.microsoft.com/resources/ngscb/default.mspx
http://www.cs.cmu.edu/

18 G. Coker et al.

22. Shi, E., Perrig, A., Van Doorn, L.: BIND: A time-of-use attestation service for
secure distributed systems. In: Proceedings of IEEE Symposium on Security and
Privacy (May 2005)

23. Shieh, A., Williams, D., Sirer, E.G., Schneider, F.B.: Nexus: a new operating system
for trustworthy computing. In: SOSP 2005: Proceedings of the twentieth ACM
symposium on Operating systems principles, pp. 1–9. ACM Press, New York (2005)

24. Stone, B.: 11 charged in theft of 41 million card numbers. The New York Times,
p. B 1, 5 August (2008)

25. Trusted Computing Group. TPM Main Specification, version 1.1b edition (2001),
https://www.trustedcomputinggroup.org/downloads/tcg spec 1 1b.zip

26. Trusted Computing Group. TCG Trusted Network Connect: TNC Architecture for
Interoperability. Version 1.1 (May 2006)

27. Trusted Computing Group. TCG Trusted Network Connect TNC IF-IMC, Version
1.1 (May 2006)

https://www.trustedcomputinggroup.org/downloads/tcg_spec_1_1b.zip

A Novel Solution for End-to-End Integrity

Protection in Signed PGP Mail

Lijun Liao and Jörg Schwenk

Horst Görtz Institute of IT-Security,
Ruhr-University Bochum, Germany

{lijun.liao,joerg.schwenk}@nds.rub.de

Abstract. PGP mail has been widely used to provide the end-to-end
authentication, integrity and non-repudiation. However it has the sig-
nificant drawback that the email header is unauthentic. DKIM protects
specified header fields, but only between the sending server and the re-
ceiver. These lead to possible impersonation attacks and profiling of the
email communication, and encourage spam and phishing activities. In
this paper we propose an approach to extend PGP mail to support end-
to-end integrity of whole email, namely the whole content and selected
header fields. This approach is fully compatible with PGP mail. Un-
der some reasonable assumption our approach can help to reduce spam
efficiently.

1 Introduction

Emails are not protected as they move across the Internet. Often information
being transmitted is valuable and sensitive such that effective protection mecha-
nisms are desirable in order to prevent information from being manipulated or to
protect confidential information from being revealed by unauthorized parties. A
large number of email security mechanisms have been meanwhile developed and
standardized, which build a solid basis for secure email communication. The most
well-known and widely employed mechanisms are S/MIME and (Open)PGP
mail. PGP and OpenPGP are two similar formats. The main difference is that
OpenPGP does not use the patent algorithms which are contained in PGP. For
convenience, we use in the following only PGP for both PGP and OpenPGP.

Based on the analysis of the related work in Section 2 we make clear that
further improvement is needed. In this paper we discuss how to extend PGP
mail to support header protection with compatibility with prior versions. This
can be proven by our prototype implementation. We discuss also how to employ
our approach to reduce spam in emails.

The rest of this paper is organized as follows. We review the related work
in Section 2. The signature in PGP format is briefly described in Section 3. In
Section 4 we list the goals of our approach which is focused in Section 5. We
analyze our approach in Section 6; Before we conclude our paper in Section 8,
we describe briefly our prototype implementation in Section 7.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 19–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 L. Liao and J. Schwenk

2 Related Work

End-to-End Security Mechanisms: PGP mail [1,2] is one of the most widely
propagated mechanisms to provide authentication, message integrity, non-repu-
diation of origin, and data confidentiality. The email sender signs the message
body using his private key. The receiver verifies the signature with the corre-
sponding public key after receiving signed message. However, in PGP mail, only
the body of the email message is protected. Most header fields, such as To, Date,
and Subject, are remain unprotected, and the From and Sender are only secure
if the receiver checks that the address in the From or Sender of a mail message
matches the Internet mail address in the signer ID of the signer’s certificate. The
most email clients1 do not check it. Fig. 1 shows that the Thunderbird (with
PGP plug-in Enigmail [3]) cannot detect the modification of any email header
fields2.

In the following we analyze some approaches that provide sender authentica-
tion or the authentication of some email header fields: S/MIME 3.1, Sender ID,
SPF, DKIM, and LES. They are designed to use X.509 based techniques. With
light modification, they can be deployed with PGP based techniques, e.g. using
PGP certificate instead of X.509 certificate, and using web of trust instead of
public key infrastructure (PKI).

To send a signed email in S/MIME 3.1, one prepares an email m1 as usual. A
new email m2 is then created with the same header field as m1, a media block
with m1 as its content is then added to m2. Now a signature is added to m2 to
protect the content of m2, namely the media block with m1. In this case, the
content and header of m1 are both protected by the signature. However, this
approach is associated with the following disadvantages:

1. All header fields in m1 must also appear in m2 (i.e., they must be presented
doubly) so that the email is conform to RFC 2822 [4] and the MUAs and
MTAs know how to send the email.

2. Only header in m1 is protected, but not the one in m2. As stated in [5], it
is up to the receiving client to decide how to present the protected fields in
m1 along with the unprotected ones in m2. Since there are no well-known
clients that support S/MIME 3.1, we cannot test S/MIME 3.1 in praxis.
Without loss of the generality, we assume the behaviour of future clients
as follows: the following header fields, if present, are shown in most clients:
From, Sender, To, CC, Date, Subject, and Reply-To. If the same header field
is present in m1 and m2, only the one in m1 is presented. If a header field is
only presented in m2, it will be also shown. Most emails do not contain the
header fields Sender and CC, hence one can add these header fields in the
outer header to confuse the receivers.

1 Most email clients do not support PGP mail directly, but with the help of additional
plug-ins. For convenience, we refer in this paper the email clients to the clients with
the PGP plug-ins.

2 Enigmail does not even check whether the email sender matches the Internet address
in the PGP certificate.

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 21

Fig. 1. A signed PGP mail in Thunderbird 2.0 with PGP plug-in Enigmail. The original
message (top) is sent from alice@foo.org to bob@foo.org. In the modified message
(bottom), the From field is changed to ceo@somebank.com, the fields To, Date, and
Subject are also modified; however, the signature is still treated as valid in Thunder-
bird.

3. It complicates the receiver to show the email. It is difficult to determine
whether the message within the message/rfc822 wrapper is the top-level
message (as in S/MIME 3.1), or the complete message/rfc822MIME entity
is another encapsulated mail message.

22 L. Liao and J. Schwenk

Sender Verification Frameworks: There are several path based sender veri-
fication frameworks for email, e.g. Sender ID [6], and SPF [7]. Such frameworks
protect only the direct sending server and are not suitable for email messages
which are forwarded by other sending servers.

DKIM [8] protects the important header fields using digital signatures. The
sending server signs each outgoing email, including some email header fields and
the body. The public key used to verify the signature is placed in the send-
ing server. Such approaches can protect more header information; however, the
communication between the sender and sending server remains unprotected. Ad-
ditionally the sending and receiving servers are vulnerable to Denial-of-Service
(DoS) attacks. An attacker may flood the sending server with million emails and
force the sending server to sign them. Such an attack can similarly be applied to
the receiving server by sending million emails with valid signature formats (the
signature may be invalid, e.g. a random number as the signature value).

LES [9] is an extension of DKIM and allows the sender to sign the header fields
and body using DKIM signature. It seems to provide end-to-end authentication,
message integrity and non-repudiation. However, the private key is generated by
some server and is sent unprotected to the sender via email; hence at least one
other than the signer (sender) knows the private key. Therefore no real end-to-
end security is achieved. Since the receiving server verifies the signatures of all
incoming emails, it is also vulnerable to DoS attacks.

Additionally, all approaches above are vulnerable to DNS spoofing attacks,
and one can still send spam if he has the legal email address, which can be gotten
very easily.

Spam: MAAWG estimates that 74–81% of incoming emails between October
2005 and June 2006 were spam [10]. There are a number of methods in use
to manage the volume and nature of spam. Many organizations employ filtering
technology. However, the emails today do not contain enough reliable information
to enable filters and recipients to consistently decide if messages are legitimate
or forged. Others use publicly available information about potential sources of
spam. These policy and filter technology measures can be effective under cer-
tain conditions, but over time, their effectiveness degrades due to increasingly
innovative spammer tactics.

With our approach we enable a sender to provide proof that an email is
legitimate and not from a spammer; and more effective spam control mechanisms
can be built to reduce both the amount of spam delivered and the amount of
legitimate emails that are blocked in error. Although the application of our
extension for anti-spam is based on an assumption (see Assumption 1) that is
not satisfied today, we believe that this goal can be achievable shortly.

3 Signature in PGP Format

PGP can be used to digitally sign, digest, authenticate, or encrypt arbitrary
message content. PGP signature is carried by a signature packet which contains

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 23

the hash algorithm, public key algorithm, hashed subpacket data, unhashed sub-
packet data, and the signature value. The subpacket data may contain some data
related to the signature. If the subpackets which specify the the signature cre-
ation time, the key ID of the key issuing the signature, are present, they must
be contained in the hashed subpacket data.

A hash value is computed over the content to be signed, the hash algorithm,
the public key algorithm, and the hashed subpacket data. In a email with PGP
signature, the content to be signed is the content of email. The signature value
is then computed over the hash value with signer’s private key.

PGP defines a subpacket type notation for extension. There may be more
than one notation subpacket in a signature. By inserting a notation subpacket
to the hashed subpacket data we extend PGP mail for header protection as shown
in Section 5.2.

4 Goals of Our Approach

Based on the analysis in Section 2 we propose an approach with the following
advantages:

1. End-to-end security of the complete message: Authentication, integrity and
non-repudiation should be achieved for not only the email body, but also
some important header fields.

2. Compatibility with prior versions: Old clients that are only PGP mail capable
should not treat signatures in emails with our approach as invalid.

3. Simple implementation of clients: It should be easy to implement our ap-
proach.

4. Support for anti-spam: Our approach should help to reduce spam.

5 Extension in PGP Mail

In this section we present an approach to achieve the goals described in Section
4. The basic concept is to specify the header fields that should be signed, the
hash algorithm, and hash value computed over the specified header fields. Such
information is contained in a hashed subpacket of type notation in PGP so that
it is protected by the signature.

5.1 Header Protection Entity

We use similar format as in DKIM to identify the headers that are signed,
namely a colon-separated list of header names. For example, the field name list
From:To:Date:Subject:Reply-To indicates that the first header fields (from
bottom to top) From, To, Date, Subject, and Reply-To are signed. If a referenced
header field does not exist, an empty string is used instead. This is useful to
prevent adding undesired header fields. For an email without the field CC field
while creating the signature, we can use · · ·:CC (where · · · is for list of any

24 L. Liao and J. Schwenk

other field names) to avoid the insertion of a new CC header. The signer can sign
multiple instances of a header by including the header name multiple times; such
field instances are then signed in order from the bottom of the header block to
the top. If there are n instances of a header, including the header name n + 1
times avoids the insertion of a new instance. Considering the example in Fig. 2,
· · ·:To:To avoids adding a second field To.

To prevent from adding an additional field or a new one, the corresponding
field name should be listed at least once more than the expected times of its
appearance. In general, the fields From, Sender, To, CC, Date, Subject, and
Reply-To are important, and each of them is only allowed once in the email.
Hence, the following field name list From:From:Sender:Sender:To:To:CC:CC:
Date:Date:Subject:Subject:Reply-To:Reply-To, denoted as fnl, should be
used at least.

From: Alice <alice@foo.org>
TO: Bob <bob@foo.org>
Subject : Test
Date: Tue, 6 Mar 2007 09:21:36 +0100

Fig. 2. Header block of an email. The name of field To is in uppercase.

From: Alice <alice2@foo.org>
To: Carl <carl@foo.org>
TO: Bob <bob@foo.org>
CC: Eva <eva@foo.org>
Subject : Test (modified)
Date: Tue, 6 Mar 2007 09:21:36 +0100

Fig. 3. Modified header block of an email from Fig. 2. The field Subject is modified,
and a second To and a new Cc are added.

We consider now the examples in Figures 2 and 3. The result of applying
fnl to the header blocks are depicted in Fig. 4 and Fig. 5, respectively. The
modification can be detected clearly by comparing both results.

Email, specially the email header fields, may be modified by some mail servers
and relay systems. Some signers may demand that any modification of email
headers result in a signature failure, while some other signers may accept mod-
ification of headers within the bounds of email standards, e.g. the addition or
deletion of white spaces, and changing the lowercase or uppercase of the letters
of field name. For these requirements we use the header canonicalization algo-
rithms simple and relaxed defined in the DKIM specification [8, §3.4.1, §3.4.2]
respectively.

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 25

From: Alice <alice@foo.org>
TO: Bob <bob@foo.org>
Date: Tue, 6 Mar 2007 09:21:36 +0100
Subject : Test

Fig. 4. Result of applying From:From:Sender:Sender:To:To:CC:CC:Date:Date:
Subject:Subject:Reply-To:Reply-To to header block in Fig. 2

From: Alice <alice2@foo.org>
TO: Bob <bob@foo.org>
To: Carl <carl@foo.org>
CC: Eva <eva@foo.org>
Date: Tue, 6 Mar 2007 09:21:36 +0100
Subject : Test (modified)

Fig. 5. Result of applying From:From:Sender:Sender:To:To:CC:CC:Date:Date:
Subject:Subject:Reply-To:Reply-To to modified header block in Fig. 3

The simple header canonicalization algorithm does not change headers in any
way; hence any modification of the headers, e.g. adding a space in one header or
change the field name “TO” to “To”, will invalidate the signature.

The relaxed header canonicalization algorithm canonicalizes the headers in
order as following:

1. convert all field names to lower case;
2. unfold all field continuation lines as described in RFC 2822 [4];
3. convert all sequences of one or more white spaces, e.g. space or tab, to a

single space;
4. delete all white spaces at the end of each unfolded field value;
5. delete any white spaces remaining before and after the colon which separates

the field name from the field value.

Hence, relaxed allows the following changes:

1. Changing the uppercase or lowercase of each character in field name.
2. Adding or removing white spaces between field name and field value
3. Changing the number of continuing white spaces (at least 1) in a field value
4. Replacing new line in field value with white spaces or vice versa. Note that

the new line must start with at least one white space so that it belongs to
the same field.

By applying the canonicalization method relaxed to the selected header fields
in Fig. 4 and Fig. 5, we get the results in Fig. 6 and Fig. 7, respectively.

To protect the intended fields, the simplest method is to put the canonical-
ized result together with the field name list and the canonicalization method in a

26 L. Liao and J. Schwenk

from:Alice <alice@foo.org>
to:Bob <bob@foo.org>
date:Tue, 6 Mar 2007 09:21:36 +0100
subject:Test

Fig. 6. Result of applying the canonicalization method relaxed to the selected header
block in Fig. 4

from:Alice <alice2@foo.org>
to:Bob <bob@foo.org>
to:Carl <carl@foo.org>
cc:Eva <eva@foo.org>
date:Tue, 6 Mar 2007 09:21:36 +0100
subject:Test (modified)

Fig. 7. Result of applying the canonicalization method relaxed to the selected header
block in Fig. 5

hashed subpacket of type notation. Its main disadvantage is that the signature
size will be increased enormously, and is proportional linearly to the canonical-
ized fields, since the signature size without this attribute is almost fixed and
small.

A better method is to compute the hash value over the canonicalized result.
The hash value and the hash algorithm, instead of the canonicalized result itself,
are then saved. In this case, the signature size is much less than the method
above, since it is proportional linearly to the size of field name list instead of the
canonicalized fields.

As described above, the former needs much more size than the latter. Hence
we consider in this paper only the latter.

We introduce some abstract notations to simplify the explication. We denote
Γ (l:string, c:string, α:string, γ:bytes) as a header protection entity, where
l is list of header field names, c is header canonicalization method, α is hash
algorithm, and γ is hash value, e.g. Γ (’From:To:Date:Subject’, ’relaxed’,
’SHA1’,γSHA1), where γSHA1 has 20 bytes. Let ε= (L, C, H) be the notation
for the creation and verification of Γ (l, c, α, γ) for the email header block ϕ.
Note that the processes to verfiy and create the signature over the email body
remain unchanged. The L algorithm retrieves the header fields specified by the
list l from ϕ and is denoted as Ll(ϕ). The C algorithm is the canonicalization
algorithm. Cc(τ) canonicalizes email header τ with the canonicalization method
c. H is the secure one-way hash function, and Hα(m) denotes the computation of
hash value over message m with algorithm α. The validity of a header protection
entity Γ for the email header block ϕ is defined in Definition 1.

Definition 1. An entity Γ (l, c, α, γ) is valid for the email header block ϕ if and
only if γ = Hα(m), where m = Cc(τ), τ = Ll(ϕ).

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 27

5.2 Extension in PGP Mail

As described in Section 3, the email content, hash algorithm, public key algo-
rithm (the algorithm to sign the hash value), and hashed subpackets are pro-
tected by the signature. To make our header protection entity protected by the
signature to prevent from modifying, we use a hashed subpacket notation to
represent the entity Γ (l, c, α, γ). A subpacket of type notation is defined in [2,
§5.2.3.15] as follows:

notation ::= {
4 octets of flags,
2 octets of name length (M),
2 octets of value length (N),
M octets of name data (Name),
N octets of value data (Value) }

A notation subpacket has a name and a value. The flags field holds four
octets of flags, for our extension we set all octets to zero. The Name field carries
the name of this notation, and Value carries the value data specified by Name.
We use RFC2822HeaderProtect@rub.de as Name; hence M = length(Name) =
27 = 0x001B, where length(x) returns the number of octets contained in x. The
entity Γ (l, c, α, γ) is specified by an object of type RFC28222HeaderProtectType.

RFC2822HeaderProtectType ::= {
1 octet canon. algorithm (CanonAlgo),
1 octet digest algorithm (DigestAlgo),
2 octets field name list length (K),
K octets field name list (FieldNameList),
1 octet hash value length (L),
L octets hash value (HashValue) }

The CanonAlgo field carries the header canonicalization algorithm c: 1 for
simple and 2 for relaxed. The DigestAlgo field carries the digest algorithm α
as defined in [2, §9.4], e.g. 2 for SHA1. The FieldNameList field specifies the
list of header names l of K octets, and the hash value γ of L octets is specified
in the HashValue field.

Some systems, such as GnuPG, allow only ascii-text in notation value, but
not arbitary-text. The object of type RFC28222HeaderProtectType should be
first encoded in such systems. As a generic solution the first byte of the notation
value indicates the encoding algorithm. The rest bytes are then the encoded
object of type RFC28222HeaderProtectType. The predefined algorithms are: ’a’
for armor encoding, ’b’ for base64 encoding, and ’n’ for no encoding.

Figures 8 and 9 depicts the notation subpacket with the following contents:

– the canonicalization algorithm is relaxed,
– the digest algorithm is SHA1, and
– the header fields under the field name list From:From:Sender:Sender:To:

To:CC:CC:Date:Date:Subject:Subject:Reply-To:Reply-Toare protected
from modification.

28 L. Liao and J. Schwenk

0 4 : Flags { 0 }
4 2 : M { 27 }
6 2 : N { 105 }
8 27 : Name { ”RFC2822HeaderProtect@rub . de” }

35 105 : Value {
35 1 : EncodingAlgorithm { ’n ’ = no encoding }
36 1 : CanonAlgo { 2 = re l axed }
37 1 : DigestAlgo { 2 = SHA1 }
38 2 : K { 79 }
40 79 : Reference { ”From :From : Sender : Sender :To :To :

CC:CC: Subject : Subject : Date : Date :
Reply−To : Reply−To” }

119 1 : L { 20 }
120 20 : HashValue { DD 6F 37 34 BE 9B 43 DA F4 B8

17 5B 99 EA 10 64 9B 78 69 2D }
140 −: }

Of f s e t Length Content

Fig. 8. A notation subpacket which specifies the header protect entity

0 4 : Flags { 0 }
4 2 : M { 27 }
6 2 : N { 142 }
8 27 : Name { ”RFC2822HeaderProtect@rub . de” }

35 142 : Value {
35 1 : EncodingAlgorithm { ’b ’ = base64 encoding }
36 141 : Encoded Header Protec t i on Entity {

AgIAT0Zyb206RnJvbTpTZW5kZXI6U2VuZGVyOl
RvOlRvOkNDOkNDOlN1YmplY3Q6U3ViamVjdDp
EYXRlOkRhdGU6UmVwbHktVG86UmVwbHktVG
8Uci0rT7/2p+Jm6P/jjDrX7cb4Fpk=

}
177 −: }

Of f s e t Length Content

Fig. 9. A notation subpacket which specifies the base64 encoded header protect entity

In Figure 8 the entity is not encoded, while it is base64 encoded in Figure 9.
To send a signed PGP mail with our extension, the sending client behaves as

usual with the following exception: before it signs, it generates a notation with
the name RFC2822HeaderProtect@rub.de to specify the entity Γ (l, c, α, γ) for
the email ϕ within the signed subpacket data.

Assume that the receiving client receives an email of header block ϕ′ with the
notation that specifies Γ (l′, c′, α′, γ′). If the client implements our approach, it
does the following:

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 29

1. retrieve the header fields referenced by FieldNameList l′: τ ′ = Ll′(ϕ′);
2. canonize τ̃ with the canonicalization algorithm c′: m′ = Cc′(τ ′);
3. compute the hash value over m′: γ̃ = Hα(m′);
4. compare γ̃ with γ′ specified in digest. If γ̃ �= γ′, terminate the verification

process and consider the signature as invalid, otherwise do other checks as
usual.

Since the most clients ignore unrecognized notations, they are still able to
verify the signature as usual, even when they do not implement our approach.
However, the header modification can no more be detected.

6 Analysis

This section shows how the goals mentioned in Section 4 can be satisfied in our
approach.

End-to-end security of the complete message: The authentication, in-
tegrity and non-repudiation of the email body are achieved by the basic PGP
mail mechanism, and the ones of the important header fields are achieved by
the notation with the name RFC2822HeaderProtect@rub.dewithin the hashed
subpackets in PGP signature.

Compatibility with prior versions: In PGP mail the receiving client that
does not implement our approach will ignore the unrecognized notations respec-
tively; hence the signature can be verified as usual.

Simple implementation of clients: A PGP mail capable client should be
extended as follows to support the header protection:

– Generating/verifying the header protection entity.
– Adding/retrieving the header protection entity to/from the hashed packets.
– Informing the users the result of the header protection verification: which

header fields are protected and whether they are modified.

The existing PGP capable clients can be further used and need only to be
extended. The most complex function for this extension is the hash computation,
which is implemented in all PGP capable clients. Hence we can just call the
existed one. All other functions should be not difficult to implement.

Support for anti-spam: After researching some spam archives, e.g. [11,12],
we argue that most spam messages are unsigned. Therefore most of spam can
be rejected if only signed emails (with valid signatures) are accepted. The email
header is not protected by PGP mail; hence a clever spammer is able to send
signed spam and modify the header. To provide more efficient and proper mech-
anism against spam, signed emails with our extension should be applied under
Assumption 1.

30 L. Liao and J. Schwenk

Assumption 1. An email system should satisfy the following conditions:

1. The users have trusted PGP certificates and send only signed emails with
our approach.

2. At least the header fields From, Sender, To, CC, Date, Subject, and Reply-To
must be signed to prevent from modification of the existing fields and addition
of new fields in the above list.

3. The signer is identified by the address either in the Sender field, or in the
From field if there is no Sender field. It must match the address in the
signerId of the signing certificate;

4. Each email has limited receivers in the headers To and CC;

Fig. 10. The header field To is modified from bob@foo.org to carl@foo.org, and this
modification is detected by extended Enigmail

A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail 31

5. An email is accepted if and only if it has valid signature (i.e. the email is
not modified and signed by a person with trusted certificate) and the receiver
either is directly contained or is a member of the mailing list contained in
the header To or CC;

6. The verification is processed by the email client, not the receiving server to
avoid the DoS attack.

Even if a spammer has a trusted certificate, he cannot sign the email once and
send it to million victims. Assuming that max. 10 receivers are allowed in an
email, if the spammer wishes to send a spam to 1,000,000 victims, he must sign
at least 100,000 times which takes much time and cost. In fact, the spammer
put only one receiver in the To field to confuse the victim that he is the only
intended receiver; hence the spammer must sign the email individually for each
victim which requires much more time and cost. Without our extension, the
header can not be signed; therefore the spammer needs to sign the email only
once, and replaces the receivers (in header fields To and CC) without invalidating
the signature.

Our extension can help reduce spam, but will not stop spam entirely. It should
be used together with other technologies, such as filtering and policy technologies.

7 Prototype Implementation

We have extended the OpenPGP Plug-In Enigmail for Thunderbird to support
our approach. We have created signed PGP mail messages and then modified
some header fields. This modification could only detected in the extended Enig-
mail. An example with a modified To field is given in Fig. 10.

8 Conclusion and Future Work

In this paper we discussed how to extend PGP mail to provide the end-to-
end protection of the email header fields. Our approach does not invalidate the
signature even if the receiving client does not understand it. The existing clients
can be simply extended to support it. With some reasonable assumptions, our
approach provides efficient method to struggle with the spam. Since PGP mail
is widely accepted, header protection implemented here may have great impact.

As our future work, we will extend the current approach to implement ex-
tensions for the popular email clients to support our approach (extension of
Enigmail is partly finished), suggest the web mail providers to support PGP
mail with our approach in their web mail interfaces.

References

1. Elkins, M., Torto, D.D., Levien, R., Roessler, T.: MIME Security with OpenPGP,
IETF RFC 3156 (August 2001)

2. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format,
IETF RFC 2440 (November 1998)

32 L. Liao and J. Schwenk

3. The enigmail project - a simple interface for openpgp email security,
http://enigmail.mozdev.org

4. Resnick, P.: Internet Message Format, IETF RFC 2822 (April 2001)
5. Ramsdell, B. (ed.): Secure/Multipurpose Internet Mail Extensions (S/MIME) Ver-

sion 3.1, IETF RFC 3851 (July 2004)
6. Lyon, J., Wong, M.: Sender ID: Authenticating E-Mail, IETF RFC 4406 (April

2006)
7. Wong, M., Schlitt, W.: Sender Policy Framework (SPF) for Authorizing Use of

Domains in E-Mail, Version 1, IETF RFC 4408 (April 2006)
8. Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., Thomas, M.: Do-

mainKeys Identified Mail (DKIM) Signatures, IETF RFC 4871 (May 2007),
http://www.ietf.org/rfc/rfc4871.txt

9. Adida, B., Chau, D., Hohenberger, S., Rivest, R.L.: Lightweight email signatures
(February 2006),
http://theory.lcs.mit.edu/rivest/AdidaChauHohenbergerRivest-
LightweightEmailSignatures.pdf

10. Email metrics program: The network operators’ perspectivereport #3 - 2nd quarter
2006, Messaging Anti-Abuse Working Group(MAAWG), Tech. Rep., (November
2006), http://www.maawg.org/about/FINAL 2Q2006 Metrics Report.pdf

11. Cormack, G.V., Lynam, T.R.: TREC 2005 spam track public corpora. (2005),
http://plg.uwaterloo.ca/gvcormac/treccorpus/

12. Cormack, G.V., Lynam, T.R.: TREC 2006 spam track public corpora. (2006),
http://plg.uwaterloo.ca/gvcormac/treccorpus06/

http://enigmail.mozdev.org
http://www.ietf.org/rfc/rfc4871.txt
http://theory.lcs.mit.edu/rivest/AdidaChauHohenbergerRivest-LightweightEmailSignatures.pdf
http://theory.lcs.mit.edu/rivest/AdidaChauHohenbergerRivest-LightweightEmailSignatures.pdf
http://www.maawg.org/about/FINAL_2Q2006_Metrics_Report.pdf
http://plg.uwaterloo.ca/gvcormac/treccorpus/
http://plg.uwaterloo.ca/gvcormac/treccorpus06/

Unclonable Lightweight Authentication Scheme�

Ghaith Hammouri, Erdinç Öztürk, Berk Birand, and Berk Sunar

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609-2280
{hammouri,erdinc,bbirand,sunar}@wpi.edu

Abstract. We propose a lightweight, tamper-resilient challenge-response
authentication scheme. The scheme that we propose (HB+PUF) is a
variant of the PUF-HB protocol [1] which utilizes Physically Unclonable
Functions (PUFs). We reduce the security of (HB+PUF) in the active
attacker model to solving the LPN problem. The proposed scheme en-
joys strong tamper-resilience due to the PUF properties. We present a
proof of concept implementation for the proposed protocol. To generate
the random bits needed for the protocol, we reuse the PUF circuit as a
Random Number Generator (RNG). This construction shows to be cost-
effective since we will be using the same hardware for authentication as
well as random number generation without incuring any significant over-
head. The overall scheme including storage, tamper-resilience and RNG
can be achieved with less than 1000 gates. The small footprint should
be ideal for constrained environments such as RFID’s, smart cards, and
sensor networks.

Keywords: Provable security, tamper-resilience, lightweight, random
number generation, PUF, HB+.

1 Introduction

Lightweight cryptography has been receiving more attention in the past few
years [10,21]. This attention is mainly motivated by the boom in the next gen-
eration ubiquitous networks. With highly constrained devices such as wireless
sensor nodes, RF identification devices (RFIDs), and smartcards as their main
building block, these networks pose an urgent need for affordable cryptography.
A number of the known results so far reduce the size of the hardware by seri-
alizing classical cryptographic protocols, thus decreasing the circuit’s footprint
[11,22,37,28]. For example, in [37] and [28] the authors present a lightweight im-
plementation of DESL, a variant of DES. The presented function uses a single
S-box 8 times, rather than using the 8 S-boxes needed for DES. With this reduc-
tion, the authors manage to serialize the implementation, therefore decreasing
the footprint. Although these results are very exciting, the approach itself seems
to be inherently limited. Most classical cryptographic protocols were designed
� This material is based upon work supported by the National Science Foundation

under Grants No. ANI-0133297 (NSF CAREER Award) and CNS-0716306.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 33–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 G. Hammouri et al.

with little attention to the hardware implementation. Therefore, the protocol
may not lend itself to serialization. Even from a broader perspective, the notion
of taking classical protocols and attempting to squeeze them into a smaller circuit
seems to eventually face natural limitations. A different yet exciting approach
is to explore new protocols which are motivated by the hardware and which are
lightweight in nature [6,31,17,41]. This approach seems harder due to the typical
computational demands of cryptography. Nevertheless, it also seems more likely
to provide a fundamental solution. This point of view becomes stronger when
we consider the diversity of the attacks that target the hardware. While typical
cryptographic protocols might be very secure in theory, one has to take into
account attacks which exploit so called side-channels [26,25]. These attacks are
roughly classified into two groups. Passive attacks solely observe side-channels
(e.g. computation time, power consumption, electromagnetic emanation, temper-
ature attacks etc.) to deduce internal secrets from leaked side-channel profiles.
In contrast, in active attacks the attacker may also inject faults during the com-
putation [27]. Not surprisingly, active attacks are more powerful and are more
difficult to prevent. A tamper-resilient hardware could help in securing devices
from both passive and active side-channel attacks. With all this in mind, it be-
comes vital to introduce secure lightweight cryptographic protocols which are
motivated by the hardware, and which are tamper-resilient.

Two promising candidates for such a task are Physically Unclonable Functions
(PUFs), and the HB-based authentication family. A PUF is a physical pseudo-
random function which exploits the small variances in the wire and gate delays
inside an integrated circuit (IC). Even when the ICs are designed to be logically
identical, the sensitive delay variances will be unique to each IC. These properties
will result in providing the hardware with a level of tamper-resilience. However,
these devices are not known to be provably secure. On the other hand the HB-
based protocols base their security on the hardness of the learning parity with
noise (LPN) problem which is known to be NP-hard [4]. Although the HB-
based authentication schemes are provably secure in strong settings, they all
lack any notion of tamper-resilience. More recently, PUF-HB was proposed [1].
This scheme aimed at merging the two qualities of PUF and HB to produce an
interesting hybrid. However, the work presented in [1] lacked any implementation
results.

Our contribution: We present a proof of concept implementation for HB+PUF,
a variant of PUF-HB which is also provably secure with a much simpler secu-
rity reduction. The reduction only applies to active attacks which do not have
a full man-in-the-middle control of the communication channel. HB+PUF re-
sists the known man-in-the-middle attacks against the HB+ scheme, and shows
strong indications to resist a variety of these attacks. Due to the lightweight
nature of PUFs and the HB+ protocol the presented scheme proves suitable for
lightweight applications. Our implementation takes advantage of the PUF circuit
in order to produce the random bits typically needed for an HB-based authenti-
cation scheme. Note that the existence of a random number generator (RNG) is

Unclonable Lightweight Authentication Scheme 35

assumed in all HB-based protocols without taking into account the complexity
of such a device. The overall circuit is shown to occupy less than 1000 gates.

The remainder of the paper is organized as follows. In Section 2 we review the
PUF paradigm focusing on tristate PUF circuits. In Section 3 we give a review
of the known HB-based authentication protocols. In Section 4 we define our
notation and describe our proposed protocol. The security analysis is presented
in Section 5. In Section 6 we describe our RNG construction and present analysis
of its randomness. Section 7 describes the proof of concept implementation of
the entire circuit. Finally, we present the conclusion in Section 8.

2 PUF

The idea behind a PUF is to have identical logical circuits observe different
input-output behavior. This goal is achieved by taking advantage of the in-
terchip variations which will vary from one circuit implementation to another.
These variations are directly related to physical aspects of the fabrication envi-
ronment. The reason one might seek to explore such a circuit is to prevent any
ability to clone the system. Additionally, because of the high sensitivity of these
interchip variations, it becomes difficult for an attacker to accurately reproduce
the hardware. Another major advantage of the PUF’s sensitivity is to prevent
physical attacks on the system. Trying to tap into the circuit will cause a ca-
pacitance change therefore changing the output of the circuit. Similarly, trying
to remove the outer layer of the chip will result in a change in the output of
the circuit. We mention here that there are different realizations of PUFs. For
example, surface PUFs were proposed in [36,44] and further developed in [40].
In this paper we focus our attention on the delay-based PUF first introduced in
[14]. For the background information we closely follow the presentation of [1].

A delay-based PUF is a {0, 1}n → {0, 1} mapping, that takes a n-bit chal-
lenge (a) and produces a single bit output (r). The basic idea of a PUF circuit
is to create a race between two signals which originate from the same source.
The original PUF circuit proposed in [14] utilizes multiplexers (MUXs) to im-
plement the needed switches. In this work we use a different implementation
of PUFs, in particular we use tristate PUFs proposed in [9]. Instead of having
two interleaved delay paths, the tristate PUF uses two separate paths of delay
units. This realization of a PUF has the advantage of requiring less gates and
consuming less power. As shown in Figure 1 the delay units of a tristate PUF
are constructed by respectively connecting the input and the output ports of two
tristate buffers. The enable ports of these tristate buffers are connected to each
other, with one of the buffers having an inverted enable input. This assures that
only one of the two tristate buffers will be enabled for a particular input value.
When a pulse is applied at the input of the delay unit, it will pass through only
one of the two buffers. The enable input will determine which tristate buffer
passes the pulse. This will change the amount of delay acquired by the signal
according to the value of the enable input. To build the overall PUF circuit, the
delay units are cascaded to construct a serial delay path. For a PUF circuit, we

36 G. Hammouri et al.

Arbiter

. . .

. . . a nn/2+2n/2+1 aa

a n/2a 1 a 2

Fig. 1. PUF built with tristate buffers

need two separate delay paths. These delay paths are constructed as shown in
Figure 1. The inputs of the two delay paths are generated by the same source
while the outputs are fed to a flip-flop which we refer to as the arbiter. We assume
the arbiter to be a positive edge-triggered flip-flop. The flip-flop has two inputs,
the data and the clock. When the clock input has a rising edge the data input
is captured at the output of the flip-flop. In the PUF setting, if the path that is
connected to the data input has a smaller delay, then the output of the arbiter
will be 1. Otherwise, the output will be 0.

In [9] the authors derive a linear delay model for the tristate PUF. The model
is represented by an equation which gives the delay difference in terms of the
challenge bits and the parameters of the PUF. Using their model we can relate
the response bit r the challenge bits1 ai using the following function,

r = PUFY (a) = sign

(
n∑

i=1

(−1)aiyi + yn+1

)
.2 (1)

For simplicity we assume that n is even and we define Y = [y1, . . . , yn+1] where
yi denotes the imbalance in the signal propagation paths of the ith stages and
yn+1 denotes the imbalance in the delay between the upper and the lower paths
and the setup time of the arbiter. These variables are dependent on the circuit
itself and will vary from one PUF circuit to another. Sign(x) = 1 if x ≥ 0, and
0 if x < 0. When the argument in sign(x) is zero the output becomes random. It
is not possible to predict the behavior of the circuit when the two signals have the
exact same mismatch. In fact, this behavior will happen to an even larger window
of delay mismatch values. In such cases the PUF is said to be metastable. We will
shortly address this issue by introducing the noise parameter εP . It is important
to note here that the delay variations yi will depend on the fabrication process of
the PUF circuit. Therefore, one would expect these variables to follow a normal
distribution. In particular, the yi values will follow a Gaussian distribution of
1 In this paper we use superscripts with parenthesis to refer to sequences of strings or

bits, i.e. a(j). We use the subscripts to denote bits of a string, i.e. ai.
2 This model is almost identical to the model derived for MUX based PUFs.

Unclonable Lightweight Authentication Scheme 37

mean zero, and a fixed variance. Without loss of generality, we can normalize
these values and assume they belong to a normal distribution of mean 0 and
variance 1.

The fact that the PUF function could be represented using a linear inequality
means that given a sufficient number of challenge-response pairs (a(i), r(i)) for
a single PUF, an attacker might be able to model the system using standard
linear programming techniques [39,2]. To get an idea of these modeling attacks,
for a 128-bit PUF with about 4000 challenge-response pairs one can model the
PUF with an accuracy of less than 5%. Such an observation seems to completely
undermine the idea of using a PUF. Although a PUF might be tamper-resilient,
it still can be easily modelable. For theoretical and experimental results on mod-
eling a PUF the reader is referred to [14,18,9]. In this paper we view this ability
as an advantage that can help create a more practical system. The ability to
model a PUF will eliminate the need to store a huge database to track all the
deployed devices. The server can store the simple model captured by the real
vector Y for each device. However, note that even with the best ability to model
a PUF there will always be a level of inaccuracy caused by metastability. This
observation is due to multiple reasons. First, the thermal noise will cause slight
fluctuations in the internal variables therefore causing a change in the output.
Second, the two signals propagating inside a PUF will sometimes enter a race
condition such that the decision made by the arbiter will be random. Race con-
ditions are in general the more dominant reason for metastability, and they will
particularly happen when the delay difference between the two internal paths is
less than the resolution of the arbiter. As a result, any PUF device can only be
accurately modeled within a certain level. The best modeling schemes tested so
far can provide an inaccuracy as low as 3% [29]. In our notation we denote the
amount of error that exists in our best model of a PUF circuit with εP .

Next, we introduce an enhancement to the delay-based PUF. We use an n-bit
non-zero binary string x to implement a linear bijection on the input challenge
before it is fed into the PUF. Let a be the challenge string sent to the PUF. To
produce the actual challenge string a′ we treat x and a as elements of a finite
field GF (2n) and compute the product a′ = xa ∈ GF (2n). We next define a new
PUF equation which takes this enhancement as well as the error in modeling the
PUF into consideration3

PUFY,x,εp(a) = PUFY (xa) ⊕ ν, (2)

where ν = 1 with probability εP and ν = 0 with probability 1 − εP . The field
multiplication may be implemented with low footprint using a simple linear
feedback shift register (LFSR) based serial modular polynomial multiplier cir-
cuit. The choice of generating polynomial makes no difference in terms of the
properties of the PUF device. Hence, for efficiency, low-weight polynomials (e.g.
trinomials) may be used in the implementation [3].

3 While this enhancement does not prevent modeling attacks, it will indeed have an
affect on the man-in-the-middle attacks as we will see in Section 5.

38 G. Hammouri et al.

3 LPN-Based Authentication Protocols

In this section we give a quick review of the LPN problem and the different HB
authentication schemes which base their security on the hardness of LPN. We
focus our attention on HB and HB+. For a certain ε ∈

(
0, 1

2

)
the LPN problem

is denoted by LPNε, and stated as: Given k random binary n-bit strings a(j) and
the bits z(j) = a(j) · s ⊕ ν for some s ∈ {0, 1}n, where a · b denotes the binary
inner product between a and b, ν = 1 with probability ε and 0 with probability
1− ε, then find the binary string s.4

The LPN problem is known to be NP-hard [4]. In [19], the authors show
that the LPN problem is log-uniform and even hard to approximate within a
ratio of 2. Kearns proved in [24] that the LPN problem is even hard in the
statistical query model. The best known algorithm to solve the LPN problem is
the BKW algorithm [5]. However, there has been a number of improvements on
the algorithm with the best running time of 2O(n/ log n) [12,30,33].

In the HB protocol [19], the tag and the reader share an n-bit secret string
s. To authenticate the tag, the reader starts sending randomly generated n-bit
challenge strings a(j). The tag responds with the bit z(j) = a(j) · s⊕ ν where the
variables are as defined in the LPN problem. The tag and the reader repeat the
same step for multiple challenges. Finally, the reader checks to see if the number
of errors in the tag’s response matches the noise level, and decides to accept or
reject accordingly. Note that if the tag’s response did not contain noise, then a
passive attacker would easily be able to deduce s after collecting n challenge-
response pairs using Gaussian elimination. In [19], the authors prove that given
an algorithm that predicts z(j) for a random a(j) with some advantage, then this
algorithm can be used to solve the LPNε problem. However, HB is only secure
against passive attacks. An active attacker can easily repeat the same challenge
multiple times, effectively eliminating the noise and reducing the problem to
Gaussian elimination.

To secure the HB protocol against an active attacker the HB+ protocol was
proposed in [20]. In HB+ the tag and the reader share two n-bit strings s1 and
s2. The tag starts the authentication session by sending a random n-bit string
b(j). The reader then responds with a(j) just like the HB protocol. Finally the tag
responds with z(j) = a(j)·s1⊕b(j)·s2⊕ν, where ν is defined as above. The protocol
is proved to be secure against an active attack on the tag (excluding man-in-
the-middle attacks). In such an adversary model an attacker is not allowed to
obtain final decisions from the reader on whether this authentication session was
successful or not. In [20] and [23] the authors show that in this adversary model
breaking the HB+ protocol is equivalent to solving the LPN problem. However,
as we pointed out earlier, a simple man-in-the-middle attack was demonstrated
on the HB+ protocol in [16]. Note that in a detection based model this attack
will not be successful.

In addition to HB and HB+, there has been a number of other variations such
as HB++ [7], HB-MP [34] and HB∗ [8]. A recent proposal is the HB# [15]. In

4 We follow the LPN formulation given in [23].

Unclonable Lightweight Authentication Scheme 39

their work the authors propose a modified version of HB+ which uses Toeplitz
matrices rather than vectors for a shared secret. Under a strong conjecture the
proposal is proven secure against a class of man-in-the-middle attacks. In this
adversary model which is referred to as GRS-MIM-model, the attacker can only
modify data transmission from the reader to the tag but not from the tag to
the reader. Not that the GRS-MIM-model will essentially protect against the
previously mentioned man-in-the-middle attack. Our work here is based on the
more recent protocol PUF-HB [1] which introduces PUFs to the HB paradigm.

4 New Authentication Family: HB+PUF

In this section we present the proposed protocol. We will use R to denote the
reader and T to denote the tag. n1 and n2 will be our security parameters. T
andR are both characterized by the set of variables (k, s1, s2, x, Y, εP , ε, u) where
s1, x ∈ {0, 1}n1, s2 ∈ {0, 1}n2 and Y = [y1, y2, . . . , yn1+1] such that yi ∈ N(0, 1)
where N(µ, σ2) is the normal distribution with mean µ and variance σ2. The
noise parameters are ε, εP ∈

(
0, 1

2

)
. We use k to denote the number of rounds

required for authentication. The last variable u is an integer in the range [0, n]
such that εfk ≤ u, where εf = εP +ε−2εpε denotes the total noise in the scheme.

With this notation we describe the basic authentication step. In every round,
T randomly generates b ∈ {0, 1}n2 and sends it to R. Upon reception R replies
with the challenge a ∈ {0, 1}n1. Finally, T computes

z = a · s1 ⊕ b · s2 ⊕ PUFY,x,εp(a)⊕ ν , (3)

where ν = 1 with probability ε and 0 with probability 1 − ε. Notice that this
is very similar to the basic authentication step in HB+. The only difference is
that here we add a PUF operation. In order for R to authenticate T , the same
basic authentication step is repeated for k rounds. In every round R checks to
see if T ’s response is equal to (a · s1⊕ b · s2⊕PUFY,x,0(a)). If the response is not
equal to this term, R marks the response wrong. At the end of the kth round,
R authenticates T if and only if the number of wrong responses is less than u.

In general, any entity can interact with the reader and try to impersonate an
honest tag. To capture such interaction, let E be any entity trying to authenticate
itself to the readerRσ characterized by σ = (k, s1, s2, x, Y, εp, ε, u). Following the
notation in [23] we define 〈E ,Rσ〉 := 1 iff E is authenticated by the reader, and
is equal to 0 otherwise. The following protocol formalizes this interaction:

Protocol 1 (HB+PUF): 〈E ,Rσ〉
1. Rσ sets the counter c = 0
2. E sends b ∈ {0, 1}n2 to Rσ

3. Rσ choses a ∈ {0, 1}n1 uniformly at random and sends it to E
4. E sends z to Rσ

5. if z �= a · s1 ⊕ b · s2 ⊕ PUFY,x,0(a) then c = c + 1
6. Steps 2 through 5 are repeated for k iterations
7. If c ≤ u then 〈E ,Rσ〉 = 1, otherwise it equals 0.

40 G. Hammouri et al.

5 Security Analysis

In this section we show that the proposed protocol HB+PUF is at least as se-
cure as the HB+ protocol. We also discuss security against man-in-the-middle
attacks. Finally, we consider the parameter selection to obtain a secure imple-
mentation. The reduction from HB+PUF to HB+ is in fact very simple. As
can be seen from Equation 3, the HB+PUF protocol utilizes all the terms of
HB+, and only adds a PUF operation. Therefore, it should be expected that
the HB+PUF protocol can not be less secure than the HB+ protocol. We now
formalize this intuition by showing that any algorithm capable of successfully
attacking the HB+PUF protocol can be used to successfully attack HB+. The
HB+ protocol uses a tag T +

τ and a readerR+
τ both of which can be characterized

by the string of variables τ = (k, s1, s2, ε, u). The variables in τ are defined as
we have done for the HB+PUF variables in Section 4. We also use 〈E ,R+

τ 〉 to
indicate an authentication session between any entity E and an HB+ reader R+

τ

using the HB+ protocol. Similar to Protocol 1, 〈E ,R+
τ 〉 = 1 when the reader

authenticates and 0 otherwise. This notation mostly follows the work presented
in [23]. Recall from the previous section that in the HB+PUF protocol we use
a tag Tσ and a reader Rσ both of which can be characterized by the string of
variables σ = (k, s1, s2, x, Y, εp, ε, u). We next state the reduction and keep the
proof to Appendix 8. We prove the reduction in the active attacker model used
to prove the security of the HB+ protocol. In this model the attacker interacts
with the tag in a learning session before he attempts to impersonate as the tag
to an honest reader5.

Theorem 1. Let A be an algorithm which interacts with an honest HB+PUF
tag Tσ for q authentication sessions to achieve Pr[〈A,Rσ〉 = 1]> δ, where
Rσ is an honest HB+PUF reader. Then, there exists an algorithm A′ which
can interact with any HB+ tag T +

τ for q authentication sessions to achieve
Pr[〈A′,R+

τ 〉 = 1]> δ, where R+
τ is an honest HB+ reader.

We point out that in the PUF-HB scheme the security reduction is much more
involved since the secret s1 is replaced by the PUF operation. Theorem 1 poses
an immediate question of how the HB+PUF protocol behaves in relation to the
the known man-in-the-middle attack against HB+ [16]. Briefly, in this attack an
adversary replaces all the challenges {a(j)}kj=1 sent from the reader in a single
authentication session by {a(j)⊕w}kj=1 where w ∈ {0, 1}n1. The attacker knows
that the challenges will interact with the secret s1 through a(j) ·s1. At the end of
the k rounds, if the reader authenticates the tag, then the adversary can deduce
with very high probability that his changes did not affect the responses of the
tag, and therefore w·s1 = 0. On the other hand, if the reader rejects the tag, then
the adversary will know with a very high probability that w · s1 = 1. Repeating
the same attack n1 times will allow the adversary to collect n1 linear equations

5 We only need HB+ to prove the reduction to the LPN problem. However, HB+ is
reduced to the LPN problem under the same attacker model used here.

Unclonable Lightweight Authentication Scheme 41

containing s1. Therefore, the adversary can use Gaussian elimination to solve
for s1 with a high probability.

As we pointed out earlier, one of the main reasons for such an attack to work
is the linearity of the inner product operation. In our scheme the challenges
a(j) are not only subjected to the inner product operation a(j) · s1, but also to
a PUF operation a(j) · s1 ⊕ PUFY,x,εp(a

(j)). With both operations being used,
an adversary will need to find a way to modify the challenges such that he
can deduce information about each of the two operations separately. To see
why a PUF operation will help against the man-in-the-middle attacks, notice
that on one hand the PUF is inherently non-linear due to the sign operation.
Therefore, it will prevent against any simple man-in-the-middle attack trying
to explore linearity, such as the attack in [16]. On the other hand, it has been
shown in [1] that the probability distribution of two different challenges a(1)

and a(2) yielding the same output from a PUF operation, will only depend on
the Hamming distance between a(1) and a(2). This means that any successful
man-in-the-middle attack would have to exploit the Hamming distances between
different challenges. However, recall from the end of Section 4 that the PUF
circuit used in HB+PUF implements a field multiplication over GF (2n1) with
the secret string x. This multiplication will partially obfuscate the Hamming
distance between different challenges. Therefore, the attacker’s ability to deduce
correlations between the inputs and the outputs of the PUF will be partially
hindered.

Note that here we are talking with respect to the GRS-MIM model introduced
in [15]. To protect against the most general class of man-in-the-middle attacks,
we suggest adding a second PUF circuit to operate on the b(j) strings sent by
the tag. In such a scheme the response of the tag would be

z = a · s1 ⊕ b · s2 ⊕ PUFY1,x1,εp1(a)⊕ PUFY2,x2,εp2(b)⊕ ν . (4)

The suggested scheme will be more demanding in terms of hardware and power.
However, we predict that it will be resilient against man-in-the-middle attacks.

We finish this section by discussing security parameters for an implementation
of the design. As shown by Theorem 1 our protocol is at least as secure as the
HB+ protocol, which in turn is at least as hard as solving the LPN problem. All
with respect to the active attacker model. In [30] the authors give a careful study
of the BKW algorithm for solving the LPN problem. They conclude that the
parameters first introduced for the HB+ protocol by [20] and then by [23] do not
provide sufficient security. In our implementation we follow the new parameters
suggested by [30] and later adopted by [15]. To achieve 80-bits of security we
choose n1 = 80, n2 = 512, εf = 0.15 and k = 200. Note that εf is not a separate
parameter but rather a result from εp and ε. In our implementation we will have
εp = 0.15 and ε = 0.

6 PUF-Based RNG

In Section 2 we discussed the inherent metastability in a PUF circuit. As we
pointed out earlier, these metastable states result from either environmental

42 G. Hammouri et al.

fluctuations, or race conditions which occur between the two propagating signals
inside a PUF. In this section, we outline how metastability could be used to
generate random bits. We note here that using a PUF circuit as an RNG is not
a new idea. It has been previously proposed in [35]. In their design the authors
use an LFSR to generate a stream of challenges. Each challenge is fed to the
PUF multiple times in order to decide whether the challenge is metastable or
not. Finally, the metastable outputs are used to extract randomness. In our
approach, we take advantage of a PUF feedback setting. This approach will
essentially remove any need to separately check each challenge for metastability.
Therefore, decreasing the control logic, and increasing the throughput.

Our RNG design is based on a shift register feeding a PUF circuit in parallel.
As we have concluded in Section 5 the size of the PUF and thus the size of the
shift register will be 80 bits. The register is initialized to a random bit string.
At every clock cycle the output of the PUF is fed back to the most significant
bit of the shift register, while the least significant bit is discarded. This mode
of operation will ensure a continuous stream of bits. Without metastability no
randomness is expected to come out of this construction. Therefore, to assess the
generated randomness we need to get a good estimate on the ratio of metastable
points.

In order to get an estimate for the metastability ratio, we implemented the
PUF circuit on a Xilinx XC2VP30 FPGA. In typical PUF implementations,
extra precautions are taken to prevent metastability. However, we are interested
in having a high level of metastability. This is the case, since we use the PUF
in a noisy authentication scheme, and as an RNG. To help induce a higher
level of metastability we allow close adjacency between the PUF circuit and
other parts of the implementation. We carried out a restart test by collecting
1000 different bit streams. Each bit stream was collected after the system was
reset and initialized to the same state. In a completely stable system, these
bit streams would have to be identical. However, in a metastable system, every
time a metastable point occurs these streams are expected to break into two
groups, with each group following a different choice of the metastable point.
After tracking all the bit streams we found that after 6400 bits all the 1000
streams were in completely different states, therefore suggesting the occurrence
of 1000 metastable points. This yields an overall metastability ratio of about
15%. With this ratio, we can insure that the output always contains a metastable
point by Xor-ing every 8 consecutive bits and using the result as the output of
the RNG.

To verify the statistical quality of the RNG output, we collected a large num-
ber of bit streams and analyzed them with the NIST statistical test suite. As
recommended by the NIST tools, every bit stream contained 20, 000 points. The
test suite reports a proportion value, which reflects the ratio of bit streams which
actually passed this particular test. The final results we obtained are shown in
Table 1. The NIST tools return a statistical result where even a true random
number generator could fail in some of the runs. We can conclude from the shown
results that the proposed RNG is a reasonably good generator.

Unclonable Lightweight Authentication Scheme 43

Table 1. NIST suite results

Test Name Proportion

Frequency 100%
Frequency within block 100%
Longest run of ones in block 95%
Cumulative sum 100%
Runs 100%
Discrete Fourier Transform 100%
Non-overlapping template matching 95%
Overlapping template matching 97.5%
Maurer’s Universal 100%
Approximate Entropy 97.5%
Serial 97.5%
Lempel-Ziv Complexity 100%

7 Implementation

The authentication scheme presented in Section 4 is implemented as shown in
Figure 2. The PUF circuit is positioned at the center of the implementation
to ensure tamper-resilience for the entire circuit. As we have verified from our
FPGA implementations of a PUF circuit, any change in the surrounding hard-
ware to the PUF circuit will result in changing the PUF’s internal variables.
We point out here that a PUF can easily protect against active side-channel
attacks. However, for passive side-channel attacks a designer might have to re-
sort to standard power balancing techniques [42,43,38]. Although effective, these
technique will incur about 200− 400% area overhead. A cost too high for ligh-
weight implementations. Our authentication architecture runs in two different
modes of operation during the entire protocol.

11

1

1

1

1

.s b

εY,

.s a
1

1 1

1

.

r

2

2s [511:0]

PUF

a 1

1

mode

Serial Multiplier

801 Shift Register / PUF (xa)

.s [79:0]

1

1

a

εY,

Fig. 2. PUF Authentication Scheme

RNG Mode: In this mode the PUF circuit acts as a random number generator.
As explained in Section 6 the random string b ∈ {0, 1}512 is achieved using a shift
register along with the PUF circuit. This shift register is initialized with the ini-
tialization value (IV) stored in an 80-bit ROM structure. The shift register will

44 G. Hammouri et al.

be serially initialized to (IV) in RNG mode. For the remainder of the RNG op-
eration the serial input of the shift register will be fed back by the output of the
PUF. Conveniently enough, we do not need to store the entire random string b
generated by the PUF. As b is generated 1 bit at a time, we can serially compute
the inner product b · s2, and at the same time serially transmit b to the reader.
It is important to point out that in the RNG mode, the system will not be able
to detect any active side-channel attacks. With a stream of random bits, the at-
tacker’s effect is gone undetectable. This will not be a major problem since any
invasive attack on the circuit will permanently affect the PUF circuit. Therefore,
as soon as the circuit is back to PUF mode, the attack can be detected. In the case
where more gates are dedicated for security purposes, two separate PUF circuits
can be used for authentication and random number generation.

PUF Mode: In this mode we perform the serial field multiplication xa which
will be the input of the PUF. The hardware component Shift Register/Serial
Multiplier shown in Figure 2 is used for this multiplication. The serial input of
this shift register comes from the input a which is serially received. The field
multiplication is realized through an LFSR serial multiplier, and is carried out in
parallel with the inner product operation a·s1. These two operations will operate
serially and will take about 80 cycles. The result of the field multiplication xa
is fed to the PUF as the challenge input. The response bit of the PUF is then
XOR-ed with the inner products a · s1 and b · s2. Finally, the response of the
entire circuit r is transmitted to the reader. Note from the last section that the
ratio of metastability was about 15%. This matches the overall desired noise.
Therefore, there will be no need for an added noise parameter ε.

To estimate the gate count, HB+PUF was developed into Verilog modules
and synthesized using the Synopsys Design Compiler. For the synthesis we used
the TSMC 0.13 µm ASIC library. The circuit components and their gate count
are explained as follows:

-ROM Structure: The IV for the RNG and the private keys s1 and s2 are
stored inside the hardware and they are unique for each tag. Instead of utilizing
flip-flops to store these values, we designed a ROM structure for low-area storage.
To minimize the area usage, we used a design similar to a look-up table. Separate
architectures are needed to store s1, s2 and IV. Since s2 is 512 bits, s1 and IV
are 80 bits, we have 672 bits of total ROM area. Synthesis results show that 110
gates are required for this storage.
-PUF Circuit: In our authentication scheme, we utilize an 80-bit PUF circuit.
As pointed out in Section 2 we use the tristate PUF implementation presented in
[9]. This particular PUF implementation is of interest due to its low-power and
low-area features. When we used the tristate PUF design our synthesis results
showed the area of the PUF to be 350 gates. However, with custom circuit design,
where each tristate buffer utilizes about a single gate, this number was reduced
to 160 gates.
-Shift register/Serial Multiplier: The shift register has a total size of 80
bits. The structure also contains a number of XOR gates used to achieve the

Unclonable Lightweight Authentication Scheme 45

field multiplication. In addition, 2-to-1 multiplexers are used to decide which
inputs feed the individual flip-flops of the register. Synthesis results show that a
total equivalent of 500 gates is needed for this structure.
-Serial inner products: The AND and XOR components shown in Figure 2
are utilized for serial inner product operations. The boxes labeled as s2 · b and
s1 · a are single flip-flops storing the results of the inner products s2 · b and s1 · a
of Protocol 1. They work as accumulators. In each clock cycle, one bit of s2 and
one bit of b pass through an AND gate and the result is XORed with the value
in the accumulator flip-flop. The same procedure is repeated for s1 and a. In the
end, the results in the accumulator registers s2 · b and s1 · a are XOR-ed with
the result of the PUFY,ε(xa) and the result is sent to the output as r. The area
for these operations is estimated at 50 gates.
-Control logic: The control logic for this scheme is quite simple. For the ROM
structures storing s1 and s2, a single 9-bit counter is needed. Since the inner
products for s1 and s2 are operated in parallel, a single counter is enough for
both operations. For the RNG a 3-bit counter is needed to track the XOR-ing of
each 8 consecutive bits. This can be interleaved with the inner product operation
s2 ·b. The architecture has only 2 modes of operation. Therefore, a single flip-flop
would suffice to track the state of the hardware. The total area of the control
block is estimated at about 150 gates.

The total area of the authentication hardware is 970 gates. This is below 1K
gates, a typical threshold for the RFID’s footprint allotted for security [37].

8 Conclusion

In this paper we presented a tamper-resilient and provably secure authentica-
tion scheme requiring less than 1K gates. We proved the security of our scheme
against active attacks, and against known man-in-the-middle attacks. Moreover,
the proposed scheme seems resilient against a more general class of man-in-the-
middle attacks. We also demonstrated an efficient method for generating the
random bits needed for our proposed protocol. This was done without incurring
significant overhead to the hardware, and by reutilizing parts of the authentica-
tion circuit.

Our work here opens an interesting avenue for exploring cryptographic algo-
rithms naturally supported by the hardware. For future work one might hope
to explore modifications to the current protocol which might yield provable se-
curity against man-in-the-middle attacks. This problem has been addressed by
multiple proposals, but no proof has been provided.

References

1. Hammouri, G., Sunar, B.: PUF-HB: A Tamper-Resilient HB based Authentication
Protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

2. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Mathematical
Programming 71(2), 221–245 (1995)

46 G. Hammouri et al.

3. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill, New York (1968)
4. Berlekamp, E.R., Mceliece, R.J., van Tilborg, H.C.: On the Inherent Intractability

of Certain Coding Problems. IEEE Transactions on Information Theory 24(3),
384–386 (1978)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: Proceedings of STOC 2000, pp. 435–440. ACM,
New York (2000)

6. Bogdanov, A., Leander, G., Knudsen, L.R., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Proto-
col Secure against Some Attacks. In: Proceedings of SECPERU 2006, Washington,
DC, USA, pp. 28–33. IEEE Computer Society, Los Alamitos (2006)

8. Duc, D., Kim, K.: Securing HB+ Against GRS Man-in-the-Middle Attack. In:
Institute of Electronics, Information and Communication Engineers, Symposium
on Cryptography and Information Security, January, pp. 23–26 (2007)

9. Ozturk, E., Hammouri, G., Sunar, B.: Physical Unclonable Function with Tristate
Buffers. In: Proceedings of ISCAS 2008 (2008)

10. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of
Lightweight Cryptography Implementations. IEEE Design & Test of Computers –
Special Issue on Secure ICs for Secure Embedded Computing 24(6), 522–533 (2007)

11. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID
Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156. Springer, Heidelberg (2004)

12. Fossorier, M., Mihaljevic, M., Imai, H., Cui, Y., Matsuura, K.: A Novel Algorithm
for Solving the LPN Problem and its Application to Security Evaluation of the HB
Protocol for RFID Authentication. In: Proc. of INDOCRYPT, vol. 6, pp. 48–62

13. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of CCS 2002, pp. 148–160. ACM, New York (2002)

14. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Delay-based Circuit Authenti-
cation and Applications. In: Proceedings of the 2003 ACM Symposium on Applied
Computing, pp. 294–301 (2003)

15. Gilbert, H., Robshaw, M., Seurin, Y.: HB#: Increasing the Security and Efficiency
of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378.
Springer, Heidelberg (2008)

16. Gilbert, H., Robshaw, M., Sibert, H.: An Active Attack Against HB+ A Provably
Secure Lightweight Authentication Protocol. IEE Electronic Letters 41, 1169–1170
(2005)

17. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., et al.: HIGHT: A New Block Cipher Suitable for Low-Resource Device.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

18. Ozturk, E., Hammouri, G., Sunar, B.: Towards Robust Low Cost Authentication
for Pervasive Devices. In: PERCOM 2008, Hong Kong, March 17-21 (2008)

19. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

20. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

Unclonable Lightweight Authentication Scheme 47

21. Kaps, J., Gaubatz, G., Sunar, B.: Cryptography on a Speck of Dust. Com-
puter 40(2), 38–44 (2007)

22. Kaps, J.-P., Sunar, B.: Energy Comparison of AES and SHA-1 for Ubiquitous
Computing. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y.,
Lee, D.C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS,
vol. 4097, pp. 372–381. Springer, Heidelberg (2006)

23. Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Pro-
tocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87.
Springer, Heidelberg (2006)

24. Kearns, M.: Efficient Noise-Tolerant Learning from Statistical Queries. In: Pro-
ceedings of STOC 1993, pp. 392–401. ACM Press, New York (1993)

25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

27. Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: Dpa on faulty cryptographic hard-
ware and countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 211–222. Springer, Heidelberg (2006)

28. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, p. 196. Springer, Heidelberg
(2007)

29. Lee, J.W., Daihyun, L., Gassend, B., Samd, G.E., van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits for identification and authen-
tication applications. In: Symposium of VLSI Circuits, pp. 176–179 (2004)

30. Levieil, E., Fouque, P.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, p. 348. Springer, Heidelberg (2006)

31. Lim, C., Korkishko, T.: mCrypton-A Lightweight Block Cipher for Security of
Low-cost RFID Tags and Sensors. In: WISA, vol. 5, pp. 243–258

32. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205
(2005)

33. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subsetsum problem. In: APPROXRANDOM (2005)

34. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Comput. Networks 51(9), 2262–2267 (2007)

35. O’Donnell, C.W., Suh, G.E., Devadas, S.: Puf-based random number generation.
Number 481 (November 2004)

36. Posch, R.: Protecting Devices by Active Coating. Journal of Universal Computer
Science 4(7), 652–668 (1998)

37. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Ligh-Weight Crypto
Algorithms for RFID. In: Proceedings of ISCAS 2007, pp. 1843–1846 (2007)

38. Regazzoni, F., Badel, S., Eisenbarth, T., Grobschadl, J., Poschmann, A., Toprak,
Z., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., et al.: A Simulation-Based
Methodology for Evaluating the DPA-Resistance of Cryptographic Functional
Units with Application to CMOS and MCML Technologies. In: IC-SAMOS 2007,
pp. 209–214 (2007)

39. Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear Optimization,
2nd edn. Springer, Heidelberg (2005)

48 G. Hammouri et al.

40. Skoric, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic Analysis
of Coating PUFs. Cryptology ePrint Archive, Report 2006/101 (2006)

41. Standaert, F., Piret, G., Gershenfeld, N., Quisquater, J.: SEA: A Scalable En-
cryption Algorithm for Small Embedded Applications. In: Workshop on RFID and
Lightweight Crypto, Graz, Austria (2005)

42. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. In: Proceedings of ESSCIRC 2002, pp. 403–406 (2002)

43. Toprak, Z., Leblebici, Y.: Low-power current mode logic for improved DPA-
resistance in embedded systems. In: ISCAS 2005, pp. 1059–1062 (2005)

44. Tuyls, P., Skoric, B.: Secret Key Generation from Classical Physics: Physical Un-
cloneable Functions. Philips Research Book Series. Springer, Heidelberg (2006)

Appendix A

Proof of Theorem 1

Proof. The basic operation of A′ is to map a given τ = (k+, s+
1 , s+

2 , ε+, u+)
characterizing the HB+ tag and reader to σ = (k, s1, s2, x, Y, εp, ε, u) used to
characterize an HB+PUF tag and reader. Note that all the variables in the HB+

protocol are still used in the same manner in the HB+PUF protocol. Therefore
we can create σ+ =

(
k = k+, s1 = s+

1 , s2 = s+
2 , x, Y, ε = ε+, εp = 0, u = u+

)
. The

variable x is chosen randomly to be any string in {0, 1}n1. The (n1+1) real vector
Y is chosen such that yi ∈ N(0, 1).A′ runs as follows: It initializesA and allows it
to carry its communication with T +

τ . In particular, A′ passe the vector b sent by
T +

τ toA which will reply with the vector a. AgainA passes a back to T +
τ . Finally,

when T +
τ returns its response z, A′ returns ẑ = z⊕PUFY,x,0(a) to A. The same

step is followed for all q authentication rounds between T +
τ and A. When A′

wants to authenticate itself to R+
τ , it again runs A in its authentication phase. A

will start by sending the radnom string b(i). A′ will pass the string directly toR+
τ

which will respond with the vector a(i). A′ passes a(i) back to A. Finally, when
A returns its response z(i), A′ returns ẑ(i) = z(i) ⊕ PUFY,x,0(a(i)) to R+

τ . The
algorithm A′ repeats these steps for all k rounds of the authentication session,
such that i = 1 . . . k.

To see why this will actually work, notice that in the first q rounds A is getting
the response ẑ which is effectively responses from a tag Tσ+ . This means that
at the end of the q authentication sessions A will have effectively communicated
with Tσ+ . In the authentication phase, when A′ tries to authenticate itself to
R+

τ , it uses the algorithm A which will be trying to authenticate itself to Rσ+ .
Assuming that A will succeed in impersonating Tσ+ with probability larger than
δ, then the responses returned by A which are z(i) will match the responses of
an honest tag with probability larger than δ. However, this immediately implies
that the responses returned by A′ to R+

τ which are ẑ(i) and which differ from
z(i) with the term PUFY,x,0(a(i)) will match the responses of an honest tag with
probability larger than δ. Therefore, A′ should also succeed in impersonating a
tag T +

τ with probability larger than δ.

Threat Modelling in User Performed

Authentication

Xun Dong, John A. Clark, and Jeremy L. Jacob

Department of Computer Science,
University of York
United Kingdom

Abstract. User authentication can be compromised both by subvert-
ing the system and by subverting the user; the threat modelling of the
former is well studied, the latter less so. We propose a method to de-
termine opportunities to subvert the user allowing vulnerabilities to be
systematically identified. The method is applied to VeriSign’s OpenID
authentication mechanism.

1 Introduction

Criminals often seek to exploit a user’s inability to distinguish the legitimate
from the faked. ‘Phishing’ attacks [1,13] are the most familiar examples; users are
conned into taking actions that prove against their interests, typically resulting
in the release of confidential and valuable information. Users may be regarded
as complicit in such exploitation, but in many cases labelling of the user as ‘the
weakest link’ merely covers up the fact that the systems are not designed to
prevent such attacks or make them difficult. Users have reached their present
exploitable state, aided and abetted by poor system design.

There is a deeper problem: there would appear to be little in the way of
systematic analysis concerning the user’s role in security. If users are now the
weakest link then user-side threat modelling is as important as system-side threat
modelling. In this paper we provide a user-focused threat identification approach
for user authentication systems, particularly those used over the web. We hope
our efforts will inspire further user-oriented threat modelling.

2 Background

Researchers have investigated security-relevant user behaviour addressing ques-
tions such as: How often are passwords reused [6]? How likely are users to
choose secure passwords [6]? How effective are the security indicators shown
on web browsers [3, 11, 14]? What factors influence users’ trust in a website
[2,4,5,7,8,9,10]? Why do users fall victim to phishing attacks and how can phish-
ing interactions with users be modelled [3, 4]? The practicality of such research
may be limited. Findings may be too closely linked to current technology and

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 49–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 X. Dong, J.A. Clark, and J.L. Jacob

could become invalid very quickly as systems, technologies, and user characteris-
tics and behaviours evolve. Also, most studies are focused on specific problems,
and there is little in the way of method to help system designers and security
practitioners to systematically identify the threats to the users of systems.

Authentication is an interaction between a small group of entities (typically
two) that aims to establish to each entity that the others have particular prop-
erties (often some notion of identity). We will focus on authentication between
a user of a web service and an external entity (EE) that provides a service, or
is a gateway to a service. We are interested in user-to-EE authentication and
EE-to-user authentication. Both are typically achieved by proving ownership
of certain objects (most typically secret knowledge such as passwords or en-
cryption keys). While user-to-EE authentication is controlled by designers and
consistently enforced by systems, designers often have little control over how
EE-to-user authentication is carried out. Users must be able to first accurately
establish the identity of the EE and then be able to judge whether this identity
is entitled to request confidential information. The latter may seem straightfor-
ward for the user, but in some cases (as shown in section 4.2) it will be difficult.
Failure of either part may lead to a user giving out authentication credentials to
attackers.

Attacks against web authentication systems may be passive or active. Passive
attacks do not require active victim involvement, often achieving their goal by
analysing information available to attackers (e.g. that from public databases
or websites, or even rubbish bin contents). Many are launched by insiders or
people who have close relationships with the victims. Active attacks exploit
the user’s difficulty in authenticating EEs, requesting the user’s authentication
credentials whilst posing as trustworthy parties. Typical examples are phishing
and pharming attacks. Mixed attacks are possible; some attacks have an initial
passive phase to gather information and then use the information in a later active
phase.

3 Vulnerabilities Exploited by Passive Attacks

3.1 Properties of Users’ Authentication Credentials

A user and an EE share a collection of authentication credentials, typically in-
cluding PINs, passwords, and so on. They also include an identifier unique to the
user. Each credential can be classified along four axes: mode, factor, assignment
and losability.

Mode. Primary or Emergency.
By primary credentials we mean those used to directly access assets and
functionalities guarded or provided by external entities. Similarly emergency
credentials denote those used to reset or recover the primary credentials.
Attackers can masquerade as a user if they obtain primary or emergency
credentials.

Threat Modelling in User Performed Authentication 51

Factor something users know; something users possess; something users have
access to; or characteristics of who users are.

The factor axis is based on the traditional way of classifying authenti-
cation approaches but with one addition. ‘Something users have access to’
is usually included in ‘something users possess’. We distinguish it because
it has different implications for the security of an authentication system: it
creates an authentication security dependency relationship. It is not directly
possessed by a user, but the user holds the keys (authentication credentials)
to access them. For example, an email account is not directly possessed by
users, it is typically the property of an email provider, but a user with the
correct password can access the content in that email account.

Assignment by the system; by the user; or by a third party;
Assignment by the system can ensure that certain security requirements are
met (for example, that values of the authentication credentials are unique,
and difficult to guess).

A user may not find the value assigned by system usable. User defined val-
ues may have high usability, but the system has limited control over whether
security requirements are met.

When the value is assigned by a third party, the security properties
depends on the behaviour of the third party. If the value of the authentication
credential is predictable or easy to replicate, then this vulnerability could
lead to the compromise of the current system.

Losability losable; or unlosable.
Losability indicates whether credentials are likely to be lost. If an authenti-
cation credential is losable, the authentication system must provide methods
for users to recover their ability to authenticate.

3.2 Authentication Credentials Vulnerable to Passive Attacks

Passive attacks require authentication credentials to be exposed to third parties.
Credentials known only to the system and the user have low exposure; credentials
accessible to the general public (for example when a value has been published on
a web page) have high exposure; otherwise the exposure is medium. The exposure
level can be determined by considering the authentication credential factor basis,
how its value is assigned, and the choice of authentication credentials by other
authentication systems.

The exposure level of authentication credentials that are based on personal
data and who users are, can only be medium or high. For example, a user’s date
of birth or mother’s maiden name are known to close friends and relatives, and
may even be available on a public database. Data that describes who users are,
such as finger prints, are inevitably exposed to objects users have touched and
all systems which use finger prints as authentication credentials.

Password exposure level can be low if it is the system that assigns the value,
and the exposure level is uncertain prior to the assignment if it assigned by the
user (since personal practices will differ).

52 X. Dong, J.A. Clark, and J.L. Jacob

Any authentication credential with mdium or high exposure level is vulnerable
to a passive attack. Attackers may obtain data from those parties to whom the
credentials have been exposed. For example there are companies that sell users’
personal contacts and other personal information they collect. Hence it is very
difficult to determine who has access to any high or medium exposure credential.

The complete set of a user’s authentication credentials can be divided into
subsets, each of which is sufficient to prove the identity of the associated iden-
tifier. The subsets always include at least one subset whose members are all
primary authentication credentials, and may also contain other subsets of emer-
gency authentication credentials. If those emergency credentials can be used to
recover and/or reset the primary credentials and the primary credentials are all
assigned by users, then the compromise of the emergency credentials is as se-
rious as the compromise of primary credentials. To compromise one’s account,
attackers must obtain one of the subsets.

To determine whether attackers can obtain any of the subsets by applying
passive attacks, analysts must find out the exposure level of each subset. The
exposure level of a set of credentials is the minimum of its members. For exam-
ple, if a subset has three members with exposure levels of high, medium, and
low, then subset’s exposure level is low. If a subset has high exposure level then
the subset can be obtained using passive attacks; if a subset has a medium ex-
posure level, then parties to which the credentials have been exposed can obtain
the credentials using passive attacks. For any authentication system, designers
should make sure there is no subset whose exposure level is high. When there are
subsets whose exposure level is medium, then designers must assess how likely
the parties to which the credentials are exposed are to launch attacks against
the user. Design improvements can be taken if the exposure levels and security
requirements warrant it.

3.3 The Authentication Security Dependency Graph

Authentication security dependency relationships. If compromise of sys-
tem ‘B’ directly leads to the compromise of ‘A’ we say that the security of ‘A’
depends on the security of system ‘B’. If any of the user authentication creden-
tials are in the category ‘what you have access to’ or is created or assigned by a
third party then effectively the designers may have created a dependency of the
current system on the third party. For example, the access right to a secondary
email account is often used as one of the emergency authentication credentials to
reset or recover primary authentication credentials. In those cases, compromise
of the email account allows attackers to gain access to the authentication system
by resetting or retrieving the primary authentication credentials.

Drawing the dependency graph. Analysts should identify the dependency
relationships and represent them in an authentication security dependency graph.
Each node in the graph represents a system, and the start node of the graph is the

Threat Modelling in User Performed Authentication 53

system being designed. Directed edges are included from Node ‘A’ to Node ‘B’
exactly when Node ‘A’ depends on Node ‘B’. If ‘B’ also has such dependency
relationships then the graph can be expanded further.

If the value of the authentication credentials which create such dependency
relationships are assigned by users then the dependency relationships may be un-
predictable and the graph cannot be determined. For example, if a user provides
an email account as an emergency credential then it is impossible to predict all
the email service providers that the current system will depend on.

Vulnerabilities. The dependency graph has two implications for the system
being designed:

1. The security of the current system is equal to the security of the weakest
system reachable in the graph; and

2. Obtaining authentication credentials to the weakest system propagates ac-
cess back up the reachability chain.

The first implication means that the security of the current authentication
system could be reduced if there is a weaker authentication system in the de-
pendency graph. Many financial related websites have educated users to choose
strong passwords and pay more attention to security indicators when access-
ing an authentication web page. Most users are likely to behave cautiously and
securely when dealing with web sites they categorise as financial-related and im-
portant, but tend to use weak passwords and pay less attention to security for
the rest [6]. However, the security of authentication of such financial-related web
sites may not be strong, if some reachable node in the dependency graph from
the financial-related site is treated less seriously. In fact, it is common for such
web sites to ask users to provide a secondary email account as an emergency
credential, while most users think that the security of their email account is less
important than that of the financial-related web site.

The second implication means that the dependency relationships create new
channels through which an authentication system may be attacked. The new
channels are the ones that attackers could use to compromise the other systems
in the graph. Moreover, the new channels can not be mitigated by the design of
the authentication system.

Any dependency relationship should be viewed as a vulnerability, especially
those which are unpredictable, and they should be avoided or minimised at the
design stages. For unavoidable dependency relationships analysts should design
the authentication system in a way that the authentication credentials that
create the relationship are not used alone to prove identity. For example, access
to the email account must be used together with a number of security questions
to prove a user’s identity.

4 Vulnerabilities Exploited by Active Attacks

In the second stage, analysts should consider vulnerabilities that active attacks
exploit. Our method considers phishing and pharming attacks.

54 X. Dong, J.A. Clark, and J.L. Jacob

4.1 Sensitivity of the Authentication Credentials

Section 4.1’s reference to determining sensitivity level is OK in terms of indi-
cating what needs to be done, but there is no information on how to do it, or
indeed the practical feasibility of doing it. Sensitivity indicates the likelihood of
the user being suspicious or alert when an external entity requests the authenti-
cation credential. If the user is very alert then the sensitivity is high, otherwise it
is low. System designers should choose authentication credentials in a way that
the sensitivity is as high as is practical.

User must be alert to the malicious request of authentication credentials.
As mentioned in section 3.2, the user authentication credentials can be divided
into several subsets. An analyst can predict the likely alertness of a user by
examining the sensitivity level for each subset. The sensitivity of a subset is
determined by the member with the highest sensitivity level. If there is a subset
whose sensitivity is low, then there is a vulnerability. At least one subset should
have its sensitivity at medium level, if possible every subset should have a high
sensitivity level.

A credential data item’s sensitivity level is subjective, and users’ sensitivity
levels for an data item may vary. In the process of determine the sensitivity level,
analysts should use common sense, consulting a group of users if necessary.

4.2 Identify Potential Impersonating Targets

In active attacks, attackers need to impersonate a legitimate external entity
(EE). It would be wrong to think that the impersonating target is only the
current system. Attackers may impersonate three types of EE: the EE that the
user has shared authentication credentials with; EEs that are entitled to request
users’ authentication credentials or initiate user-to-EE authentication; and the
EEs that exist in the authentication dependency graph.

The first type are normally EEs with which the user has set up an account.
However, there are some exceptions, for example, the single sign-on system such
as OpenID. Here users set up an account with both an OpenID provider and the
service provider website. The user shares its authentication credentials with the
OpenID provider but not the service provider website.

The second type of EE can be difficult to identify. A company may have a
number of websites, and users can use the same authentication credentials to
access the services provided by all of them. It also happens when companies
or organisations use the single sign-on system such as OpenID, in which users
can use the same set of authentication credentials to access services provided
by all participating companies. Another typical example is the credit/debit card
authentication system: the card details are assigned and shared between the
bank and the user, but online retailer websites may be entitled to request card
details from its users. In all these examples there is no convenient mechanism
for analysts and users to find out who are legitimate entities.

The third type of EEs can be identified by constructing the dependency graph.
Among the impersonating targets identified, if there are EEs whose authenti-

cation system designs cannot be influenced by the system designers, then there is

Threat Modelling in User Performed Authentication 55

a vulnerability that may be exploited. If the authentication system of such an EE
is not designed or implemented properly, attackers might choose to impersonate
that EE instead of impersonating the EE that designers can influence.

If EEs other than those users have shared credentials with may request them,
and there is no reliable method to conveniently prove an entity is entitled to do
so, then a vulnerability will be created – attackers could acquire users’ credentials
by claiming to be one of those further entities.

4.3 Active Attack Entry Point Analysis

Analysts should document all impersonating targets, and then carry out active
attack entry point analysis for the targets that are within the control of the
current system’s designers. This is achieved by first identifying the entry points,
and then analysing vulnerabilities at each entry point.

The lifecycle of authentication credentials. Figure 1 shows the states in the
general lifecycle of authentication credentials and the transitions between them.
The optional state and transitions between states are represented by dashed
lines. There are seven states authentication credentials could be in:

Fig. 1. The Lifecycle of Authentication Credentials

Design: Designers decide three things at this state : over which communication
channel the authentication will be carried out; what authentication credentials
should be used; and their lifecycle. The decision should be made based on the
requirements for security, usability, constraints on economics and the properties
of the authentication credentials (described in section 3.1). Our threat modelling
should also be carried out in this stage.

Assignment: In this state the value(s) of the authentication credential(s)
for a particular user will be created. Only the assigner knows the value of the
credential(s).

Synchronisation: The party who assigned the value informs the other party of
the value it has chosen. The time taken varies with the communication channel

56 X. Dong, J.A. Clark, and J.L. Jacob

used. If users supply credential values via webpages then synchronisation could
be immediate. For credentials exchanged by the postal system (e.g. a PIN number
for a new cashpoint card), then the synchronisation could take a couple of days.

Activation: Some systems may require users to activate authentication creden-
tials before they can be used.

Operation: Users supply their primary authentication credentials to authenti-
cate themselves to external entities.

Suspension: The current authentication credentials temporarily cease to func-
tion, e.g. ‘lockout’ after three failed authentication attempts. Upon satisfying cer-
tain requirements authentication credentials can be tranformed to other states.

Termination: Here current authentication credentials permanently cease to
function. The account may have been terminated by the system or the user.

Analysts should identify over which communication channels the authentica-
tion credentials are exchanged during each state and each transition between
states. For the transitions originating from the operation state, analysts should
also check whether the transition requires proof of identity. A vulnerability is
created if the transition can be carried out without authentication, as attackers
can request the transition without possessing any authentication credentials.

The activation and suspension states are optional. Any authentication cre-
dential should pass through the remaining five. However, transitions between
states vary for different authentication credentials. A typical authentication cre-
dential’s lifecycle starts at the design state before moving to assignment and
synchronisation. Depending on the actual authentication system, there might
be an activation state before the operation state. From operation it can reach
four states: suspension, termination, assignment, and synchronisation. It often
reaches assignment because the user or system decides to reset the current value
of the authentication credentials. Not every system allows authentication cre-
dentials to transition from operation to synchronisation. But when it does, it is
often due to loss of authentication credentials. For example, when a user forgets
his password, the user ask the system to send him/her the password.

Transitions from the operation state can be triggered by events from both
users and systems. When it is triggered by users, users normally are required
to prove their identities by using emergency authentication credentials. On the
other hand when the event is triggered by the system, the system will need to
inform its users about the transition between states and may require users to
complete the transition. If there is no rigorous EE authentication mechanism for
users to reliably prove the EE’s identity in the communication, then phishers
could impersonate the trusted EE. That’s why it is necessary to analyse the
vulnerabilities of EE authentication within the communication between users
and external entities.

Entry points. Active attacks can only obtain user’s authentication creden-
tials when they are exchanged. By using the lifecycle analysts can identify in
which states and in which transitions this occurs and focus vulnerability analysis

Threat Modelling in User Performed Authentication 57

on those entry points. Using the lifecycle, we have identified the following six
situations where a user’s authentication credentials could be exchanged: 1)Syn-
chronisation State; 2) Operation State; 3)state transition from operation to as-
signment; 4)state transition from operation to synchronisation; 5)state transition
from suspension to assignment; 6)state transition from suspension to operation.

It is quite obvious the why a user’s credentials are exchanged in both syn-
chronisation and operation states. The transitions from the operation state can
take place only when users have proved their identities. As a result users’ emer-
gency credentials will be exchanged. For example, when a user loses his primary
credentials, such as password or USB token, the user needs to prove his identity
to reset a new one.

Communication channels. The communication channel (CC) is a system or
a method through which external entities can interact with human users. The
most typical CCs are: 1) Emails; 2) Mobile phone messages; 3) Phone calls; 4)
face to face communication; 5) webpages; 6) Instant Messenger; 7) Physical let-
ters or notes. Authentication is a special type of interaction and it also operates
via a CC. Each channel carries a different type of information, identifies entities
in different ways, incvolves different agents, etc. As a result, EE-to-user authen-
tication has different characteristics and vulnerabilities in different CCs. For a
channel the following factors should be considered:

– How external entities are identified on the CC;
– How identifiers can be proved on the CC;
– Which Agents are involved in this CC.

The characteristics and vulnerabilities in EE-to-user authentication mainly
depend on the communication channels over which the authentication is carried
out. A limited number of CCs exist, so analysis of CCs could be carried out
independently and the results can be used as a reference. Web page and email
interactions are examined below:

Web page Interactions. Web pages are identified by their URLs. The integrity
of website domain names are often proved by using an SSL/TSL certificate
or an Extended Validation certificate. The agents involved in this communica-
tion channel can be classified as: client agents, server agents, and infrastructure
agents. The client agents include:

– web browser
– operating platform (including the client computer’s hardware and operating

system)
– client side networking components: local router, gateway)

The server agents are the website servers. The infrastructure agents include:

– Domain Name Servers;
– Data delivery components;
– Certificate validation servers;

58 X. Dong, J.A. Clark, and J.L. Jacob

Email. An email is identified by its sender’s address. To prove the email orig-
inates with the claimed sender SSL/TSL certificate can be used. The agents
involved in this communication channel can be classified into three categories:
Sender’s agents, Receiver’s agents, and infrastructure agents. The receiver’s
agents include:

– Email Client;
– Operating platform (including the client computer’s hardware and operating

system)
– Client’s side networking components; (local router, gateway)
– IMAP/POP3 servers;

The sender’s agents are responsible for delivery or relaying of the emails, for
example, SMTP or MX Servers; The infrastructure agents include:

– Domain Name server;
– Data delivery components;
– Certificate validation server;

Entry points vulnerability analysis. For each attack entry point analysts
determine the EE authentication vulnerabilities. These may arise due to:

– no reliable and sufficient authentication information is provided to users;
– users lack knowledge; and
– security design assumptions concerning users do not hold in practice;

Reliability and Sufficiency of Authentication Information. For successful EE-to-
user authentication users must have reliable and sufficient authentication creden-
tials. Because users mainly rely on authentication information presented to them
to establish an external entity’s identity, without them they can not accurately
distinguish legitimate entities from the rest [4].

First analysts must determine the reliability of the authentication informa-
tion provided. The authentication credentials the entity used to establish its
identity, and all the agents involved on the channel on which the authentication
system is implemented should be identified. This can be easily done by refer-
ring to the analysis of communication channels. The most important step is to
check whether the compromise of any agents would make any EE authentication
credentials untrustable. Then based on the protection of those agents, analysts
can estimate how likely those agents would be compromised. If all agents were
protected properly, then the reliability of that authentication credential would
be high, otherwise it would be low.

Analysts can find out whether enough authentication information has given to
users by checking first if users have been given the external entity’s identifier. If
the identifier’s reliability is low given the previous analysis (which means it can
be easily spoofed), then check whether users have been given additional reliable
authentication credentials. If not, then users have insufficient information to
carry out EE authentication.

Threat Modelling in User Performed Authentication 59

Knowledge. Users need both technical and contextual knowledge to decide
whether to release the credentials requested by an external entity. Technical
knowledge helps users recognise and prove an external entity’s identity based
on given authentication information, while contextual knowledge help users to
decide whether the external entity is entitled to request user’s authentication
credentials. Previous literature (e.g. [3]) have addressed only the user’s need for
technical knowledge, but contextual knowledge is equally important [4].

The technical knowledge required depends on the authentication communica-
tion channel. Users need knowledge to recognise external entity’s identifier and
understand associated authentication credentials. The knowledge must suffice
to avoid falling victim to sophisticated spoofing techniques. The set of entities
that are entitled to request the authentication credentials (AC) is obvious when
the entity that requested the AC is the entity that users have shared ACs with.
However, it would be ambiguous if the legitimate entity has delegated or shared
the right to request the AC to other entities. Users need knowledge about how
to distinguish (more than recognise) the set of entities that have been delegated
from others. A typical example is an online shopping payment system. There
is no clearly defined set of entities that could accept credit card details: online
mechants, or some shops’ own processing systems can all request card details. To
steal users’ financial credentials phishers could simply appear as a trustworthy
online shop with its own payment processing system.

When an entity has a large number of identifiers users must know how to de-
termine whether the identifier he/she currently sees is legitimate. Authentication
on the telephone is an typical example of this. If a company has many telephone
numbers users will have difficulty recognising whether the caller’s number is one
of those.

During the threat modelling practice, analysts should document the all ex-
pected knowledge from users. As those expected knowledge may change in the
future especially those contextual knowledge. When those changes do happen,
analyst can quickly identify the possible vulnerabilities by identifying the emerg-
ing knowledge gap.

Assumptions. The security of EE-to-user authentication assumes that users per-
form certain required actions correctly and consistently. System designers need
to know how plausible such assumptions are. Results of existing empirical stud-
ies may prove useful [3, 5, 8, 11, 14, 12, 9] or further user studies may be carried
out. If asssumptions prove implausible the system design must be altered. Users’
behaviours are are affected by how systems are designed, education users receive,
etc. As a result the legitimacy of assumptions on users is not static. Threat mod-
elling analysts should document the user assumptions designers make for each
entry point and periodically revalidate them. Invalid assumptions are clearly
vulnerabilities.

4.4 External Entity Authentication in Communication Matters

Many active attacks lure victims by first impersonating the EEs in communica-
tion, such as masquerading as legitimate entities to send emails to users. The

60 X. Dong, J.A. Clark, and J.L. Jacob

trust, expectation and perception constructed in communications could reduce
users’ ability to authenticate the EE in the following authentication session [4].
As a result, it is important to study vulnerabilities within the communication
between legitimate entities and users.

The method used to analyse the vulnerabilities at entry points can be applied
to analyse the vulnerabilities in communication. Here, there is more contextual
knowledge users need to be aware of: 1) What are the communication channels
the external entity would choose to initiate communication with users, if any? 2)
In which circumstances the external entity would initiate communication with
its users?

5 Case Study

We illustrate elements of the approach with reference to OpenID as a case study.
OpenID is a decentralised, free and shared identity service, which allows Inter-
net users to log on to many different web sites using a single digital identity,
eliminating the need for a different user name and password for each site. It is
increasingly gaining adoption among large sites, with organisations like AOL,
BBC, Google, IBM, Microsoft, Orange, VeriSign, Yandex and Yahoo! acting as
providers. We apply our method to analyse the default OpenID solution provided
by VeriSign.

5.1 Passive Attack Analysis

Properties of authentication credentials. The complete set of user au-
thentication credentials in this system is : {user name, password, access to a
secondary email account} The property of the users’ authentication credentials
are listed in Table 1. Both authentication credentials are losable, but as long as
not both credentials have been lost, their values can be recovered or reset.

Table 1. User Authentication Credential Properties

Authentication Credential Mode Factor Assigned By Losable

Password Primary Users know User True
Access to a chosen email account Emergency Users possess User True

Authentication credentials vulnerable to passive attacks. The password
exposure level is uncertain, because it is user-assigned and there is no mechanism
to ensure strong password choices. The exposure level for the access right to the
email account is medium, because apart from the users and the system, the email
service providers can also access the email messages in the email account.

Two sets of authentication credentials can be used to prove a user’s identity,
and each set has only one member: {password}, and {access to a chosen email
account}. The exposure level for the password set is uncertain. This introduces
a vulnerability, because the system cannot influence whether users choose weak

Threat Modelling in User Performed Authentication 61

passwords or reuse their passwords. Insiders are likely to be able to guess the
password if it has been chosen poorly. The exposure for the second set medium, as
its only member has medium exposure level. The parties to which the credential
is exposed are limited, and it would be safe from general passive attacks.

Authentication security dependency graph. The authentication credential
– access to a chosen email account – is in the category of what users have access
to, so it has created the dependency relationships between VeriSign’s OpenID
authentication solution and the email providers which users have chosen. This
relationship is unpredictable from the analysts’ point of view, because there is
no way to predict which email providers users would choose. Even worse, the
access to the email account alone can complete the recovery and reset of the
password.

According to our method, this design has at least two vulnerabilities: have
created uncertain dependency relationships; and the system does not try to min-
imise the relationship by asking users to provide more authentication credentials
together with the access to the chosen email account.

5.2 Active Attacks Analysis

Sensitivity of the authentication credentials. Both the password and the
access right to the email account have high level of sensitivity.

Impersonating targets. The user has shared its authentication credential
with VeriSign. The entities that are entitled to initiate the user authentication
are not well defined and there is no mechanism for users to effortlessly and accu-
rately know whether the entity that requests the use of OpenID authentication
is legitimate or malicious. The email providers that existed in the dependency
graph could also be the targets of impersonating. This is a vulnerability, as de-
signers of VeriSign cannot patch or eliminate the vulnerabilities that existed in
the EE-to-User authentication in the email systems.

Lifecycle of authentication credentials & entry points. Among all the
possible targets, the only one designers can influence is VeriSign’s authentica-
tion system. The lifecycle for the user’s authentication credentials (including the
communication channels) are shown in figure 2. There are three possible phish-
ing attack entry points: 1) Synchronisation State; 2) Operation State; 3) State
transition from operation to assignment;

5.3 Vulnerabilities at Each Entry Point

The methods and processes at each entry point analysis are the same, so for
demonstration purposes, we explain only how the analysis is carried out for the
operation state.

62 X. Dong, J.A. Clark, and J.L. Jacob

Fig. 2. The Lifecycle of Authentication Credentials

Operation state. In this state, the user first visits the service provider website
and requests to sign in with his/her OpenID user ID. Assuming the user ID
belongs to VeriSign, the user is directed to VeriSign’s website, and is asked to
enter the correct user name and password.

Reliability and Sufficiency of External Entity Authentication Credentials. In the
operation state, all authentication actions are carried through the web page
communication channel. VeriSign identifies itself on web by its domain name
and URL. Its URL is https://pip.verisignlabs.com/. The compromise of
the client side agents (operating system, web browser, networking components)
and infrastructure agents could make the domain names displayed on the web
browser no longer trustable. Among those agents, the client side agents are most
vulnerable, least protected and exposed to the Internet. So its compromise is
very likely, and the domain name alone is not reliable enough to identify the
entity. VeriSign has used an SSL/TSL certificate to prove that the domain name
is genuine. As a result, we can consider that VeriSign has provided sufficient and
reliable authentication credentials.

Knowledge. To decide whether a URL belongs to VeriSign or any other entities
(especially when some URLs are made to look as if they come from VeriSign)
users must understand the syntax of URLs. Users also need knowledge to under-
stand the SSL/TSL certificate to identify which entity really owns this domain.
Both sets of knowledge are not possessed by many users [3]. This could be con-
sidered as potential vulnerability.

As for the contextual knowledge, it is not clear which websites are entitled
to request users to use OpenID authentication. As a result, attackers could set
up a phishing website which looks identical to VeriSign’s and then lead users to
this phishing website to steal the authentication credentials.

assumption. It is assumed that users check the URL and SSL certificate when
they are in this state. Based on previous studies, we know a lot of users pay no
attention to them. Users are unlikely to pay attention to the content of the SSL
certificate, and they care only about their existence. [3, 8, 9, 11, 14]. As a result,
the assumption on users has weak validity and vulnerability has been created.

https://pip.verisignlabs.com/

Threat Modelling in User Performed Authentication 63

5.4 Vulnerabilities in Communication

VeriSign uses only emails to communicate with its users. We will apply the same
method that we used to analyse the entry point to analyse the vulnerability
within the external entity authentication in the email system VeriSign uses.

Reliability and sufficiency of external entity authentication credentials.
An email is identified by its sender’s address. The compromise of client agents
and any server agents could make the sender’s address untrustable. In fact, the
sender’s address can be spoofed even without the compromise of any agent, as
shown in [8]. So it is extremely unreliable to identify the real sender of the
email. VeriSign has not used any other authentication credentials to prove that
the email indeed comes from VeriSign, which has created a serious vulnerability
and allows attackers to impersonate VeriSign in email communication channels.
In conclusion, users have not been given reliable and sufficient authentication
information to prove verisign originated the email.

Knowledge. Most users will be able to recognise the sender’s email address.
Users must have (contextual) knowledge needed of: the email address used by
VeriSign to communicate with its users; and under which circumstances VeriSign
would contact its users. VeriSign has not made clear to its users which email
address it will use to communicate with users. As a result, email addresses whose
semantic meaning is close to the email address VeriSign really uses could be
accepted by users.

The last one is unclear as well, because VeriSign has not made this explicit
to its users. As a result, it gives chances for phishers to create a scenario to lure
victims to phishing websites.

Assumptions. It is assumed that users will check the email sender’s address.
This assumption is realistic and it is helped by the user interface design that
users automatically read the sender and titles first.

6 Conclusions

User–side threat modelling is as important as system–side threat modelling, but
it is much less well studied. This paper describes a method to systematically
identity threats to web user authentication from user and social perspectives.
Besides the VeriSign OpenID solution we have also used this method to identify
threats to other user authentication systems: the UK national grid system, and
Google websites. However, our method should not be viewed as complete; it
is our initial effort towards developing a threat modelling method that can be
used by system designers with moderate security knowledge. In future we will
further refine this method and evaluate its usability by system designers. The
provision of analysis tools for investigating threats to the user is important and
we recommend the area to the research community.

64 X. Dong, J.A. Clark, and J.L. Jacob

References

1. Anti-phishing work group home page (2007), http://www.antiphishing.org/
2. Flinn, S., Lumsden, J.: User perceptions of privacy and security on the web. In: The

Third Annual Conference on Privacy, Security and Trust (PST 2005), St. Andrews,
New Brunswick, Canada, October 12-14 (2005)

3. Dhamija, R., Tygar, D., Hearst, M.: Why phishing works. In: CHI 2006: Proceed-
ings of the SIGCHI conference on Human Factors in computing systems, ACM
Special Interest Group on Computer-Human Interaction, pp. 581–590 (2006)

4. Dong, X., Clark, J.A., Jacob, J.: A user-phishing interaction model. In: Conference
on Human System Interaction (2008)

5. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility
to phishing. In: SOUPS 2006: Proceedings of the second symposium on Usable
privacy and security, pp. 79–90. ACM Press, New York (2006)

6. Florencio, D., Herley, C.: A large-scale study of web password habits. In: WWW
2007: Proceedings of the 16th international conference on World Wide Web, pp.
657–666. ACM Press, New York (2007)

7. Friedman, B., Hurley, W.D., Howe, D.C., Nissenbaum, H., Felten, E.W.: Users’
conceptions of risks and harms on the web: a comparative study. In: CHI Extended
Abstracts, pp. 614–615 (2002)

8. Jagatic, T., Johnson, N., Jakobsson, M., Menczer, F.: Social phishing. ACM Com-
munication (October 2007)

9. Jakobsson, M., Tsow, A., Shah, A., Blevis, E., Lim, Y.-K.: What instills trust? a
qualitative study of phishing. In: USEC 2007 (2007) (Extended abstract)

10. Nikander, P., Karvonen, K.: Users and trust in cyberspace, pp. 24–35 (2001)
11. Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security

indicators: An evaluation of website authentication and the effect of role playing
on usability studies. In: 2007 IEEE Symposium on Security and Privacy (2007)

12. Whalen, T., Inkpen, K.M.: Gathering evidence: use of visual security cues in web
browsers. In: GI 2005: Proceedings of Graphics Interface 2005, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada, pp. 137–144.
Canadian Human-Computer Communications Society (2005)

13. Wikipedia. Phishing. web, http://en.wikipedia.org/wiki/Phishing
14. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing

attacks? In: CHI 2006: Proceedings of the SIGCHI conference on Human Factors
in computing systems, pp. 601–610. ACM Press, New York (2006)

http://www.antiphishing.org/
http://en.wikipedia.org/wiki/Phishing

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 65–80, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Access with Fast Batch Verifiable Anonymous
Credentials

Ke Zeng

NEC Laboratories, China
zengke@research.nec.com.cn

Abstract. An anonymous credential-based access control system allows the user
to prove possession of credentials to a resource guard that enforce access policies
on one or more resources, whereby interactions involving the same user are
unlinkable by the resource guard. This paper proposes three fast batch verifiable
anonymous credential schemes. With all three schemes, the user can arbitrarily
choose a portion of his access rights to prove possession of credentials while the
number of expensive cryptographic computations spent is independent of the
number of accessx rights being chosen. Moreover, the third anonymous creden-
tial scheme is not only fast batch verifiable but also fast fine-grained revocable,
which means that to verify whether an arbitrarily chosen subset of credentials is
revoked entails constant computation cost.

Keywords: anonymous credential, batch verification, fine-grained revocation,
pairing.

1 Introduction

The protection of consumer privacy in access-control-based applications is a chal-
lenge that can be postponed no longer [1]. Access control simply means the act of
determining if a particular right, such as access to some resource, can be granted to
the presenter of a particular credential [2]. The access control system that this paper
describes has a pseudonym authority (PA), resource holder (RH), resource guard
(RG), and user as types of players. The PA issues a pseudonym to the user. The RH
manages resources and, by issuing credentials, grants resource access rights to the
user. The RG enforces access policies on the resources of one or more RHs and, by
verifying the pseudonym and the credentials of a user, admits or denies the user ac-
cess to the resources according to the RG’s access control policies.

It’s interesting to note the common practice that the applications try to collect as
much personal information as possible from users, due to the incentive to price dis-
criminate [3]. Hence, the user will frequently confront challenges in deciding how
many resources are accessible and how much privacy is compromised. The user’s
decision may vary from service to service, from time to time, and from person to
person. It’s thus important to devise efficient anonymous credential schemes that
enable verifying an arbitrarily chosen set of user credentials such that only absolutely
necessary access rights (that are sensitive user information) are exposed to the access-
control-based applications, with as few as possible computational cost.

66 K. Zeng

Camenisch et al. [4, p. 2] have proposed seven desirable properties of an anony-
mous credential system, i.e., existential unforgeability, unlinkability, traceability,
separability for resource holders 1 , revocability, multi-show/one-show credentials,
non-transferability. In addition to these, this paper highlights four desirable proper-
ties: batch verifiable, fine-grained revocable, and their fast versions.

(i) Batch verifiable. A user can arbitrarily select a portion of his access rights and
prove possession of credentials to the RG without exposing other access rights.

(ii) Fast batch verifiable. In addition to (i), the number of expensive cryptographic
computations spent and the pieces of data generated by proving possession of
credentials are independent of the number of access rights being chosen. Scalar
multiplication, modular exponentiation, and pairing evaluation are in general
considered expensive.

(iii) Fine-grained revocable. Any one credential of the user can be revoked while
leaving his other credentials untouched. In other words, revocation of credentials
is on a per-user per-access-right basis.

(iv) Fast fine-grained revocable. The RG may need to ascertain whether a subset of
the user’s credentials has been revoked. In such case, in addition to (iii), the
number of expensive cryptographic computations spent and the pieces of data
generated by proving that the subset of credentials are not revoked are independ-
ent of the size of the subset being chosen.

Our Contribution
To the best of our knowledge, this work is the first that addresses an anonymous cre-
dential system achieving the fast batch verifiable property and the fast fine-grained
revocable property. Three pairing-based anonymous credential schemes are presented.
The first scheme achieves the fast batch verifiable property in the random oracle
model. The second and third schemes achieve the fast batch verifiable property in the
standard model. In particular, the third scheme achieves the fast fine-grained revoca-
ble property as well.

2 Related Work

The anonymous credential system has been extensively studied in academia, resulting
in many schemes, including those of [1, 4 - 14], just to name a few.

Chaum et al. [5] first introduced the scenario with multiple users that request cre-
dentials from resource holders then anonymously present credentials to resource
guards without involving the resource holders online. The schemes proposed in [6]
and [7] are based on having a trusted third party involved in all interactions.

Persiano et al. [10,11] proposed two anonymous credential schemes. The work of
[10] is based on a chameleon certificate. The work of [11] is based on Strong RSA
assumption. However, these schemes rely on inefficient zero-knowledge proofs, such

1 Here it should be noted that the term Organization is originally utilized in [4]. The Organiza-

tion not only issues credentials but also verifies credentials. In this regard, we logically divide
Organization into Resource Holder and Resource Guard.

 Access with Fast Batch Verifiable Anonymous Credentials 67

as proving knowledge of a double discrete logarithm, which is too expensive to be
adoptable in practice [15].

Camenisch et al. [4, 12] proposed two efficient anonymous credential schemes,
wherein [4] is based on Strong RSA assumption and [12] is based on LRSW assumption.

Most recently, Akagi et al. 14 proposed a q-SDH assumption-based anonymous
credential scheme. This scheme is more efficient than the above ones because it util-
izes a simplified system model (we will elaborate this simplified system model in
Section 5.1).

However, none of the previous work presents a fast batch verifiable anonymous
credential scheme. As Camenisch et al. recently pointed out, it is as yet an open prob-
lem to find a fast batch verification scheme for anonymous credentials [16].

Moreover, none of the previous work explicitly addresses the fine-grained revoca-
ble property. And none presents a fast fine-grained revocable anonymous credential
scheme.

3 Preliminaries

3.1 Notations and Number-Theoretic Preliminaries

If S is a finite set,
R

x ∈ S denotes that x is chosen from S uniformly at random.

Let ()Ω ⋅ be an arbitrary Boolean predicate, i.e., a function that, upon input of some

string ς , outputs either TRUE or FALSE . By () : ()A xς ς← Ω we denote that

()ςΩ is TRUE after ς was obtained by running algorithm ()A ⋅ on input x . A func-

tion ()adv k is said to be negligible if for every positive polynomial ()p ⋅ and suffi-

ciently large k , () 1 / ()adv k p k< .

Throughout this paper, we use the traditional multiplicative group notation, instead
of the additive notation often used in elliptic curve settings.

Let
1 1

g=G and
2 2

g=G be two finite cyclic groups with additional group

=G g such that
1 2

p= = =GG G where p is a large prime. Let *
1

G denote

1
\OG where O is the identity of

1
G . Bilinear map

1 2
:e × → GG G is a function,

such that: Bilinear, for all
1 1
h ∈ G ,

2 2
h ∈ G , and for all ,

p
a b ∈ Z ,

1 2 1 2
(,) (,)a b abe h h e h h= ; Non-degenerate,

1 1
h∃ ∈ G ,

2 2
h∃ ∈ G such that

1 2
(,)e h h ≠ I where I is the identity element of G ; and Computable: there exists an

efficient algorithm for computing e .
We suppose there is a setup algorithm ()Setup ⋅ that, upon input of security pa-

rameter 1k , outputs the above settings of the bilinear map and writes this as

1 2 1 2
(, , , , , ,) (1)kp g g e Setup←GG G .

68 K. Zeng

q-SDH Assumption. For all probabilistic polynomial-time (p.p.t.) adversaries A ,

()adv k defined as follows is a negligible function:

2

1 2 1 2

1/()
2 2 2 1

(, , , , , ,) (1); ;

Pr (,) (, , ,) : ()
q

k
R p

a a a a x
p

p g g e Setup a

x y g g g x y g adv k+

← ∈
⎡ ⎤← ∈ ∧ = =⎢ ⎥⎣ ⎦

GG G
"

Z
ZA

The q-SDH assumption has been shown to hold in generic bilinear groups by
Boneh et al. [17].

3.2 Honest-Verifier Zero-Knowledge (HVZK) Proof

Let { }() : ()KP ς ςΩ denote a zero-knowledge proof instance between a prover and a

verifier, where their common input is a predicate ()Ω ⋅ , and the prover’s secret input is

a string ς . { }() : () TRUEKP ς ςΩ = denotes the case that the verifier is convinced

that ()=TRUEςΩ , and { }() : () FALSEKP ς ςΩ = denotes the case otherwise. The

honest-verifier zero-knowledge (HVZK) proof has been extensively studied during
the past two decades, resulting in many efficient techniques [19 - 21].

In particular, we elaborate { }2
(, ,) : (T,) (T ,) TzKP t z e A e h g tτ ττ −= ⋅ ∧ = as

below Protocol 1, which is an HVZK proof of knowledge of
1

t ∈ G ,
p

τ ∈ Z , and

p
z ∈ Ζ ⊆ Z such that congruence

2 2
(,) (,)ze t A g e h gτ τ⋅ = holds..

Protocol 1

Bilinear map
1 2 1 2

(, , , , , ,) (1)kp g g e Setup←GG G and
2

A ∈ G are system parameters.

All these plus
1

h ∈ G and
1

T t τ= ∈ G are common inputs to the prover and verifier.

The prover’s secret input is
1

t ∈ G ,
p

τ ∈ Z , and
p

z ∈ Ζ ⊆ Z .

The goal of Protocol 1 is to prove knowledge of t , τ , and z , such that

2
(T,) (T ,)ze A e h gτ −= ⋅ and T t τ= , i.e.,

2 2
(,) (,)ze t A g e h gτ τ⋅ = .

1) The prover selects 2(,)
R p

α β ∈ Z , computes
2

R (T ,)e h gα β−= ⋅ ∈ G , and

sends R to the verifier.

2) The verifier selects a challenge
R p

c ∈ Z and sends c to the prover.

3) The prover computes 2(,)
z p

s c s c zτ α τ β= − ⋅ = − ⋅ ∈ Z , and sends (,)
z

s sτ

to the verifier.

The verifier is convinced iff *
1

T ∈ G and
2

R (T ,) (T,)zs s ce h g e Aτ −= ⋅ ⋅ .

Also notice that Protocol 1 is a secure three-move identification scheme [22].

Claim 1. The number of expensive cryptographic computations spent and the pieces
of data generated by Protocol 1 are constant.

 Access with Fast Batch Verifiable Anonymous Credentials 69

4 Fast Batch Verifiable Anonymous Credential

Describing anonymous credential scheme as five algorithms: ()PAKeyGen ⋅ ,

()RHKeyGen ⋅ , ()UserEnroll ⋅ , ()GCred ⋅ , and ()VCred ⋅ , we formalize the notions of

batch verification and fast batch verification.
()PAKeyGen ⋅ . This probabilistic algorithm takes as input the security parameter

1k , and returns the PA public key PApk and private key PAsk .

()RHKeyGen ⋅ . This probabilistic algorithm takes as input PApk and access right

ij
R that is under control of

i
RH , and returns access-right public key RH

ij
pk and pri-

vate key RH
ij
sk of access right

ij
R .

()UserEnroll ⋅ . This probabilistic algorithm takes as input PApk ; PAsk ;
max
n ,

which is the maximum number of admissible users; and a user identity
l
U ; and re-

turns user key
l
x and user pseudonym

l
nym .

()GCred ⋅ . The credential issuance algorithm takes as input PApk ,
l

nym ,
l
x , ac-

cess right
ij
R , corresponding access-right public key RH

ij
pk and private key RH

ij
sk ,

returns credential
ijl

Cred .

()VCred ⋅ . The credential verification algorithm takes as input PApk ,
l

nym ,
l
x , a

set of access rights { }ijR , corresponding access-right public keys { }RH
ij
pk , and pur-

ported credentials { }ijlCred . It decides whether to accept or to reject the credentials,

and returns TRUE or FALSE , respectively.

Definition (Batch Verifiable Anonymous Credentials). An HVZK knowledge proof

instance { } { } { } { }{ }(, ,) : (, , , , ,)PA RH
l l ijl l l ij ij ijl

KP nym x Cred VCred pk nym x R pk Cred is a

batch verification of anonymous credentials if the following two conditions hold:

• If for all
ij
R , (, , , , ,) TRUEPA RH

l l ij ij ijl
VCred pk nym x R pk Cred = , then given the

honest prover
{ }

{ } { } { }
(, ,) :

TRUE
 (, , , , ,)

l l ijl

PA RH
l l ij ij ijl

nym x Cred
KP

VCred pk nym x R pk Cred

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪ =⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

• If for any
ij
R , (, , , , ,) FALSEPA RH

l l ij ij ijl
VCred pk nym x R pk Cred = , then ()adv k

defined as follows is a negligible function:

{ }
{ } { } { }

(, ,) :
Pr TRUE ()

 (, , , , ,)
l l ijl

PA RH
l l ij ij ijl

nym x Cred
KP adv k

VCred pk nym x R pk Cred

⎡ ⎤⎧ ⎫⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪ = =⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

With this definition, it’s easy to see that most existing anonymous credential
schemes can conduct batch verification of anonymous credentials, e.g. the scheme as

70 K. Zeng

per [9]. Specifically for some of the existing schemes, adopting batch verification
method for modular exponentiations due to Bellare et al. [23] may yield alternative
approaches, see for instance [24] which presented general approach to batch verifica-
tion of short signatures. Whereas, neither approach is fast, as analyzed below, as per
our definition for fast batch verification of anonymous credentials.

Definition (Fast Batch Verifiable Anonymous Credentials). The above batch veri-

fication of anonymous credentials is said to be fast if, for all { }ijR⊆R� , the number

of expensive cryptographic computations spent and the pieces of data generated by

{ } { } { }{ }(, ,) : (, , , , ,) TRUEPA RH
l l ijl l l ij ijl

KP nym x Cred VCred pk nym x pk Cred =R�

are independent of R� .

5 Fast Batch Verifiable Anonymous Credential Scheme

5.1 Scheme I

Our first fast batch verifiable anonymous credential scheme (Scheme I) is based on a
simplified system model. This simplified system model has four types of players: the
portal service (PS) that not only manages pseudonyms but also manages access rights
on behalf of the RHs, the RH that is transparent to the user, the RG, and the user. It’s
notable that the work of [14] is based on the same simplified system model.

Notice that with this simplified system model, algorithm ()RHKeyGen ⋅ merges

with algorithm ()PAKeyGen ⋅ as ()PSKeyGen ⋅ , and algorithm ()UserEnroll ⋅

merges with algorithm ()GCred ⋅ .

PSKeyGen(·): The PS calls ()Setup ⋅ according to the security parameter 1k , chooses

a full-domain hash function { }*

1
() : 0,1Hash ⋅ → G that is viewed as a random oracle

by the security analysis; and chooses
R p

a ∈ Z ; and computes
2 2
aA g= ∈ G .

The PS’s public key is
1 2 1 2

(, , , , , , , , ())PSpk p g g e A Hash= ⋅GG G and private key is
PSsk a= .

GCred(·): In order to be granted access rights
i
R by the PS, a user who has trustwor-

thy identity
a
U carries out the following access-rights-granting protocol with the PS:

2.a) The user sends its identity
a
U to the PS and the PS queries its database for

stored key z of
a
U . Iff it does not find a match, the PS selects

R p
z ∈ Z for

a
U

and stores (,)
a
U z in its database.

2.b) The PS computes 1/()() a z
i i
t Hash R += , and sends user key z and credential

i
t

to the user.

2.c) User
a
U verifies that

2 2
(,) ((),)z
i i

e t A g e Hash R g⋅ = .

 Access with Fast Batch Verifiable Anonymous Credentials 71

Fast Batch Verification of Anonymous Credentials: Suppose the user
a
U has been

granted access rights { }1 2
, , ,R R R

ϒ
… . Without loss of generality, suppose one subset

{ } { }1 2
, , ,

j
r R R R

ϒ
⊆ … of the user’s access rights matches one of the RG’s policies

{ }, (),
j j

j

Pol r Hash r
⎛ ⎞⎟⎜ ⎟= Η =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∏ … . Let
j
t denote the user’s credential that corre-

sponds to access right
j
r .

Define ()VCred ⋅ as
?

2 2
(,) ((),)z

j j
j j

e t A g e Hash r g⋅ =∏ ∏ . In order to prove to the

RG that he meets policy Pol , the user carries out the following anonymous access
control protocol with the RG:

3.a) The user
a
U computes t

j
j

t=∏ , selects
R p

τ ∈ Z , and computes batch verifi-

able anonymous credential tτΤ = .

3.b) User
a
U notifies the RG of the matching of policy Pol and sends Τ to the RG.

3.c) RG interacts with
a
U for { }2

(t, ,) : (,) (,) T tzKP z e A e gτ ττ −Τ = Η ⋅Τ ∧ =

utilizing Protocol 1.

3.d) If { }2
(, ,) : (,) (,) T t TRUEzKP t z e A e gτ ττ −Τ = Η ⋅Τ ∧ = = , the RG is

convinced.

5.1.1 Scheme I Security
We formalize the existential unforgeability of Scheme I as an adaptive chosen-key
and adaptive chosen-access-right game. In this model, the adversary A is given a
single public key. His goal is the existential forgery of a batch verifiable anonymous

credential. The adversary’s advantage, ADVSchemeIA , is defined as his probability of

success in the game.

Definition (Existential Unforgeability of Scheme I). An adversary A
(, , , ,)-breaksN t εΚ Γ the existential unforgeability of the -userN Scheme I in the

adaptive chosen-key and adaptive chosen-access-right model if A runs in time at
most t , makes at most Κ queries to the hash function, issues at most Γ credential

queries to the challenger, and ADVSchemeIA is at least ε .

Theorem 1.1. Proposed Scheme I is secure against existential forgery in the random
oracle model under q-SDH assumption.

Corollary 1.1. Proposed Scheme I is a batch verification scheme for anonymous
credentials.

Corollary 1.2. Based on Claim 1, proposed Scheme I is a fast batch verification
scheme for anonymous credentials.

72 K. Zeng

Now we turn to formalizing the unlinkability of Scheme I. We basically rephrase the
CPA-full-anonymity model defined by Boneh et al. [25], which is a slightly weaker
version of the full-anonymity model given by Bellare et al. [28]. In this model, the
adversary A is given a single public key. His goal is to determine which of two users
is involved in an instance of the anonymous access control protocol. His success

probability, SUCCSchemeIA , is defined as his probability of success in the game.

Definition (CPA-Full-Anonymity of Scheme I). An adversary A
(, , , ,)-breaksN t εΚ Γ the CPA-full-anonymity of the -userN Scheme I if A runs in

time at most t , makes at most Κ queries to the hash function, issues at most Γ cre-

dential queries to the challenger, and SUCCSchemeIA is at least ε .

Definition (Security of Scheme I). Scheme I is secure if no algorithm
(, , , ,)-breaksN t εΚ Γ its existential unforgeability and no algorithm

(, , , ,)-breaksN t εΚ Γ its CPA-full-anonymity.

Lemma 1.3. Proposed Scheme I achieves CPA-full-anonymity.

Corollary 1.3. Based on Theorem 1.1 and Lemma 1.3, proposed Scheme I is secure.

5.2 Scheme II

Here we present our second fast batch verifiable anonymous credential scheme
(Scheme II). Unlike Scheme I, Scheme II works in the general system model and the
security of Scheme II does not rely on the random oracle.

PAKeyGen(·): The PA calls ()Setup ⋅ according to the security parameter 1k and

chooses
R p

a ∈ Z and computes
2 2
aA g= ∈ G .

The PA’s public key is
1 2 1 2

(, , , , , , ,)PApk p g g e A= GG G and private key is
PAsk a= .

RHKeyGen(·): Given PA public key PApk , the resource holder
i

RH that controls

access rights
ij
R , 1,2, ,

i
j n= " , executes the following:

2.a) For each
ij
R , it chooses

ij R p
b ∈ Z and computes

2 2
ijb

ij
B g= ∈ G .

2.b) For each
ij
B , it generates the signature of knowledge proof

{ }2
() : ijb

ij ij ij
SKP b B gΣ = = .

The
i

RH ’s access right public key is (){ }, ,RH
ij ij ij ij
pk R B= Σ and the private key

is RH
ij ij
sk b= .

UserEnroll(·): In order to obtain a pseudonym, a user who has trustworthy identity

u
U carries out the following with the PA:

 Access with Fast Batch Verifiable Anonymous Credentials 73

3.a) The user sends its identity
u
U to the PA and the PA queries its database for

stored key
u
z of

u
U . Iff it does not find a match, the PA selects

u R p
z ∈ Z for

u
U and stores (,)

u u
U z in its database.

3.b) PA computes a BB signature [17] 1/()

1
ua z

u
t g += , and sends user key

u
z and

pseudonym
u
t to

u
U .

3.c) User
u
U verifies that

2 1 2
(,) (,)z
u

e t A g e g g⋅ = .

GCred(·): In order to be granted a credential for access right
ij
R , the user

u
U carries

out the following access-right-granting protocol with the resource holder
i

RH that

controls access right
ij
R :

4.a) User
u
U interacts with the

i
RH for { }1 2 2

() : (,) / (,) (,)z
u u

KP z e t A e g g e t g−= .

4.b) If { }1 2 2
() : (,) / (,) (,) TRUEz

u u
KP z e t A e g g e t g−= = , the

i
RH computes

ijb

ij u
v t= and sends

ij
v to the user.

4.c) The user verifies that
2

(,) (,)
u ij ij

e t B e v g= holds and stores
ij
v as his credential

for access right
ij
R .

Fast Batch Verification of Anonymous Credentials: Suppose the user
u
U has been

granted pseudonym
u
t and credentials for access rights { }ijR whose corresponding

access-right public keys are { }ijB . Without loss of generality, suppose one subset

{ } { }j ij
r R⊆ of the user’s access rights matches one of the RG’s policies

{ },B ,
j j

j

Pol r B
⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∏ … , where
j
B is the access-right public key that corre-

sponds to resource
j
r . Since { }j ij

r R∈ , we have that { }j ij
B B∈ . Let

j
v denote the

user’s credential that corresponds to access right
j
r .

Define ()VCred ⋅ as:
?

2 1 2
(,) (,)z
u

e t A g e g g⋅ = and
?

2
(,) (,)
u j j

e t B e v g= . In order to

prove to the RG that he meets policy Pol , the user
u
U carries out the following

anonymous access control protocol with the RG:

5.a) The user
u
U selects

R p
τ ∈ Z , computes pseudonym T

u
t τ= and batch verifi-

able anonymous credential V v
j

j

v
τ

τ
⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∏ .

74 K. Zeng

5.b) User
u
U notifies the RG of the matching of policy Pol and sends T , V to RG.

5.c) The RG interacts with the user
a
U for

{ }1 2
(, ,) : (,) (,) Tz
u u

KP t z e A e g g tτ ττ −Τ = ⋅Τ ∧ =

utilizing Protocol 1.

5.d) If { }1 2
(, ,) : (,) (,) T TRUEz
u u

KP t z e A e g g tτ ττ −Τ = ⋅Τ ∧ = = , the RG next

verifies that
?

2
(T,B) (V,)e e g= . If the congruence holds, the RG is convinced.

5.2.1 Scheme II Security
We formalize the existential unforgeability of Scheme II as an adaptive chosen-key
and adaptive chosen-access-right game. In this model, the adversary A is given the
PA public key and an access-right public key. His goal is the existential forgery of a
pseudonym and a batch verifiable anonymous credential. The adversary’s advantage,

ADVSchemeIIA , is defined as his probability of success in the game.

Definition (Existential Unforgeability of Scheme II). An adversary A
(, , ,)-breaksN t εΓ the existential unforgeability of the -userN Scheme II in the

adaptive chosen-key and adaptive chosen-access-right model if A runs in time at

most t , issues at most Γ queries to the challenger, and ADVSchemeIIA is at least ε .

Theorem 2.1. Proposed Scheme II is secure against existential forgery under q-SDH
assumption.

Corollary 2.1. Proposed Scheme II is a batch verification scheme for anonymous
credentials.

Corollary 2.2. Based on Claim 1, proposed Scheme II is a fast batch verification
scheme for anonymous credentials.

Now we turn to formalizing the unlinkability of Scheme II, again in the CPA-full-
anonymity model. In this model, the adversary A is given the PA public key and
some access-right public keys. His goal is to determine which of two users is involved
in an instance of the anonymous access control protocol. His success probability,

SUCCSchemeIIA , is defined as his probability of success in the game.

Definition (CPA-Full-Anonymity of Scheme II). An adversary A
(, , ,)-breaksN t εΓ the CPA-full-anonymity of the -userN Scheme II if A runs in

time at most t , issues at most Γ queries to the challenger, and SUCCSchemeIIA is at

least ε .

Definition (Security of Scheme II). Scheme II is secure if no algorithm
(, , ,)-breaksN t εΓ its existential unforgeability and no algorithm (, , ,)-breaksN t εΓ

its CPA-full-anonymity.

 Access with Fast Batch Verifiable Anonymous Credentials 75

Lemma 2.3. Proposed Scheme II achieves CPA-full-anonymity.

Corollary 2.3. Based on Theorem 2.1 and Lemma 2.3, proposed Scheme II is secure.

6 Revocation

In this section, we will present a fast batch verifiable as well as fast fine-grained revo-
cable scheme (Scheme III) that is modified from Scheme II.

6.1 Fast Fine-Grained Revocation

In addition to the five algorithms described in Section 4, Scheme III also requires the
()Revoke ⋅ algorithm below.

()Revoke ⋅ . This deterministic algorithm takes as input PAsk ,
ij
R , RH

ij
pk ,

l
x ,

ijl
Cred , and x� for which the credential for

ij
R needs revocation, and returns the

updated RH
ij
pk ′ and credential

ijl
Cred ′ .

Definition (Fast Batch Verifiable and Fast Fine-grained Revocable Anonymous
Credentials). A batch verifiable and fine-grained revocable anonymous credential
scheme is said to achieve fast batch verification and fast fine-grained revocation

properties if, for all { }ˆ
ij
R⊆ ⊆R R� where R̂ is the set of access rights whose cor-

responding credentials purportedly have not been revoked, the number of expensive
cryptographic computations spent and the pieces of data generated by

{ } { } { }{ }(, ,) : (, , , , ,) TRUEPA RH
l l ijl l l ij ijl

KP nym x Cred VCred pk nym x pk Cred =R�

are independent of R� and R̂ , where ()VCred ⋅ will return FALSE if any one

credential for R̂ has been revoked.

In order to support fast fine-grained revocation, Scheme II’s procedures for
()RHKeyGen ⋅ , ()GCred ⋅ , and anonymous access control protocol need to be slightly

modified, as depicted below.

RHKeyGen(·): Given PA public key PApk , the resource holder
i

RH that controls

access rights
ij
R , 1,2, ,

i
j n= " , executes the following:

2.a) For each
ij
R , it chooses

ij R p
b ∈ Z and computes

2 2
ijb

ij
B g= ∈ G .

2.b) For each
ij
R , it computes access right revocation data

1 1
ijb

ij
h g= ∈ G and ini-

tializes revocation list { }(,)
ij ij

RL h= ∆ , where ∆ denotes that the two-tuple

(,)
ij
h ∆ is the first row in

ij
RL , i.e., no revocation happens yet.

2.c) For each
ij
B and

ij
h , it generates a signature of knowledge proof

76 K. Zeng

{ }2 1
() : ij ijb b

ij ij ij ij
SKP b B g h gΣ = = ∧ = .

The
i

RH ’s public key is (){ }, , ,RH
ij ij ij ij ij
pk R B RL= Σ and the private key is

RH
ij ij
sk b= .

GCred(·): In order to be granted access right
ij
R , the user

u
U carries out the follow-

ing access-right-granting protocol with the resource holder
i

RH that controls access

right
ij
R :

4.a) User
u
U interacts with the

i
RH for { }1 2 2

() : (,) / (,) (,)z
u u

KP z e t A e g g e t g−= .

4.b) If { }1 2 2
() : (,) / (,) (,) TRUEz

u u
KP z e t A e g g e t g−= = , the

i
RH computes

ijb

ij u
v t= and sends

ij
v to the user.

4.c) The user
u
U verifies that

2
(,) (,)
u ij ij

e t B e v g= holds, and stores
ij
v as his cre-

dential and
ij ij
w v= as his validity data for access right

ij
R .

Revoke(·): Given a misbehaving user U� that has user key z� , in order to revoke his

credential for access right
ij
R , PA needs to do the following:

6.a) PA retrieves revocation data
ij
h from the last (latest) row of

ij
RL .

6.b) PA computes 1/()a z
ij ij
h h += �� and appends (,)

ij
h z� � to

ij
RL .

Consider user
u
U that has user key z . User

u
U has credential

ij
v and validity

data
ij
w for access right

ij
R as well. As a consequence of user U� ’s credential for

access right
ij
R being revoked, user

u
U needs to execute the following to update his

credential:

6.c) The user
u
U computes 1/()(/) z z

ij ij ij
w h w −= ��� and updates his credential for ac-

cess right
ij
R to (,)

ij ij
v w� .

Fast Batch Verification & Fast Fine-Grained Revocation of Anonymous Creden-

tials: Suppose the user
u
U has been granted credentials for access rights { }ijR whose

corresponding access-right public keys are { }ijB . Without loss of generality, suppose

one subset { } { }j ij
r R⊆ of the user’s access rights matches one of the RG’s policies

{ },B ,
j j

j

Pol r B
⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∏ … , where
j
B is the access-right public key that corre-

sponds to resource
j
r . Since { }j ij

r R∈ , we have that { }j ij
B B∈ . Let

ij
v denote the

 Access with Fast Batch Verifiable Anonymous Credentials 77

user’s credential for credential access right
j
r . Let

ij
w denote the user’s current valid-

ity data, i.e., data that has been updated to include the latest revocation, on access

right
j
r .

The user
u
U wants to prove to the RG that he meets policy Pol . Whereas, the RG

is curious about whether the user’s access rights on { } { }k j
r r⊆ have been revoked.

Let
k
h denote the access right revocation data that is retrieved from the last row of

k
RL .

Define ()VCred ⋅ as
?

2 1 2
(,) (,)z
u

e t A g e g g⋅ = ,
?

2
(,) (,)
u j j

e t B e v g= , and

?

2 2
(,) (,)z
k k

e w A g e h g⋅ = . In order to convince the RG, the user
u
U carries out the

following anonymous access control protocol with the RG:

5.a) The user
u
U selects

R p
τ ∈ Z , and computes pseudonym T

u
t τ= and batch

verifiable anonymous credential V v
j

j

v
τ

τ
⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∏ . In addition, the user com-

putes fine-grained validity data W w
k

k

w
τ

τ
⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜⎝ ⎠∏ .

5.b) The user
u
U notifies the RG of the matching of policy Pol and sends T , V ,

and W to the RG.

5.c) Utilizing a natural extension of Protocol 1, the RG interacts with the user
u
U for

1 2

2

(,w, ,) : (,) (,) T

 (W,) (() W ,) W w

z
u u

z
k

k

t z e A e g g t
KP e A e h g

τ τ

τ τ

τ −

−

⎧ ⎫⎪ ⎪Τ = ⋅Τ ∧ =⎪ ⎪⎪ ⎪⎨ ⎬∧ = ⋅ ∧ =⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∏ .

5.d) If the RG accepts the above knowledge proof, it further verifies that
?

2
(T,B) (V,)e e g= . If the congruence holds, the RG is convinced.

6.1.1 Security of Fine-Grained Revocation
Note that Scheme III exactly reuses the steps in Scheme II to achieve fast batch veri-
fication of anonymous credentials and that Protocol 1 is witness indistinguishable
[33]. Therefore, Scheme III should be secure with respect to existential unforgeability
and CPA-full-anonymity, as long as the fine-grained validity data is existentially
unforgeable.

We formalize the existential unforgeability of the validity data as an adaptive cho-
sen-key and adaptive chosen-access-right game. In this model, the adversary A is
given the PA public key, an access-right public key, and access right revocation data.
His goal is the existential forgery of the validity data. The adversary’s advantage,

ADVVALIDA , is defined as his probability of success in the game.

78 K. Zeng

Definition (Existential Unforgeability). An adversary A (, , ,)-breaksN t εΓ the

existential unforgeability of validity data of the -userN Scheme III in the adaptive
chosen-key and adaptive chosen-access-right model if A runs in time at most t ,

issues at most Γ queries to the challenger, and ADVVALIDA is at least ε .

Theorem 3.1. Proposed Scheme III is secure against existential forgery of validity
data under q-SDH assumption.

Corollary 3.1. Based on Claim 1, proposed Scheme III attains fast fine-grained revo-
cation of anonymous credentials.

7 Conclusions and Future Work

Three constructions of fast batch verifiable anonymous credential schemes were pre-
sented. The first scheme achieves the fast batch verifiable property in the random
oracle model. The second and third schemes achieve the fast batch verifiable property
in the standard model. The third scheme in addition achieves the fast fine-grained
revocable property.

To attain the fast properties, our three schemes require linear storage consumption for
the credentials and the credentials cannot be arbitrary statements. It is desirable to see
anonymous credential scheme with fast properties that overcomes these two limitations.

According to the findings of [24] and [34], our three schemes after further modifi-
cations may be able to conduct batch verification of anonymous credentials from
different users. But such modifications cannot be fast if we require the number of
expensive cryptographic computations being independent of the number of users. It is
thus very interesting to find a fast scheme for this usage scenario.

Acknowledgements

The author is grateful to Tomoyuki Fujita, Min-Yu Hsueh, and Toshikazu Fukushima
for pointing to this research and for support to this research. The author thanks Yu-
Liang Zheng, Yong Ding, Hao Lei, Ye Tian, and Li-Ming Wang for valuable
discussions during the development of the ideas herein presented. The author also
thanks the anonymous reviewers, whose comments and suggestions help to improve
the quality of this paper and stimulate new thoughts. The author is particularly
grateful to one reviewer for pointing out a mistake in an early version of this paper.

References

1. Verheul, E.R.: Self-Blindable Credential Certificates from the Weil Pairing. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg (2001)

2. Westhoff, D., Lamparter, B.: Charging Related Mobile Device Authentication. In: Ad-
vanced Internet Charging and QoS Technologies (ICQT 2001), pp. 129–135 (2001), ISBN
3-85403-157-2

 Access with Fast Batch Verifiable Anonymous Credentials 79

3. Odlyzko, A.: Privacy, Economics, and Price Discrimination on the Internet. In: 5th Inter-
national Conference on Electronic Commerce, pp. 355–366. ACM Press, New York
(2003)

4. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous
Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

5. Chaum, D.: Security without Identification: Transaction Systems to Make Big Brother Ob-
solete. Communications of the ACM 28(10), 1030–1044 (1985)

6. Chaum, D., Evertst, J.H.: A Secure and Privacy-protecting Protocol for Transmitting Per-
sonal Information Between Organizations. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS,
vol. 263, pp. 118–167. Springer, Heidelberg (1987)

7. Chen, L.: Access with Pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryptography:
Policy and Algorithms 1995. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg (1996)

8. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym Systems. In: Heys, H.M.,
Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000)

9. Holt, J.E., Seamons, K.E.: Selective Disclosure Credential Sets. Report 2002/151, Cryp-
tology ePrint Archive (2002)

10. Persiano, P., Visconti, I.: An Anonymous Credential System and a Privacy-Aware PKI. In:
Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 27–38. Springer,
Heidelberg (2003)

11. Persiano, P., Visconti, I.: An Efficient and Usable Multi-show Non-transferable Anony-
mous Credential System. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 196–221.
Springer, Heidelberg (2004)

12. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bi-
linear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

13. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Non-Interactive Anonymous
Credentials. Report 2007/384, Cryptology ePrint Archive (2007)

14. Akagi, N., Manabe, Y., Okamoto, T.: An Efficient Anonymous Credential System. In:
Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143. Springer, Heidelberg (2008)

15. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient Revocation of Group Signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)

16. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Signatures.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidel-
berg (2007)

17. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidel-
berg (2004)

18. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solution to Identification and Sig-
nature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (1987)

19. Chaum, D., Evertse, J.H., Graaf, J.: An Improved Protocol for Demonstrating Possession
of Discrete Logarithms and Some Generalizations. In: Price, W.L., Chaum, D. (eds.)
EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)

20. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

21. Qin, B., Wu, Q., Susilo, W., Mu, Y.: Group Decryption. Report 2007/017, Cryptology
ePrint Archive (2007)

80 K. Zeng

22. Okamoto, T.: Provable Secure and Practical Identification Schemes and Corresponding
Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53.
Springer, Heidelberg (1993)

23. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation
and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
236–250. Springer, Heidelberg (1998)

24. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.O.: On the Practicality of Short
Signature Batch Verification. Report 2008/015, Cryptology ePrint Archive (2008)

25. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

26. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curves for
FR-reduction. IEICE Trans. Fundamentals E84-A(5), 1234–1243 (2001)

27. MIRACL, Multi-precision Integer and Rational Arithmetic C Library,
 http://www.shamus.ie
28. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal

Definitions, Simplified Requirements, and a Construction Based on General assumptions.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidel-
berg (2003)

29. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coali-
tion-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

30. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient
Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–77. Springer, Heidelberg (2002)

31. Nguyen, L.: Accumulators from Bilinear Pairings and Applications to ID-based Ring Sig-
natures and Group Membership Revocation. Report 2005/123, Cryptology ePrint Archive
(2005)

32. Ateniese, G., Camenisch, J., Hohenberger, S., Medeiros, B.: Practical Group Signatures
without Random Oracles. Report 2005/385, Cryptology ePrint Archive (2005)

33. Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In: 22nd
ACM Symposium on Theory of Computing, pp. 416–426. ACM Press, New York (1990)

34. Peng, K., Boyd, C., Dawson, E.: Batch Zero-Knowledge Proof and Verification and Its
Applications. ACM Transactions on Information and System Security, Article 6 10(2),
1–28 (2007)

Quantifying Timing Leaks and Cost

Optimisation

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 University of Verona, Ca’ Vignal 2 - Strada le Grazie 15 I-37134 Verona, Italy
2 Imperial College London, 180 Queen’s Gate London SW7 2AZ, UK

Abstract. We develop a new notion of security against timing attacks
where the attacker is able to simultaneously observe the execution time
of a program and the probability of the values of low variables. We then
show how to measure the security of a program with respect to this notion
via a computable estimate of the timing leakage and use this estimate
for cost optimisation.

1 Introduction

Early work on language-based security, such as Volpano and Smith’s type sys-
tems [1], precluded the use of high security variables to affect control flow. Specif-
ically, the conditions in if-commands and while-commands were restricted to
using only low security information. If this restriction is weakened, it opens up
the possibility that high security data may be leaked through the different tim-
ing behaviour of alternative control paths. This kind of leakage of information
is said to form a covert timing channel and is a serious threat to the security of
programs (cf. e.g. [2]).

We develop a new notion of security against timing attacks where the attacker
is able to simultaneously observe the execution time of a (probabilistic) program
and the probability of the values of low variables. This notion is a non-trivial
extension of similar ideas for deterministic programs [3] which also covers attacks
based on the combined observation of time and low variables. This earlier work
presents an approach which, having identified a covert timing channel, provides
a program transformation which neutralises the channel.

We start by introducing a semantic model of timed probabilistic transition
systems. Our approach is based on modelling programs essentially as Markov
Chains (MC) where the stochastic behaviour is determined by a joint distribu-
tion on both the values assigned to the program’s variables and the time it takes
to the program to perform a given command. This is very different from other
approaches in the area of automata theory which are also dealing with both time
and probability. In this area the timed automata constitute a well-established
model [4]. These automata have been extended with probability and used in
model-checking for the verification of probabilistic timed temporal logic proper-
ties of real-time systems. The resulting model is essentially a Markov Decision
Process (MDP) where rewards are interpreted as time durations. In particular,

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 81–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

82 A. Di Pierro, C. Hankin, and H. Wiklicky

the presence of non-determinism makes MDP models not very appropriate as
a base of our quantitative analysis aiming at measuring timing leaks. We next
present a concrete programming language with a timed probabilistic transition
system as its execution model. This language is based on the language studied
in [3] but is extended with a probabilistic choice construct – whilst this may
not play a role in user programs, it has an essential role in our program trans-
formation. In order to determine and quantify the security of systems and the
effectiveness of potential counter-measures against timing attacks we then dis-
cuss an approximate notion of timed bisimilarity and construct an algorithm
for computing a quantitative estimate of the vulnerability of a system against
timing attacks; this is given in terms of the mismatch between the actual tran-
sition probabilities and those of an ideal perfectly confined program. Finally, we
present a probabilistic variation of Agat’s padding algorithm which we use to
illustrate – via an example – a technique for formally analysing the trade-off
between security costs and protection.

2 The Model

We introduce a general model for the semantics of programs where time and
probability are explicitly introduced in order to keep track of both the proba-
bilistic evolution of the program/system state and its running time.

The scenario we have in mind is that of a multilevel security system and an
attacker who can observe the system by looking at the values of its public vari-
ables and the time it takes to perform a given operation, or before terminating,
or other similar properties related to its timing behaviour. In order to keep the
model simple, we assume that the time to execute a statement is constant and
that there is no distinction between any ‘local’ and ‘global’ clocks. In a more
realistic model, one has – of course – to take into account also that the exe-
cution speed might differ depending on which other process is running on the
same system and/or delays due to uncontrollable events in the communication
infrastructure, i.e. network.

Our reference model is the timed probabilistic transition system we define
below. The intuitive idea is that of a probabilistic transition system (similar to
those defined in all generality in [5]) where transition probabilities are defined
by a joint distribution of two random variables representing the variable updates
and time, respectively.

Let us consider a finite set X , and let Dist(X) denote the set of all prob-
ability distributions on X , that is the set of all functions π : X → [0, 1],
such that

∑
x∈X π(x) = 1. We often represent these functions as sets of tuples

{〈x, π(x)〉}x∈X . If the set X is presented as a Cartesian product, i.e. X = X1 ×
X2, then we refer to a distribution on X also as a joint distribution on X1 and
X2. A joint distribution associates to each pair (x1, x2), with x1 ∈ X1, x2 ∈ X2

the probability π(x1, x2). It is important to point out that, in general, it is not
possible to define any joint distribution on X1 ×X2 as a ‘product’ of distribu-
tions on X1 and X2, i.e. for a given joint distribution π on X = X1 ×X2 it is,

Quantifying Timing Leaks and Cost Optimisation 83

in general, not possible to find distributions π1 and π2 on X1 and X2 such that
for all (x1, x2) ∈ X1×X2 we have π(x1, x2) = π1(x1)π2(x2). In the special cases
where a joint distribution π can be expressed in this way, as a ‘product’, we say
that the distributions π1 and π2 are independent (cf. e.g. [6]).

2.1 Timed Probabilistic Transition Systems

The execution model of programs which we will use in the following is that
of a labelled transition system; more precisely, we will consider probabilistic
transition systems (PTS). We will put labels on transitions as well as states; the
former will have “times” associated with them while the latter will be labelled by
uninterpreted entities which are intended to represent the values of (low security)
variables, i.e. the computational state during the execution of a program. We
will not specify what kind of “time labels” we use – e.g. whether we have a
discrete or continuous time model – we just assume that time labels are taken
from a finite set T ⊆ R

+ of positive real numbers. The “state labels” will be
taken from an abstract set which we denote by L.

Definition 1. We define a timed Probabilistic Transition System with labelled
states, or tPTS, as a triple (S,−→, λ), with S a finite set of states, −→ ⊆
S × T × [0, 1] × S a probabilistic transition relation, and λ : S → L a state
labelling function.

We denote by s1
p:t �� s2 the fact that (s1, p, t, s2) ∈−→ with s1, s2 ∈ S, p ∈

[0, 1] and t ∈ T. In a general tPTS we can have non-determinism in the sense

that for two states s1 and s2 we may have s1
1:t1 �� s2 and s1

1:t2 �� s2, which
would suggest that it is possible to make a transition from s1 to s2 in different
times (t1 and t2) and probability 1, i.e. certainly. In order to eliminate non-
determinism we will consider in this paper only tPTS’s which are subject to the
following conditions: (i) for all s ∈ S we have

∑
(s,pi,tj ,sk)∈−→ pi = 1, and (ii) for

all t ∈ T there is at most one tuple (s1, t, p, s2) ∈−→.
The first condition means that we consider here a purely probabilistic or gen-

erative execution model. The second condition allows us to associate a unique
probability to every transition time between two states, i.e. a triple (s1, t, s2); this

means that we can define a function π : S×T×S → [0, 1] such that s1
p:t �� s2

iff π(s1, t, p2) = p. Note however, that it is still possible to have differently timed
transitions between states, i.e. it is possible to have (s1, t1, p2, s2) ∈−→ and
(s1, t2, p2, s2) ∈−→ with t1 �= t2. If for all s1, s2 ∈ S there exists at most one
(s1, t, p, s2) ∈−→, we can also represent a timed Probabilistic Transition System
with labelled states as a quadruple (S,−→, τ, λ) with τ : S × S → [0, 1] × T,
a timing function. Thus, to any two states s1 and s2 we associate a unique
transition time ts1,s2 and probability ps1,s2 .

Definition 2. Consider a tPTS (S,−→, λ) and an initial state s0 ∈ S. An
execution sequence or trace starting in s0 is a sequence (s0, s1, . . .) such that

si
pi:ti �� si+1, for all i = 0, 1, 2,

84 A. Di Pierro, C. Hankin, and H. Wiklicky

We associate, in the obvious way, to an execution sequence σ = (s0, s1, . . .) three
more sequences: (i) the transition probability sequence: (p1, p2, . . .), (ii) a time
stamp sequence: (t1, t2, . . .), and (iii) a state label sequence: (λ(so), λ(s1), . . .).

Even for a tPTS with a finite number of states it is possible to have infinite
execution sequences. It is thus, in general, necessary to consider measure theo-
retic notions in order to define a mathematically sound model for the possible
behaviours of a tPTS. However, as long as we consider only terminating systems,
i.e. finite traces, things are somewhat simpler. In particular probability distribu-
tions can replace measures as they are equivalent in this case. In this paper we
restrict our attention to terminating traces and probability distributions. This
allows us to define for every finite execution sequence σ = (s0, s1, . . .) its running
time as τ(σ) =

∑
ti, and its execution probability as π(σ) =

∏
ti. We will also

associate to every state s0 its execution tree, i.e. the collection of all execution
sequences starting in s0.

2.2 Observing tPTS’s

In Section 3 we will present an operational semantics of a simple imperative
programming language, pWhile, via a tPTS. Based on this model we will then
investigate the vulnerability against attackers which are able to observe (i) the
time, and (ii) the state labels, i.e. the low variables. In this setting we will argue
that the combined observation of time and low variables is more powerful than
the observation of time and low variables separately.

Example 1. In order to illustrate the role of joint distributions in the observation
of timed PTS’s let us consider the following simple systems.

•s1

1
4 :1

�����������������

1
4 :2����

��
��

��
1
4 :1

��

1
4 :2

���
��

��
��

�

◦s1
1

◦s1
2

•s1
3

•s1
4

•s2

1
4 :2

����
��

��
��
1
4 :2

�� 1
4 :1 ���

��
��

��
�

1
4 :1

�����������������

•s2
1

•s2
2

◦s2
3

◦s2
4

We assume that the attacker can observe the execution times and that he/she is
also able to (partially) distinguish (the final) states. In our example we assume
that the states depicted as • and ◦ form two classes which the attacker can
identify (e.g. because the • and ◦ states have the same values for low variables).
The question now is whether this information allows the attacker to distinguish
the two tPTS’s.

If we consider the information obtained by observing the running time, we see
that both systems exhibit the same time behaviour corresponding to the distri-
bution {〈1, 1

2 〉, {〈2, 1
2 〉} over T = {1, 2}. The same is true in the case where the

information is obtained by inspecting the final states: we have the distributions
{〈•, 1

2 〉, {〈◦,
1
2 〉} over L = {•, ◦} for both systems.

However, considering that the attacker can observe running time and labels
simultaneously, we see that the system on the rhs always runs for 2 time steps
iff it ends up in a • state and 1 time step iff it ends up in a ◦ state. In the system

Quantifying Timing Leaks and Cost Optimisation 85

on the lhs there is no such correlation between running time and final state.
The difference between the two systems, which allows an attacker to distinguish
them, is reflected in the joint distributions over T×L. These are χ1(t, l) = 1

4 for
all t = 1, 2 and l = •, ◦; and χ2(1, ◦) = 1

2 = χ2(2, •) and χ2(t, l) = 0 otherwise.
Note that while χ1 is the product of two independent probability distributions
on T and L it is not possible to represent χ2 in the same way.

3 An Imperative Language

We consider a language similar to that used in [3] with the addition of a prob-
abilistic choice construct. The syntax of the language, which we call pWhile, is
as follows:

Operators: op ::= + | ∗ | − | = | ! = | < | <=
Expressions: e ::= v | x | e op e

Commands: C, D ::= x := e | skipAsn x e | if (e) then C else D |skipIf e C

| while (e) do C | C; D | choosep C or D

Basic Values: v ::= n | true | false

The probabilistic choice, choosep C or D, is used in an essential way in the
program transformation presented later. We also keep the language of types in
[3], although in a simplified form (with L ≤ H and s ≤ s):

Security levels: s ::= L | H
Base types: τ ::= Int | Bool
Security types: τ ::= τ s

and sub-typing:
s1 ≤ s2

τ s1 ≤ τ s2

.

We will indicate by E the state of a computation and denote by EL its restric-
tion to low variables, i.e. a state which is defined as E for all the low variables
for which E is defined, and is undefined otherwise. We say that two configura-
tions 〈E | C〉 and 〈E′ | C′〉 are low equivalent if and only if EL = E′

L and we
indicate this by 〈E | C〉 =L 〈E′ | C′〉. In the following we will sometimes use for
configurations the shorthand notation c, c1, c2, . . . , c

′, c′1, We will also denote
by Conf the set of all configurations.

The big step semantics of expressions and the small-step semantics of com-
mands are essentially the same as those in [3]. The only difference is the rule for
probabilistic choice which we have added to the original semantics. We refer to
the full version of this paper [7] for a complete description of this semantics and
we only report here on the probabilistic choice rule(s) (Choose):

〈E | choosep C or D〉
p:tch �� 〈E | C〉 〈E | choosep C or D〉

(1−p):tch �� 〈E | D〉

In this rule, tch indicates the time it takes to execute a choice command. In gen-
eral, we will use the time labels t. to represent the time it takes to perform certain
operations: tx is the time to store a variable, te is the time it takes to evaluate
an expression, tasn represents the time to perform an assignment, tbr is the time

86 A. Di Pierro, C. Hankin, and H. Wiklicky

required for a branching step, and tch is the time to perform a probabilistic
choice.

The rule above states that the execution of a probabilistic choice construct
leads, after a time tch, to a state where either the command C or the command
D is to be executed with probability p or 1− p, respectively. This rule together
with the standard transition rules for the other constructs of the language define
a tPTS for our pWhile language according to Definition 1. In this tPTS, the
state labels are given by the environment, i.e. λ(〈E | C〉) = E.

3.1 Abstract Semantics

According to the notion of security we consider in this paper, an observer or
attacker can only observe the changes in low variables. Therefore, we can simplify
the semantics by ‘collapsing’ the execution tree in such a way that execution
steps during which the value of all low variables is unchanged are combined into
one single step. We call an execution sequence σ deterministic if π(σ) = 1, and
we call it low stable if λ(si)|L = l for all si ∈ σ. The empty path (of length
zero) is by definition deterministic and low stable. An execution sequence is
maximal deterministic/low stable if it is not a proper sub-sequence of another
deterministic/low stable path.

Definition 3. The collapsed transition relation 〈E1 | C1〉
p:T �� 〈E2 | C2〉 be-

tween two configurations is defined iff

(i) there exists a configuration 〈E′
1 | C′

1〉 such that 〈E1 | C1〉
p:t �� 〈E′

1 | C′
1〉,

(ii) 〈E′
1 | C′

1〉
1:t1 �� . . . 〈E′

2 | C′
2〉

1:tn �� 〈E2 | C2〉 is deterministic,

(iii) 〈E1 | C1〉
p:t �� 〈E′

1 | C′
1〉 . . .

1:tn−1 �� 〈E′
2 | C′

2〉 is maximal low stable,

(iv) and T = t +
n∑

i=1

ti.

4 Bisimulation and Timing Leaks

Observing the low variables and the running time separately is not the same
as observing them together; a correlation between the two random variables
(probability and time) has to be taken into account (cf. Section 2). A naive
probabilistic extension of the Γ -bisimulation notion introduced in [3] might not
take this into account. More precisely, this may happen if time and probability
are treated as two independent aspects which are observed separately in a mutual
exclusive way. According to such a notion an attacker must set up two different
covert channels if he/she wants to exploit possible interference through both the
probabilistic and the timing behaviour of the system. The notion of bisimulation
we introduce here allows us to define a stronger security condition: an attacker
must be able to distinguish the probabilities that two programs compute a given

Quantifying Timing Leaks and Cost Optimisation 87

result in a given execution time. This is obviously different from being able to
distinguish the probability distributions of the results and the running time.

Probabilistic bisimulation was first introduced in [8] and refers to an equiv-
alence on probability distributions over the states of the processes. This latter
equivalence is defined as a lifting of the bisimulation relation on the support sets
of the distributions, namely the states themselves.

An equivalence relation ∼ ⊆ S × S on S can be lifted to a relation ∼∗ ⊆
Dist(S) ×Dist(S) between probability distributions on S via (cf [5, Thm 1]):
µ ∼∗ ν iff ∀[s] ∈ S/∼ : µ([s]) = ν([s]). It follows that ∼∗ is also an equivalence
relation ([5, Thm 3]). For any equivalence relation ∼ on the set Conf of con-
figurations, we define the associated low equivalence relation ∼L by c1 ∼L c2 if
c1 ∼ c2 and c1 =L c2. Obviously ∼L is again an equivalence relation. We can lift
a low equivalence ∼L to (∼L)∗ which we simply denote by ∼∗

L.

Definition 4. Given a security typing Γ , a probabilistic time bisimilarity ∼ is
the largest symmetric relation on configurations such that whenever c1 ∼ c2, then
c1 =⇒ χ1 implies that there exists χ2 such that c2 =⇒ χ2 and χ1 ∼∗

L χ2.
We say that two configurations are probabilistic time bisimilar or PT-bisimilar,

c1 ∼ c2, if there exists a probabilistic time bisimilarity relation in which they are
related.

This definition generalises the one in [3] which only applies to deterministic
transition systems. Note that there is a difference between ∼∗

L= (∼L)∗ and
(∼∗)L; in fact, only the former is able to take into account the correlation between
time and low variables, while the latter would be a straightforward generalisation
of the time bisimulation in [3] which is unable to model such a correlation.

We now exploit the notion of bisimilarity introduced above in order to intro-
duce a security property ensuring that a system is confined against any combined
attacks based on both timing and probabilistic covert channels.

Definition 5. A pWhile program P is probabilistic time secure or PT-secure
if for any set of initial states E and E′ such that EL = E′

L, we have 〈E, P 〉 ∼
〈E′, P 〉.

5 Computing Approximate Bisimulation

The papers [9,10] introduce an approximate version of bisimulation and confine-
ment where the approximation can be used as a measure ε for the information
leakage of the system under analysis. The quantity ε is formally defined in terms
of the norm of a linear operator representing the partition induced by the ‘min-
imal’ bisimulation on the set of the states of a given system, i.e. the one min-
imising the observational difference between the system’s components. We show
here how to compute a non-trivial upper bound δ to ε by essentially exploit-
ing the algorithmic solution proposed by Paige and Tarjan [11] for computing
bisimulation equivalence. This was already adapted to PTS’s in [12], where it
was used for constructing a padding algorithm as part of a transformational ap-
proach to the timing leaks problem. In this approach the computational paths

88 A. Di Pierro, C. Hankin, and H. Wiklicky

of a program are transformed so as to make it perfectly secure by eliminating
any possible timing covert channel while preserving its I/O behaviour.

The algorithm we present here is an instantiation of that algorithm where the
abstract labels are replaced by the statements in a concrete language (pWhile)
and their execution times. Moreover, instead of transforming the execution trees,
our algorithm accumulates the information about the difference between their
transition probabilities and uses this information to compute an upper bound δ
to the maximal information leakage of the given program.

5.1 Computing δ for PT-Bisimulation

Algorithm CompDelta in Table 1 describes the procedure for computing δ used
inside the algorithm QLumping on the lhs of Table 1; this latter constructs
a lumping (i.e. a PT-bisimulation equivalence) of two tPTS’s T1 and T2 with
states S1 and S2, respectively. QLumping follows the algorithmic paradigm for
partition refinement introduced by Paige and Tarjan in [11]. The Paige-Tarjan
algorithm constructs a partition of a state space Σ which is stable for a given
transition relation →. It is a well-known result that this partition corresponds
to a bisimulation equivalence on the transition system (Σ, →). The refinement
procedure used in the algorithm consists in splitting the blocks in a given parti-
tion P by replacing each block B ∈ P with B∩preS and B \preS, where S ⊆ Σ
and pre(X) = {s ∈ Σ | s → x for some x ∈ X}.

In order to check whether two execution trees T1 and T2 in our tPTS model
are PT-bisimilar, we apply this refinement technique to the set of states formed
by the disjoint union of the states in T1 and T2. The strategy of QLumping is
as follows: the lumping procedure QLumping(T1, T2) works iteratively layer by
layer starting from the leaves layer, and splits the blocks in the current partition
restricted to the current layer. The procedure CompDelta(L1, L2) computes for
each two layers L1 and L2, the maximal difference ‖χ(s1)−χ(s2)‖∞ between the
probabilities to get from states in T1 ∩ L1 and T2 ∩ L1, respectively, into states
of layer L2. In the original lumping procedure this determines a splitting of the

Table 1. Algorithms QLumping and CompDelta

1: procedure QLumping(T1, T2)
2: δ ← 0, n ← 0 and P ← {S1 ∪ S2}
3: while n ≤ Height(T1 ⊕ T2) do
4: S ← {B ∩ CutOff(T1 ⊕ T2, n)) | B ∈ P}
5: while S 	= ∅ do
6: choose B ∈ S, S ← S \ B
7: P ← Splitting(B, P)
8: end while
9: L1 ← Layer(T1, n), L2 ← Layer(T2, n)

10: CompDelta(L1, L2)
11: n ← n + 1
12: end while
13: end procedure

1: procedure CompDelta(L1, L2)
2: while L1 	= ∅ do
3: choose s1 ∈ L1, L1 ← L1 \ s1

4: β ← ∞
5: L ← L2

6: while L2 	= ∅ do
7: choose s2 ∈ L, L ← L \ s2

8: β ← min(β, ‖χ(s1) − χ(s2)‖∞)
9: end while

10: δ ← max(δ, β)
11: end while
12: end procedure

Quantifying Timing Leaks and Cost Optimisation 89

states in layer L1. This value is stored in a variable β and compared with the
current value of a variable δ which contains the maximal difference up to that
iteration. When the lumping algorithm terminates (that is when we have reached
the root of the union tree), one of the following situations will occur: either the
roots of T1 and T2 belong to the same class in the constructed partition (i.e.
T1 and T2 are PT-bisimilar) or not. In the latter case δ will contain a maximal
difference in the transition probabilities of the two processes which makes them
non-bisimilar. This is therefore an estimate of the information leakage of the
system. Note that, by construction, δ will be zero in the first case.

The strategy for constructing the lumping described above determines the
coarsest partition of a set which is stable wrt a given relation, that is in our case
the coarsest PT-bisimulation equivalence. Obviously, this does not necessarily
coincide with the ‘minimal’ one corresponding to the quantity ε defined in [9].
Thus, δ will be in general only a safe approximation, namely an upper bound to
the capacity of probabilistic timing covert channel defined by ε. The following
proposition is therefore a corollary of Proposition 45 in [9] stating a similar
assertion for ε-bisimulation.

Proposition 1. P is PT-secure iff for any pair of initial configurations c1, c2

the corresponding execution trees T1 and T2 are such that QLumping(T1, T2)
returns δ = 0.

5.2 A Weighted Version: δ′

The actual value of δ is determined by the way we compute the best match be-
tween the joint probability distributions χ(s1) and χ(s2) in line 8 of QLumping.
In order to compute δ we use the supremum norm, ‖ · ‖∞, between two distribu-
tions, i.e. the largest absolute difference between corresponding entries in χ(s1)
and χ(s2), respectively. In other words, we try to identify a class of states C (in
the layer below) and a time interval t such that the probability of reaching this
class in that time from s1 differs maximally from the one for s2.

One can argue that this is a fair approach as we treat all classes and time
labels the same way. However, it might be useful to develop a measure which
reflects the fact that certain times and classes are ‘more similar’ than others.

From the point of view of the attacker, such a measure would encode her/his
ability in detecting similarity as given by the nature and the precision of the
instruments he/she is actually using. For example, suppose it is possible to reach
the same class C from s1 and s2 with different times t1 and t2, such that the
corresponding probabilities determine δ (i.e. we have the maximal difference in
this case). However, we might in certain circumstances also want to express the
fact that t1 and t2 are more or less similar, e.g. for t1 = 10 and t2 = 10.5 we
might want a smaller δ′ than for t1 = 1 and t2 = 100. In terms of the attacker,
this means that we make our estimate dependent on the actual power of the
time detection instrument that he/she possesses.

In order to incorporate similarity of times and/or classes we need to modify
the way we determine the best match in line 8 of CompDelta(L1, L2). Instead

90 A. Di Pierro, C. Hankin, and H. Wiklicky

of determining the norm between χ(s1) and χ(s2) we can compute a weighted
version as:

β ← min(β, ‖ω · χ(s1)− ω · χ(s2)‖∞) = min(β, ‖ω · (χ(s1)− χ · (s2))‖∞),

where ω re-scales the entries in χ(s1) and χ(s2) so as to reflect the relative impor-
tance of certain times and/or classes. Note that “·” denotes here the component-
wise and not the matrix multiplication: (ω · χ)tC = ωtCχtC . If, for example, an
attacker is not able to detect the absolute difference between times but can only
measure multiplicities expressing approximative proportions, we could re-scale
the χ’s via ωtC = log(t).

In the following we will use a weighted version δ′ which reflects the similarity
of classes. The idea is to weight according to the “replaceability” of a class. To
this purpose we associate to every class (in the layers below) a matching measure
µ(C) = minC �=C′ δ′(C, C′), i.e. we determine the δ′ between a (sub)tree with a
root in the class C in question and all (sub)trees with roots in any of the other
classes C′. We can take any representative of the classes C and C′ as these
are by definition bisimilar. The measure µ indicates how easy it is to replace
class C by another one, or how good/precise is the attacker in distinguishing
successor states. Then δ′ is simply the weighted version of δ as described above
with ωtC = µ(C). Note that there is no problem with the fact that δ′ is defined
recursively as we always know the δ′ in the layers below before we compute δ′

in the current layer.

Example 2. In order to illustrate how δ and δ′ quantify the difference between
various execution trees, let us consider the following four trees.

•1
1 ��
•2
1 ��
•3
1 ��
•3

•11
2

�����
�

1
2

		���
�

•2
1 ��

•3
1 ��

•4 •5
1 ��
•6

•1
1 ��
•21

2

�����
�

1
2

		���
�

•3 •4
1 ��
•5

•1
1 ��
•2
1 ��
•31

2

�����
�

1
2

		���
�

•4 •5
We abstract from the influence of different transition times and individual state
labels, i.e. we assume that t = 1 for all transitions and that all states are labelled
with the same label.

If we compute the δ and δ′ values between all the pairs of systems we get the
following results:

δ T1 T2 T3 T4

T1 0.000 0.500 1.000 0.000
T2 0.500 0.000 1.000 0.500
T3 1.000 1.000 0.000 1.000
T4 0.000 0.500 1.000 0.000

δ′ T1 T2 T3 T4

T1 0.000 0.250 0.125 0.000
T2 0.250 0.000 0.125 0.250
T3 0.125 0.125 0.000 0.125
T4 0.000 0.250 0.125 0.000

From this we see that δ and δ′ are symmetric, i.e. the difference between two
systems is symmetric; that every system is bisimilar with itself, i.e. δ = 0 = δ′

(as we have an empty diagonal); and that the difference between two systems is
between zero and one with values in between very well possible.

Quantifying Timing Leaks and Cost Optimisation 91

6 Cost Analysis

Our aim is to introduce “cost factors” into computer security. Instead of trying
to achieve perfect security we will look at the trade-off between costs of security
counter measures – such as increased average running time – and the improve-
ment in terms of security, which we can measure via the δ or the weighted δ′

introduced above.

6.1 Probabilistic Transformation

In [3] Agat introduces a program transformation to remove covert timing chan-
nels (timing leaks) from programs written in a sequential imperative program-
ming language. He uses a language of security types with two security levels
that is based on earlier work by Volpano and Smith [13,1]. Whilst Volpano and
Smith restrict the condition in both while-loops and if-commands to being of
the lowest security level, Agat allows the condition in an if-command to be high
security providing that an external observer cannot detect which branch was
taken. He shows that if a program is typeable in his system, then it is secure
against timing attacks. This result depends critically on a notion of bisimula-
tion; an if-command with a high security condition is only typeable if the two
branches are bisimilar. Agat’s notion of bisimilarity is timing aware and based
on a notion of low-equivalence which ensures stepwise non-interference. He does
not give an algorithm for bisimulation checking.

If a program fails to type, Agat presents a transformation system to remove
the timing leak. The transformation pads the branches of if-commands with high
security conditions with dummy commands. The objective of the padding is that
both branches end up with the same timing and thus become indistinguishable
by an external observer. The transformation utilises the concept of a low-slice:
for a given command C, its low-slice CL has the same syntactic structure as
C but only has assignments to low security variables; all assignments to high
security variables and branching on high security conditions are replaced by skip
commands of appropriate duration. The transformation involves extending the
branches in a high security if-command by adding the low-slice from the other
branch. The effect of this transformation is that the timing of the execution of
both branches are the same and equal to the sum of timing of the two branches
in the untransformed program. Agat demonstrates that the transformation is
semantically sound and that transformed programs are secure (correctness).

Rather than just adding the low slice from the other branch to each branch
of a high security conditional, we transform each branch to make a probabilistic
choice between its padded and untransformed variant. This allows us to trade-off
the increased run-time of the padded program versus the vulnerability to attack
of the untransformed program. The transformation described is just one on a
whole spectrum of probabilistic transformations – at the other extreme we could
probabilistically decide whether or not to execute each command in the low
slice. All the formal transformation rules for probabilistic padding can be found
in the full version [7]. The only rule which differs from the original semantics

92 A. Di Pierro, C. Hankin, and H. Wiklicky

in [3] is the rule (IfH) given below. Here we replace – provided certain typing
conditions are fulfilled – the branches of an if statement not just by the correctly
“padded” version as in [3]; instead we introduce in every branch a choice such
that the secure replacement will be executed only with probability p while with
probability 1− p the original code fragment will be executed.

Γ ≤ e : BoolH Γ C1 ↪→ D1 | D1L Γ C2 ↪→ D2 | D2L ge(D1L) = ∅ ge(D2L) = ∅

Γ if (e) then C1 else C2 ↪→ if (e) then (choosep D1 or D1; D2L) else
(choosep D2 or D1L; D2) | skipIf e (D1L; D2L)

6.2 An Example

Our probabilistic version of Agat’s padding algorithm allows us to obtain partially
fixed programs. Depending on the parameter p with which we introduce empty
low slices to obfuscate the timing leaks we can determine the (average) execution
time of the fixed program in comparison with the improvement in security.

Agat presents in his paper [3] an example which itself is based on Kocher’s
study [2] of timing attacks against the RSA algorithm. In order to illustrate our
approach we simplify the example slightly: The insecure program agat we start
with is depicted on the left side in Table 2. The fully padded version Agat’s algo-
rithm produces, fagat, is on the right hand side of Table 2 (to keep things simple
we omit Agat’s empty statements like skipAsn s s; as skip as well as s:=s can
be used just to ‘spend time’ without having any real effect on the store we can
use e.g. s:=s in place of Agat’s skipAsn s s). The program, pagat, presented in
the middle of Table 2 is the result of probabilistic padding: The original program
agat is transformed in such a way that the compensating statements, i.e. low
slices, are executed only with probability p while with probability q = 1− p the
original code is executed. For p = 0 we have the same behaviour as the original
program agat while for p = 1 this program behaves in the same way as Agat’s
fully padded version fagat.

In our concrete experiments we used the following assumptions. The variable
i can take values in {1, .., 4} while k is a three dimensional array with values in
{0, 1} – nothing is concretely assumed about s. The variables k, representing a
secret key, and s have security typing H , while i is the only low variable which
can be observed by an attacker. We implemented this example using (arbitrary)
execution times: tasn = 3 (assign time), tbr = 2 (test/branch time), and tskip = 1
(skip time), and tch = 0 (choice time).

The abstract semantics for the pagat program – which only records choice
points and the moments in time when the low variable changes its value – pro-
duces the following execution trees if we start with keys k=011 and k=010:

•
1:5

�� •
q:4

p:7

�� •
1:2

�� •
q:6

p:7

�� •
1:2

�� •
q:6

p:7

�� •
1:1

�� •

•
1:5

�� •
q:4

p:7

�� •
1:2

�� •
q:6

p:7

�� •
1:2

�� •
q:4

p:7

�� •
1:1

�� •

Quantifying Timing Leaks and Cost Optimisation 93

Table 2. Versions of Agat’s Program: agat,pagat, and fagat

i := 1;
while i<=3 do
if k[i]==1 then

s := s;
else

skip;
fi;
i := i+1;
od;

i := 1;
while i<=3 do
if k[i]==1 then
choose p: s := s; skip
or q: s := s
ro

else
choose p: skip
or q: s := s; skip
ro

fi;
i := i+1;
od;

i := 1;
while i<=3 do
if k[i]==1 then
s := s; skip

else
s := s; skip

fi;
i := i+1;

od;

0 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10 1

28

29

30

31

32

33

34

35

36

37

38

0 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1. Running Time t(p) and Security Level δ′(p) as Functions of p

One can easily see from this how probabilistic padding influences the behaviour
of a program: For every bit in the key k – i.e. every iteration – we have a choice
between executing the original code with probability q = 1− p or the ‘safe’ code
with probability p. The new code always takes the same time (in our case 7
ticks) while the original code’s execution time depends on whether k[i] is set
or not (either 4 or 6 time steps in our case). Clearly, for p = 0 we get in every
iteration a different execution time, depending on the bit k[i], and thus can
deduce the secrete value k by just observing the execution times. However, as
the execution time is always the same for the replacement code, it is impossible
to do the same for p = 1. For values of p between 0 and 1, the (average) execution
times for k[i] = 0 and k[i] = 1 become more and more similar. This means in
practical terms that the attacker has to spend more and more time (i.e. repeated
observations of the program) in order to determine with high confidence the exact
execution time and thus deduce the value of k[i] (cf. e.g. [9]).

The price we have to pay for increased security, i.e. indistinguishability of
behaviours, is an increased (average) execution time. The graph on the left in
Figure 1 shows how the running time (vertical axis) increases in dependence of

94 A. Di Pierro, C. Hankin, and H. Wiklicky

the padding probability p (horizontal axis) for the eight execution trees we have
to consider in this example, i.e. for k = 000, k = 001, k = 010, etc. Depending
on the number of bits set in k we get four different curves which show how, for
example for k = 000 the running time increases from 29 time steps (for p = 0,
i.e. agat program) to 38 (for p = 1, i.e. fagat program).

We can employ the bisimilarity measures δ and δ′ in order to determine the se-
curity of the partially padded program. For this we compute using our algorithm
δ(ki, kj) and δ′(ki, kj) for all possible keys, i.e. i, j = 0, . . . 7. It turns out that
δ = 1 for all values of p < 1 and any pair of keys ki and kj with i �= i; only for
p = 1 we get, as one would expect, δ = 0 for all key pairs. The weighted measure
δ′ is more sensitive. The δ′(ki, ki)’s are, of course, all zero as every execution
tree is bisimilar to itself. The other entries however are different from 0 and 1
and reflect the similarity between the two keys and thus the resulting execution
trees. We get for example for p = 0.5 the following values for δ′(ki, ki):

δ′ 000 001 010 011 100 101 110 111
000 0.000 0.125 0.250 0.125 0.500 0.125 0.250 0.125
001 0.125 0.000 0.125 0.250 0.125 0.500 0.125 0.250
010 0.250 0.125 0.000 0.125 0.250 0.125 0.500 0.125
011 0.125 0.250 0.125 0.000 0.125 0.250 0.125 0.500
100 0.500 0.125 0.250 0.125 0.000 0.125 0.250 0.125
101 0.125 0.500 0.125 0.250 0.125 0.000 0.125 0.250
110 0.250 0.125 0.500 0.125 0.250 0.125 0.000 0.125
111 0.125 0.250 0.125 0.500 0.125 0.250 0.125 0.000

If we plot the development of δ′ as a function of p we observe only three patterns
as depicted in the right graph in Figure 1. In all three cases δ′ decreases from
an original value 1 to 0, but in different ways.

In analysing the trade-off between increased running time and security we
need to define a cost function. For example, one could be faced with a situation
where a certain code fragment needs to be executed in a certain maximal time,
i.e. there is a (cost) penalty if the execution takes longer than a certain number
of micro-seconds. In our case we will consider a very trivial cost function c(p) =
6δ′(p) + t(p) with δ′(p) and t(p) the average δ′ between all possible execution
trees and t the average running time. The following diagram depicts how c(p),
δ′(p) and t(p) depend on the padding parameter p.

0 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10 1

t(p)

δ′(p)

c(p)

One can argue about the practical relevance of our particular cost function
c. Nevertheless, this example illustrates already nicely the non-linear nature of

Quantifying Timing Leaks and Cost Optimisation 95

security cost optimisation: The optimal, i.e. minimal, cost is reached in this case
obviously for p = 0.5, i.e. keeping the cost of security counter measures in mind
it is better to use a “half-fixed” program rather than a completely safe one.

7 Related and Further Work

The idea of defining a secure system via the requirement that an attacker must
be unable to observe different behaviours as a result of different secrets – i.e. the
system “operates in the same way” whatever value a secret key has – goes back
at least to the work of Goguen and Meseguer [14].

This led in a number of settings to formalisations of security concepts such
as “non-interference” via various notions of behavioural equivalencies (see e.g.
[15,16]). One of the perhaps most prominent of these equivalence notions, namely
bisimilarity, plays an important role in the context of security of concurrent
systems but also found application for sequential programs such as in Agat’s
work (as the interaction between system and attacker can be modelled as a
parallel composition).

In order to allow for a decision theoretic analysis of security counter-measures
and associated efforts it appears to be desirable to introduce a “quantitative”
notion of the underlying behavioural equivalence. In the case of bisimilarity a first
step was the introduction of the notion of probabilistic bisimulation by Larson
and Skou [8]. However, this notion turns out to be still too strict and a number
of researchers developed “approximate” versions; among them we just name
the approaches by Desharnais et.al. [17,18] and van Breugel [19] and our work
[10,20] (an extensive bibliography on this issue can be found in [21]). We based
this current paper on the latter approach because it allows for an implementation
of the semantics of pWhile via linear operators, i.e. matrices, and an efficient
computation of δ and δ′ using standard software such as octave [22].

Further research will be needed in order to clarify the relation between our
measures δ and existing notions of approximate bisimilarity mentioned above,
e.g. the ε in [9]. Furthermore, we also would like to shed more light on the
relationship between our notion and information theoretic concepts used in the
work of, for example Clark et.al. [23] and Boreale [24].

References

1. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: POPL 1998, pp. 355–364 (1998)

2. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

3. Agat, J.: Transforming out timing leaks. In: POPL 2000, pp. 40–53 (2000)
4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-

ence 126(2), 183–235 (1994)
5. Jonsson, B., Yi, W., Larsen, K.: Probabilistic extentions of process algebras. In:

Handbook of Process Algebra, pp. 685–710. Elsevier Science, Amsterdam (2001)

96 A. Di Pierro, C. Hankin, and H. Wiklicky

6. Stirzaker, D.: Probability and Random Variables. Cambridge University Press,
Cambridge (1999)

7. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantifying timing leaks and cost optimi-
sation. Technical Report arXiv:0807.3879 (2008)

8. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94, 1–28 (1991)

9. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340(1), 3–56 (2005)

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate
process equivalences. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 508–522. Springer, Heidelberg (2003)

11. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of
Computation 16(6), 973–989 (1987)

12. Di Pierro, A., Hankin, C., Siveroni, I., Wiklicky, H.: Tempus fugit: How to plug it.
Journal of Logic and Algebraic Programming 72(2), 173–190 (2007)

13. Volpano, D., Smith, G.: Confinement properties for programming languages.
SIGACT News 29(3), 33–42 (1998)

14. Goguen, J., Meseguer, J.: Security Policies and Security Models. In: IEEE Sympo-
sium on Security and Privacy, pp. 11–20 (1982)

15. Ryan, P., Schneider, S.: Process algebra and non-interference. Journal of Computer
Security 9(1/2), 75–103 (2001)

16. Focardi, R., Gorrieri, R.: Classification of Security Properties (Part I). In: Focardi,
R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Hei-
delberg (2001)

17. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: Metrics for labeled
markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 258–273. Springer, Heidelberg (1999)

18. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue
of weak bisimulation for probabilistic processes. In: LICS 2002, pp. 413–422 (2002)

19. van Breugel, F.: A behavioural pseudometric for metric labelled transition systems.
In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155.
Springer, Heidelberg (2005)

20. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate Non-Interference. Journal of
Computer Security 12(1), 37–81 (2004)

21. ABE 2008: Concur workshop on Approximate Behavioural Equivalences (2008),
www.cse.yorku.ca/abe08

22. Eaton, J.W.: Octave. Technical report, Free Software Foundation, Boston, MA
23. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and

polymorphic types. Journal of Logic and Computation 15(2), 181–199 (2005)
24. Boreale, M.: Quantifying information leakage in process calculi. In: Bugliesi, M.,

Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
119–131. Springer, Heidelberg (2006)

www.cse.yorku.ca/abe08

Method for Detecting Vulnerability to

Doubling Attacks

Chong Hee Kim� and Jean-Jacques Quisquater

UCL Crypto Group, Université Catholique de Louvain, Belgium,
Place du Levant, 3, Louvain-la-Neuve, 1348, Belgium

{chong-hee.kim,jean-jacques.quisquater}@uclouvain.be

Abstract. The doubling attack by Fouque and Valette and its analogue,
the relative doubling attack, by Yen et al. are a new kind of simple power
analysis that can be applied to a binary double-and-add algorithm in a
scalar multiplication (or a multiply-and-square algorithm in a modular
exponentiation). The doubling attack is very powerful because it requires
just two queries to the device to find the secret key. The original dou-
bling attack broke the binary double-and-add always algorithm and the
relative doubling attack succeeded in breaking the Montgomery ladder.
Fouque and Valette told that the doubling attack was applicable only
to downward algorithms, i.e., “left-to-right” implementations of a binary
modular exponentiation and recommended to use upward “right-to-left”
implementations. On the contrary, Yen et al. proposed a new downward
algorithm and asserted that it was secure against doubling attacks. This
kind of controversy comes from the lack of analysis of the fundamen-
tals of the doubling attacks. Therefore we analyze the characteristic of
the doubling attack and propose a method to easily test a given algo-
rithm’s security against doubling attacks. Furthermore, we show Yen et
al.’s scheme is still vulnerable to the doubling attack.

Keywords: Doubling attack, relative doubling attack, modular expo-
nentiation, simple power analysis (SPA), smart card.

1 Introduction

We can easily find cryptographic hardware devices such as smart cards every-
where in our daily lives from banking cards to SIM (Subscriber Identity Module)
cards for GSM (Global System for Mobile communications). One of the main
reasons why these cryptographic hardware devices are widely used is that they
are believed to be tamper-resistant. This is why they host the implementation of
many cryptographic protocols. However a recent development of physical attacks
shows that a naive implementation of cryptographic protocols does not provide
security anymore.

Side channel attacks using side channel information such as a computational
timing and a power consumption of a device initiated by Kocher [12,11] are

� Supported by Walloon Region, Belgium / E.USER project.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 97–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 C.H. Kim and J.-J. Quisquater

now well studied. The simple power analysis (SPA) uses one or a few collected
power consumption profiles of a device executing an algorithm and tries to find
information on the secret key. A variant of SPA, called “doubling attack,” was
proposed by Fouque and Valette [6]. It targets an exponentiation algorithm or a
scalar multiplication that is central in the implementation of public-key cryptog-
raphy such as RSA, Diffie-Hellman, DSA, or ElGamal. The doubling attack is
very powerful since it requires just two power consumption profiles with chosen
messages to find the secret key. In this attack we assume that the adversary
mounts a chosen ciphertext attack. This is a valid assumption in a side channel
scenario, since a randomized padding avoiding chosen ciphertext attacks, such
as OAEP [1,2], is checked after the running of the decryption process. As a
consequence the exponentiation or multiplication is always performed and side
channel information can be obtained.

The first victim to the doubling attack was the left-to-right square-and-multiply
always algorithm [6]. Fouque and Valette said that the doubling attack only
worked for “left-to-right”, i.e., downward algorithm and recommended to use
“right-to-left” algorithm combined with the appropriate countermeasures. Un-
fortunately they did not present the fundamental principle of the doubling at-
tack, which caused a variant of the doubling attack by Yen et al. [15]. They
proposed so called “relative doubling attack” and showed that the Montgomery
ladder algorithm [10] was vulnerable. Furthermore they proposed a new left-to-
right exponentiation algorithm and asserted it was secure against the doubling
attacks even though it is a left-to-right implementation.

This kind of controversy comes from a lack in the study on the fundamental
principle of the doubling attack. Therefore we analyze the characteristic of the
doubling attack and propose a method to easily check a given algorithm’s security
against doubling attacks. With this method we show why the left-to-right always
algorithm and the Montgomery ladder algorithm are vulnerable and the right-
to-left algorithm is secure. Furthermore we show that Yen et al.’s proposed
algorithm is also vulnerable to the doubling attack. Therefore our method can
be a good measure to check the security against doubling attacks when someone
devises a new exponentiation algorithm.

2 Exponentiation Algorithms and Doubling Attack

A modular exponentiation is the main operation in RSA or the discrete logarithm
problem. In the elliptic curve setting, the corresponding operation is a scalar
multiplication. From an algorithmic point of view, those two operations are very
similar; the only difference is the underlying group structure. We consider the
problem of computing a modular exponentiation in this paper. However all what
we state can be easily transposed to a scalar multiplication.

2.1 Exponentiation Algorithms and Simple Power Analysis

Although numerous exponentiation algorithms have been developed (see [9] for
a survey), practical solutions for devices with constrained computation and

Method for Detecting Vulnerability to Doubling Attacks 99

storage capabilities (e.g., smart card) are usually restricted to the square and
multiply algorithms (double and add algorithm in a point scalar multiplication).
Let

∑n−1
i=0 di · 2i with di ∈ {0, 1} be the binary expansion of exponent d. There

are two versions of square and multiply algorithms.
The left-to-right (MSB-to-LSB) binary algorithm as shown in Fig. 1 is espe-

cially preferable to implementations in smart cards because this algorithm needs
only one temporary memory S[0] if the input data M is stored inside the smart
cards. Contrary to the left-to-right binary algorithm, the right-to-left binary al-
gorithm starts the computation from the least significant bit of the exponent as
shown in Fig. 2. Furthermore it requires two temporary memories S[0] and S[1].

INPUT: M 	= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N

1. S[0] ← 1
2. for i from n − 1 to 0 do
3. S[0] ← S[0]2 mod N
4. if di = 1 then
5. S[0] ← S[0] · M mod N
6. return S[0]

Fig. 1. Left-to-right binary algorithm

INPUT: M 	= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N

1. S[0] ← 1, S[1] ← M
3. for i from 0 to n − 1 do
4. if di = 1 then
6. S[0] ← S[0] · S[1] mod N
7. S[1] ← S[1]2 mod N
8. return S[0]

Fig. 2. Right-to-left binary algorithm

Simple power analysis (SPA) exploits distinct patterns from a single power
trace [12]. The basic left-to-right binary algorithm of Fig. 1 and right-to-left
binary algorithm of Fig. 2 are vulnerable to SPA. Because depending on the
value of a bit di, a multiplication operation is performed. Therefore the attacker
can easily compute the value of the secret key with the observation of one power
consumption profile. By balancing the operations regardless of the value of the
secret bit di you can prevent SPA. A simple example to prevent SPA is shown
in Fig. 3.

2.2 Doubling Attack

Fouque and Valette presented a new kind of power analysis attack, so called
doubling attack, on the “left-to-right” exponentiation [6]. By querying two chosen
messages, the attacker can recover all the secret data. The idea of the attack is
based on the fact that, even if an adversary is not able to tell which computation
is done by the card, he can at least detect when the card does twice the same
operation. More precisely, if the card computes A2 and B2, the attacker is not
able to guess the value of A nor B but he is able to check if A = B.

Let us consider the left-to-right algorithm described in Fig. 3. Let us denote
the partial sums S[0]k(M) as the intermediate value stored in S[0] after k + 1
iterations when the input is M . Then we have

100 C.H. Kim and J.-J. Quisquater

INPUT: M 	= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N

1. S[0] ← 1
2. for i from n − 1 to 0 do
3. S[0] ← S[0]2 mod N

4. S[di] ← S[di] · M mod N
5. return S[0]

Fig. 3. Left-to-right square-and-multiply
always algorithm

INPUT: M 	= 0, d = (dn−1, ..., d0)2, N

OUTPUT: Md mod N

1. S[0] ← 1, S[1] ← M
2. for i from n − 1 to 0 do

3. S[di] ← S[di] · S[di] mod N
4. S[di] ← S[di]

2 mod N
5. return S[0]

Fig. 4. Montgomery ladder algorithm

S[0]k(M) = (M)
Pk

i=0 dn−1−i2
k−i

= (M2)
Pk−1

i=0 dn−1−i2
k−1−i

· (M)dn−1−k

= S[0]k−1(M2) · (M)dn−1−k .

The intermediate result with M at step k will be equal to the intermediate result
with M2 at step k− 1 if and only if dn−1−k is null. We just need to compare the
doubling computation at step k + 1 for M and at step k for M2 to recover the
bit dn−1−k. If both computations are identical, dn−1−k is equal to 0 otherwise
dn−1−k is equal to 1. Therefore, with only two requests to the card, it is possible
to recover all the bits of the secret exponent.

Let us consider an example. Let d = 78 = 1001110(2) and focus on the dou-
bling operations of Fig. 3. As shown in Table 1, when di = 0 the doubling
operation for M2 at step i and that for M at step i + 1 are the same.

The doubling attack enables recovering the secret key decryption of RSA [14],
the key decryption of ElGamal [5], or the secret key of the Diffie-Hellman authen-
tication system. It only focuses on the decryption cases. Since the randomized
padding avoiding chosen ciphertext attacks, such as OAEP [1,2], is checked after
the running of the decryption process. Therefore the attacker can still collect
the necessary power traces.

2.3 Relative Doubling Attack

In 2002, Joye and Yen published a safe error and SPA resistant exponentiation
algorithm [10]. As shown in Fig. 4, it does not have any redundant operations.
If a fault is induced at any moment of the exponentiation then the result will
always be corrupted. Thus, it is impossible to obtain a safe error. Furthermore
it performs a multiplication and a squaring regardless of the value of the secret
bit, which prevents SPA.

In 2005, Yen et al. showed that the Montgomery ladder algorithm was vul-
nerable to a variant of the doubling attack, so called the relative doubling at-
tack [15]. The assumption is basically the same as what is considered in the

Method for Detecting Vulnerability to Doubling Attacks 101

Table 1. Example of doubling attack

i di Md (M2)d

6 1 S[0] ← (1)2 S[0] ← (1)2

S[0] ← 1 × M S[0] ← 1 × M2

5 0 S[0] ← (M)2 S[0] ← (M2)2

S[1] ← M2 × M S[1] ← M4 × M2

4 0 S[0] ← (M2)2 S[0] ← (M4)2

S[1] ← M4 × M S[1] ← M8 × M2

3 1 S[0] ← (M4)2 S[0] ← (M8)2

S[0] ← M8 × M S[0] ← M16 × M2

2 1 S[0] ← (M9)2 S[0] ← (M18)2

S[0] ← M18 × M S[0] ← M36 × M2

1 1 S[0] ← (M19)2 S[0] ← (M38)2

S[0] ← M38 × M S[0] ← M76 × M2

0 0 S[0] ← (M39)2 S[0] ← (M78)2

S[1] ← M78 × M S[1] ← M156 × M2

Return M78 M156

doubling attack [6]; an adversary can distinguish collision of power trace seg-
ments (within a single or more power traces) when the smart card performs twice
the same computation even if the adversary is not able to tell exactly which com-
putation is done. An adversary is assumed to be able to detect the collision of
A2 mod N and B2 mod N if A = B even though A and B are unknown.

The relative doubling attack uses an approach to derive the private key in
which the relationship between two adjacent private key bits can be obtained
as either di = di−1 or di �= di−1. An example of assuming the private exponent
d to be 75 = (1, 0, 0, 1, 0, 1, 1)2 and two related input data to be M and M2

respectively, is shown in Table 2. The computational process of raising Md and
(M2)d reveals the fact that given d0 = 1 and the observation of collision of the
iteration d0 of Md and iteration d1 of (M2)d will lead to the result of d1 =
d0 = 1.

The original doubling attack (against the square-and-multiply always algo-
rithm) focuses on deriving the private key bit di by checking whether di = 0. So,
the original doubling attack tries to obtain the knowledge of absolute value of
each di. On the contrary, the relative doubling attack (against the Montgomery
ladder algorithm) focuses on deriving the knowledge of whether di = di−1 (rela-
tionship between every two adjacent key bits), but not the knowledge of either
di or di−1 directly.

102 C.H. Kim and J.-J. Quisquater

Table 2. Example of relative doubling attack

i di Md (M2)d

6 1 S[0] ← 1 × M S[0] ← 1 × M2

S[1] ← (M)2 S[1] ← (M2)2

5 0 S[1] ← M2 × M S[1] ← M4 × M2

S[0] ← (M)2 S[0] ← (M2)2

4 0 S[1] ← M3 × M2 S[1] ← M6 × M4

S[0] ← (M2)2 S[0] ← (M4)2

3 1 S[0] ← M4 × M5 S[0] ← M8 × M10

S[1] ← (M5)2 S[1] ← (M10)2

2 0 S[1] ← M10 × M9 S[1] ← M20 × M18

S[0] ← (M9)2 S[0] ← (M18)2

1 1 S[0] ← M18 × M19 S[0] ← M36 × M38

S[1] ← (M19)2 S[1] ← (M38)2

0 1 S[0] ← M37 × M38 S[0] ← M74 × M76

S[1] ← (M38)2 S[1] ← (M76)2

Return M75 M150

3 Fundamentals of Doubling Attack

Although the doubling attack and the relative doubling attack succeeded in
breaking two exponentiation algorithms, there is no fundamental principle or
detail analysis of the doubling attacks until now. Even the creators of the dou-
bling attack, Fouque and Valette, did not tell anything about the fundamentals
of doubling attack. Therefore some people just assume that downward algo-
rithms may be vulnerable to doubling attacks without certainty. Others assert
that their downward scheme is secure against doubling attacks without a proof
[15].

In this section, we analyze the fundamentals of the doubling attack and show
how we can easily test a given algorithm’s security against the doubling attacks.

3.1 Characteristics of Doubling Attack

Doubling attacks require two requirements. Their fundamental principle relies on
the consecutive squaring (doubling in a point scalar multiplication) operations.
If there are two consecutive squaring operations related to the value of the secret
key (an upward algorithm is secure against doubling attacks because a squaring
operation is done regardless of the value of the secret key, we will discuss it later),
we can apply doubling attacks. In addition, the intermediate value of computing
(M2)d should be the exactly square of (double in a point scalar multiplication)
that of computing (M)d after each iteration.

Method for Detecting Vulnerability to Doubling Attacks 103

Let us denote Sk(M) and Sk(M2) as the kth intermediate values of computing
(M)d mod N and (M2)d mod N respectively. And we suppose that Sk(M2) =
(Sk(M))2. Then if there are two consecutive squaring operations, we have:

Sk+1(M) = (Sk(M))2 mod N, (1)
Sk+2(M) = (Sk+1(M))2 mod N, (2)

and

Sk+1(M2) = (Sk(M2))2 mod N, (3)
Sk+2(M2) = (Sk+1(M2))2 mod N. (4)

Since Sk+1(M) = (Sk(M))2 = Sk(M2), equation (2) and equation (3) are the
same. Therefore, we can find the moment when equation (2) and equation (3)
are performed in a device by comparing two power consumption profiles. If the
occurrence of these two consecutive squaring operations depends on the value of
the secret key, we can get information on the secret key through the doubling
attacks.

Consequently, we can summarize the conditions for the success of the doubling
attacks as follows:

1. two consecutive squaring operations (doubling in a point scalar multiplica-
tion) related to secret key bits should exist,

2. the intermediate value of computing (M2)d should be exactly the square of
(double in a point scalar multiplication) that of computing (M)d after each
iteration.

For example, let us consider the left-to-right square-and-multiply always algo-
rithm as shown in Fig. 3. According to the value of the bit di, the operations of
each iteration are different. We can make the characteristic table of it as shown
in Table 3, where S stands for “squaring” and M stands for “multiplication.”

Table 3. Characteristic table of square-and-multiply always algorithm

S[0]

di di−1 Operation at di Operation at di−1

0 0 S S

0 1 S S, M

1 0 S, M S

1 1 S, M S, M

Although two variables S[0] and S[1] are used, only S[0] satisfy the second
condition; intermediate value of computing (M2)d mod N is the square of that
of computing (M)d mod N at each iteration. To prove this, let us denote the

104 C.H. Kim and J.-J. Quisquater

partial sums S[0]k(M) as the intermediate value stored in S[0] after k iterations
when the input is M . Then we have

S[0]k(M) = (M)
Pk

i=0 dn−1−i2
k−i

.

Similarly, we have partial sums S[0]k(M2) as the intermediate value stored in
S[0] after k iterations when the input is (M2) as follows;

S[0]k(M2) = (M2)
Pk

i=0 dn−1−i2
k−i

= ((M)
Pk

i=0 dn−1−i2
k−i

)2

= (S[0]k(M))2.

Therefore we can say that the left-to-right square-and-multiply always algorithm
satisfies the condition (2). Next we consider the condition (1). We can find two
cases, (di, di−1) = (0, 0) and (di, di−1) = (0, 1), of the two consecutive squaring
operations in Table 3. More simply, we can say that whenever di equals 0 we
have two consecutive squaring operations. Therefore we can conclude that the
left-to-right square-and-multiply always algorithm is vulnerable to the doubling
attack.

For the second example, we make the characteristic table of the Montgomery
ladder as shown in Table 4. Both intermediate values S[0] and S[1] satisfy the
condition (2): intermediate value of computing (M2)d mod N is the square of
that of computing (M)d mod N at each iteration. The two consecutive squaring
operations are shown in S[0] when di = di−1 = 0 and in S[1] when di = di−1 = 1.
Therefore the Montgomery ladder is vulnerable to the doubling attack.

Table 4. Characteristic table of Montgomery ladder

S[0] S[1]

di di−1 Operation at di Operation at di−1 Operation at di Operation at di−1

0 0 S S M M

0 1 S M M S

1 0 M S S M

1 1 M M S S

3.2 Upward vs. Downward Algorithm

We compare upward and downward exponentiation algorithms with respect to
the requirements of the doubling attacks we proposed in the previous section.

The downward computation of Md is based on the following structure:

Md = ((((Mdn−1)2) ·Mdn−2)2 · · ·Md1)2 ·Md0 . (5)

From dn−1 to d0, it multiplies the intermediate value by Mdi and then squares
the intermediate value. Therefore only if di equals 0, then two consecutive squar-
ing operations occur. Furthermore the intermediate value of computing (M2)d

Method for Detecting Vulnerability to Doubling Attacks 105

is the square of the intermediate value of computing Md. Therefore a downward
computation is vulnerable to the doubling attacks.

Montgomery ladder is also based on the equation (5). It computes both a
squaring and a multiplication at each iteration. The allocation of each result is
decided by the current bit of the secret key. Therefore two consecutive squaring
operations happen whenever two consecutive bits of the secret key are the same,
which makes in turn Montgomery ladder vulnerable to the doubling attacks.

The upward exponentiation is based on the following structure:

Md = (M)d0 · (M2)d1 · (M22
)d2 · · · (M2n−1

)dn−1 . (6)

There are two variables. One variable, S[0], stores the intermediate result and
the other variable, S[1], stores M2i

. From d0 to dn−1, S[1] computes M2i

and
S[0] is multiplied by S[1] depending on the value of di. We can easily see that two
consecutive squaring operations occur at each time in S[1] as shown in Fig. 2.
However this does not depend on the secret key bits. The consecutive two squar-
ing operations are performed at each iteration regardless of the secret key. There-
fore it does not give any information on the secret key.

3.3 Remarks on Possible Countermeasures

The doubling attack requires at least two queries with known messages to the
device. Therefore the best way to avoid it is to remove the relation between
known messages and power consumption profiles by the randomization tech-
niques. One randomization technique is to blind the secret exponent, for example,
like d′ = d+ r ·φ(N) in RSA exponentiation. Similarly Coron’s countermeasure,
d′ = d + r · E, uses a 20-bit random value r in a scalar multiplication [4]. How-
ever it is clearly pointed out in [6] that although Coron’s countermeasure was
sufficient to resist against usual DPA attacks, it was possible to identify right
pairs with 220 requests with the doubling attack. Therefore the security against
doubling attacks relies on the size of a random number used to blind the secret
key.

The second countermeasure is to blind the base, i.e., blinding of the point
(the computation of d(P + R) followed by a subtraction of dR, where R is a
random point) in a scalar multiplication and blinding of the message (the com-
putation (Mre)d followed by a multiplication of r−1, where r is a random integer)
in an exponentiation. Applying this method in a scalar multiplication requires
twice the time needed for a single scalar multiplication. In an exponentiation,
it requires an expensive inverse operation. Therefore to be more efficient, stor-
ing and updating random data are often used. For example, it is proposed to
store a random point R and the associated value S′ = dR and update them as
R ← (−1)b.2.R and S′ ← (−1)b.2.S′, where b ∈ {0, 1}, each time when they
are used [4]. However it was shown to be vulnerable to the doubling attack in
[6]. Therefore, to resist the doubling attacks a random update should be used as
R ← (−1)b.a.R and S′ ← (−1)b.a.S′, where a is a random integer. Again, the
security relies on the size of a.

106 C.H. Kim and J.-J. Quisquater

The third countermeasure is to blind the modulus in an exponentiation. Gi-
raud presented the use of Md mod k ·N , where k is a 32-bit random number [8].
All modular multiplications are done with k ·N except the final one that is done
with N .

Consequently we know that the randomization techniques require a sufficient
size of random data to resist the doubling attacks. However this degrades the
efficiency of a device. If we use an exponent blinding, an extra computation
time is required. The message blinding needs an extra computation and storage.
The modulus blinding requires bigger operands as well as an extra computation
time. The use of bigger operands may be a problem when a hardware multi-
plier is implemented. That is, we have to construct a hardware multiplier of
bigger operands such as a 1056 bit or higher precision multiplier for a 1024 bit
multiplication.

4 Doubling Attack on Yen et al.’s Algorithm

Yen et al. said in [15] that upward exponentiation was not a necessary require-
ment meant to be immune from the doubling attacks and showed a new down-
ward SPA-protected and safe-error-protected exponentiation algorithm. They
also asserted that it was secure against doubling and the relative doubling at-
tacks. Unfortunately, there was no detailed proof of security against doubling
attacks. In this section, we show that their algorithm is vulnerable to the dou-
bling attack. We used the method we developed in the previous section to analyze
its security.

4.1 Yen et al.’s Algorithm

Yen et al.’s algorithm [13,15,16] is a balanced downward“left-to-right” exponentia-
tion algorithm. Since its structure of operations as shown in Fig. 5 is well balanced,
it is immune to SPA. Furthermore it does not have any redundant operations that
cause the safe-error-attack. One outstanding feature of Yen et al.’s algorithm is
that the current operations of ith iteration depend on the current bit di and
the next bit di−1. There are two operations per iteration and the first operation
relies on the value of di and the second operation relies on that of di−1.

INPUT: M 	= 0, d = (dn−1, ..., d0)2, dn−1 = 1, N

OUTPUT: Md mod N

1. S[0] ← 1, S[1] ← M , d−1 ← 1
2. for i from n − 1 to 0 do

3. S[0] ← S[0] · S[di] mod N
4. S[0] ← S[0] · S[di−1] mod N
5. return S[0]

Fig. 5. Yen et al.’s algorithm

Method for Detecting Vulnerability to Doubling Attacks 107

4.2 Proposed Attack

To check the security against doubling attacks, we first check the condition (2).
We can easily see that after each iteration, the value stored in S[0] of computing
(M2)d is the square of that of computing (M)d. Therefore we can construct
the characteristic table of Yen et al.’s algorithm as shown in Table 5. Three
consecutive bits di, di−1, and di−2 are used to construct the characteristic table
since the operations at ith iteration depend on (di, di−1) and the operations at
(i + 1)th iteration depend on (di−1, di−2). From the characteristic table we can
see that there are two consecutive squaring operations when two consecutive bits
are (1, 0). Therefore we can find two bits (1, 0) by comparing two power profiles
of computing Md and (M2)d.

Table 5. Characteristic table of Yen et al.’s algorithm

S[0]

di di−1 di−2 Operation at di Operation at di−1

0 0 0 M, S M, S

0 0 1 M, S M, M

0 1 0 M, M S, S

0 1 1 M, M S, M

1 0 0 S, S M, S

1 0 1 S, S M, M

1 1 0 S, M S, S

1 1 1 S, M S, M

An example of an attack assuming the private exponent d to be 107 =
(1, 1, 0, 1, 0, 1, 1)2 and two related input data to be M and M2 respectively, is
shown in Table 6. At i = 5, we can find the same squaring operation of (M2)2 in
both computing Md and (M2)d. Therefore we can conclude d5 = 1 and d4 = 0.
Similarly we can find d3 and d2. By assuming the most significant bit and the
least significant equal 1, we remain d1 unknown which can be recovered by an
exhaustive search.

We can improve further than an exhaustive search to find the remaining bits.
We know one case when two consecutive bits is (1,0), which is out of four cases,
(0,0), (0,1), (1,0), and (1,1). Therefore, if the number of secret bits is n, then we
know n/4 bits in average. Furthermore we can reduce the number of unknown
bits. Since we can find two consecutive bits of (1,0), we can reduce the candidates
for the bits between two (1,0)’s. For example, we suppose that we have found
(1, 0, X, X, X, 1, 0, X, X, 1, 0, X, X, X, X, 1, 0, 1)2 by doubling attack. Where, X
means an unknown key bit, i.e., X ∈ {0, 1}. Since we can find all the (1,0)’s,

108 C.H. Kim and J.-J. Quisquater

the stream (X, ..., X) does not contain any (1,0). The candidates for the stream
(X, ..., X) are as follows:

(X, X) = (0, 0), (0, 1), (1, 1)
(X, X, X) = (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

(X, X, X, X) = (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)

Therefore we have k + 1 candidates for each unknown consecutive k bits. Al-
though the number of unknown key bits is 10 in this example, we need to try
(3 · 4 · 5) candidates instead of 210.

Consequently, if (1,0) is uniformly distributed among n bits, then the number
of bits between two (1,0)’s is 6. And there are n/8 sequences of 6 unknown
consecutive bits in average. Therefore (6 + 1)n/8 candidates remain in average,
which equals 20.35n operations. Therefore, we know n/4 bits and require 20.35n

operations to find the remaining bits in average. This partial key information
can be used to find the whole key such as the attack of RSA with a partial key
as shown in [3].

Table 6. Example of proposed attack on Yen et al.’s algorithm

i di Md (M2)d

6 1 S[0] ← (1)2 S[0] ← (1)2

S[0] ← 1 × M S[0] ← 1 × (M2)

5 1 S[0] ← (M)2 S[0] ← (M2)2

S[0] ← (M2)2 S[0] ← (M4)2

4 0 S[0] ← M4 × M S[0] ← M8 × M2

S[0] ← M5 × M S[0] ← M10 × M2

3 1 S[0] ← (M6)2 S[0] ← (M12)2

S[0] ← (M12)2 S[0] ← (M24)2

2 0 S[0] ← M24 × M S[0] ← M48 × M2

S[0] ← M25 × M S[0] ← M50 × M2

1 1 S[0] ← (M26)2 S[0] ← (M52)2

S[0] ← M52 × M S[0] ← M104 × M2

0 1 S[0] ← (M53)2 S[0] ← (M106)2

S[0] ← M106 × M S[0] ← M214 × M2

Return M107 M214

5 Conclusions

The doubling attack is a very powerful attack since it requires just two power
consumption profiles with chosen messages. They can even avoid a randomized

Method for Detecting Vulnerability to Doubling Attacks 109

padding scheme such as OAEP [1,2]. Nonetheless there was no fundamental re-
search on its principle. It has just been assumed that it works only on downward
algorithms [6]. However Yen et al. brought forward a counterargument and pro-
posed a new downward algorithm asserted to be secure against the doubling
attacks [15].

In this paper, we analyzed the characteristic of the doubling attack and showed
the fundamental principle of it, which brought a method to check a given algo-
rithm’s security against the doubling attacks. This method is very simple and
easy to use. Therefore it can be a good measure to check the security against
doubling attacks when someone devises a new algorithm. Finally we have shown
with our method that Yen et al.’s algorithm was vulnerable to the doubling
attack.

References

1. PKCS # 1, v2.1, RSA Cryptogrpaphy Standards (January 5, 2001),
http://www.rsasecurity.com/rsalabs/pkcs/

2. Bellare, M., Rogaway, P.: Optimal asymmetric encrption padding - How to encrypt
with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

3. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

4. Coron, J.: Resistance against differential power analysis for elliptic curve. In: Koç,
Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidel-
berg (1999)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logatihms. IEEE Transactions on Information Theory (4), 469–472 (1985)

6. Fouque, P.-A., Valette, F.: The doubling attack - why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

7. Giraud, C.: Fault resistant RSA implementation. In: Breveglieri, L., Koren, I. (eds.)
Second Workshop on Fault Diagnosis and Tolerance in Cryptography – FDTC 2005,
pp. 142–151 (2005)

8. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Transactions on computers 55(9), 1116–1120 (2006); An earlier
version appears in [7]

9. Gordon, D.: A survey of fast exponentiation methods. Journal of Algorithms 27,
129–146 (1998)

10. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

11. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSA and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

http://www.rsasecurity.com/rsalabs/pkcs/

110 C.H. Kim and J.-J. Quisquater

13. Lu, C.-C., Tseng, S.-Y., Huang, S.-K.: A secure modular exponential algorithm
resists to power, timing, C safe error and M safe error attacks. In: 19th International
Conference on Advanced Information Networking and Applications (AINA 2005),
vol. 2, pp. 151–154 (2005)

14. Rivest, A.S.R.L., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

15. Yen, S.-M., Ko, L.-C., Moon, S., Ha, J.: Relative doubling attack against
Montgomery Ladder. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 117–128. Springer, Heidelberg (2006)

16. Yen, S.-M., Lu, C.-C., Tseng, S.-Y.: Method for protecting public key schemes from
timing, power, and fault attacks. U.S. Patent Number US2004/0125950 A1 (July
2004)

Side Channel Analysis of Some Hash Based

MACs: A Response to SHA-3 Requirements

Praveen Gauravaram1,� and Katsuyuki Okeya2

1 DTU Mathematics, Technical University of Denmark, Denmark
p.gauravaram@mat.dtu.dk

2 Hitachi, Ltd., Systems Development Laboratory, Japan
katsuyuki.okeya.ue@hitachi.com

Abstract. The forthcoming NIST’s Advanced Hash Standard (AHS)
competition to select SHA-3 hash function requires that each candidate
hash function submission must have at least one construction to support
FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to
select either a candidate hash function which is more resistant to known
side channel attacks (SCA) when plugged into HMAC, or that has an
alternative MAC mode which is more resistant to known SCA than the
other submitted alternatives. In response to this, we perform differen-
tial power analysis (DPA) on the possible smart card implementations
of some of the recently proposed MAC alternatives to NMAC (a fully
analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC
versions of some recently proposed hash and compression function modes.
We show that the recently proposed BNMAC and KMDP MAC schemes
are even weaker than NMAC/HMAC against the DPA attacks, whereas
multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have simi-
lar security to NMAC against the DPA attacks. Our DPA attacks do not
work on the NMAC setting of MDC-2, Grindahl and MAME compression
functions.

Keywords: Applied cryptography, hash functions, side channel attacks,
HMAC.

1 Introduction

The cryptanalysis of the MD5 and SHA-1 hash functions [41,42] and its impact
on several applications [5, 10, 13, 16, 40] have triggered a kind of feeding frenzy
among the cryptographers. On the other hand, generic attacks [20, 23] on the
popular Merkle-Damg̊ard (MD) hash framework [12,30] have exposed several of
its undesirable properties.

In the wake of this active cryptanalysis of hash functions and its impact on
applications, NIST is conducting an international competition to define an Ad-
vanced Hash Standard (AHS) which would be referred to as SHA-3 family [34].

� Author and this research project are supported by The Danish Research Council for
Technology and Innovation grant number 274-08-0052.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 111–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 P. Gauravaram and K. Okeya

NIST requires that each candidate hash function must have at least one con-
struction to support the current applications of hash functions specified in the
FIPS or NIST special publications that include FIPS 198 HMAC [33]. As part of
its evaluation, NIST is also considering side channel attacks (SCA) on the hash
based MACs. NIST intends to select as SHA-3, either a candidate hash which is
more resistant to known SCA attacks when plugged into HMAC, or that has an
alternative MAC mode which is more resistant to known SCA attacks than the
other submitted alternatives [9,21,22].

Considering this state of the art of research in hash functions, we believe that
AHS competition would receive hash as well as compression function modes as
candidates for SHA-3 using structures and chaining modes different from the
ones used in the broken hash functions. It is prominent that such proposals
define provably secure MAC modes with a protection from the SCA attacks.

This research problem has motivated us to assess the security of several re-
cently proposed MAC alternatives to NMAC (a thoroughly analysed variant of
HMAC) and HMAC algorithms [3,2] and some compression function and hash
function modes in the NMAC/HMAC setting from differential power analysis
(DPA) attacks. We analyse MACs that are assumed to be instantiated with the
compression functions built over ideal block ciphers that are secure against SCA
attacks as was done in [36, 17]. If the proposed MAC or hash function mode
does not specify any block cipher based compression function then we analyse it
using twelve secure compression functions based on block ciphers proposed by
Preneel, Govaerts and Vandewalle (PGV) [38]. Such analysis allows the designers
to construct hash and DPA resistant MAC modes whose security can be formally
reduced to the compression function modes that are real and whose security was
formally established [7]. In a related work, HMAC based on the dedicated hash
functions SHA-1 and SHA-256 was shown to be vulnerable to the side channel
attacks [28,26].

1.1 Our Approach

We analyse several recently proposed provably secure MAC alternatives to the
NMAC/HMAC algorithms and NMAC/HMAC settings of some compression
function and hash function prototypes proposed in the literature against the
DPA attacks. Although the list of MAC algorithms that we have analysed may
not be thorough, our analysis can be easily extended to the other similar MAC
proposals that we might have missed. The outcome of the DPA attacks on many
of these MAC schemes is the recovery of their secret keys. The MAC schemes that
are vulnerable to the complete key recovery attacks can be universally forged ;
forgery for any given message. The MACs for which we can partially recover the
key or internal state, we can either existentially forge the scheme by computing
a valid authentication tag for a random message or cannot guarantee its security
against forgery attacks. We perform DPA analysis of MACs by dividing them
into Type-1 and Type-2 categories:

Type-1: Provably secure MAC alternatives to NMAC/HMAC. These
MAC schemes, in general, are based on the alternative hash frameworks to the

Side Channel Analysis of Some Hash Based MACs 113

MD structure. They include BNMAC and its single key variants [43], MAC
based on Enveloped Merkle-Damg̊ard (EMD) transform [4], keyed version of
Merkle-Damg̊ard with permutation (MDP)-KMDP [18], Multi-Lane NMAC [44]
and One-keyed NMAC (O-NMAC) [14]. These schemes do not emphasize using
any specific compression function; hence, we analyse their security using twelve
secure PGV schemes.

Type-2: NMAC setting of the compression and hash function modes.
This category includes the DPA analysis of the NMAC settings of MDC-2 [11,32],
MAME [45] and Grindahl [24] compression functions which is also applicable to
their HMAC versions. MDC-2 has been chosen for its rigorous analysis and
specification in the standards ANSI X9.31 [1] and ISO/IEC 10118-2 [19] and
the new proposals Grindahl and MAME are chosen due to their novelty. We
assume that the keyed versions of these compression functions define a family
of pseudorandom functions and hence their NMAC settings retain the proof of
security of NMAC [2]. We also analyse the security of the wide-pipe hash [27]
instantiated with twelve PGV schemes in the setting of NMAC.

Our DPA analysis of MACs based on EMD, MDP and wide-pipe hash [27]
and the NMAC setting of the hashes in the Type-2 category meet the criteria of
the AHS evaluation process where a MAC version of a secure hash is expected
to resist SCA attacks. EMD and KMD modes preserve the pseudorandom oracle
and collision resistance properties of the compression functions whereas wide-
pipe hash was shown to be secure against the generic attacks of [20, 23]. The
unkeyed version of O-NMAC was recently shown to be weak against the generic
attacks of [23,20] in [15] and collisions can be easily found for the unkeyed version
of BNMAC as shown later in the paper.

1.2 Our Results and Their Significance

In Table 1, we outline the results of the DPA attacks on the MAC schemes in
the Type-1 category. While we have analysed MAC functions, where applicable,
instantiated with twelve PGV schemes, here we outline our results for the MAC
instantiations based on the popular compression functions that include Matyas-
Meyer-Oseas (MMO), Miyaguchi-Preneel (MP) and Davies-Meyer (DM). In Ta-
ble 1, the following notation holds: CK-complete key recovery, PK-partial key
recovery, N/A-not applicable, NO-key recovery is not possible, EF-existential
forgery, UF-universal forgery, NG-no guarantee on the MAC security. For the
sake of comparison, we have also included the results of the DPA analysis of
NMAC [36,17] in the last row of Table 1. While MP scheme can be implemented
in three different ways for a given block cipher as shown later in the paper,
Table 1 outlines the results based on its strongest implementation. The NMAC
settings of the compression functions in the Type-2 category are not vulnerable
to the DPA attacks. NMAC based on the wide-pipe hash has similar security as
NMAC [36] with respect to the DPA attacks.

Our research indirectly provides some ground work on building DPA resistant
hash based MACs using cryptographic primitives such as block ciphers that are
often implemented as DPA resistant hardware modules. Our work provides the

114 P. Gauravaram and K. Okeya

Table 1. Our results on the Type-1 MACs based on three popular PGV schemes

MAC function Matyas-Meyer-Oseas Miyaguchi-Preneel Davies-Meyer

BNMAC [43] PK(EF) CK(UF) CK(UF)
EMD [4] N/A N/A PK(NG)

KMDP [18] NO NO CK(UF)
Multi-lane NMAC [44] N/A N/A PK(NG)

O-NMAC [25] NO NO NO
NMAC [36] NO NO PK(NG)

following significant contributions: Firstly, we analysed several alternatives to
NMAC/HMAC that use hash function modes different from that of MD [36,17].
Secondly, we analysed MACs in the MD mode instantiated with the compression
functions different from the PGV schemes. Finally, we show the first example of
a MAC scheme, in the form of BNMAC, vulnerable to the DPA attacks and can
be existentially forged when instantiated with any secure compression function.

Our results are the outcome of theoretical DPA attacks on the possible smart
card implementations of some MAC proposals. To our knowledge, currently,
no smart card implementations of the MAC schemes analysed in this paper
are available. So, experimental verification of our analysis has not been done
so far. However, since our DPA attacks follow the same attack model used to
attack HMAC implementations on an IC chip in [36], it is possible to realise the
practicality of our attacks on the MAC implementations on a real smart card
system or its emulated system.

1.3 Guide to the Paper

In Section 2, we introduce hash functions and NMAC and HMAC functions. In
Section 3, we generalise DPA attacks on MACs. In Sections 4 and 5, we analyse
Type-1 and Type-2 MAC schemes against the DPA attacks. We conclude the
paper in Section 6 with some open questions.

2 Hash Functions

A hash function H : {0, 1}∗ → {0, 1}n processes an arbitrary length message into
a fixed length n-bit hash value. It is a common approach to design H by iterating
a compression function h : {0, 1}n × {0, 1}b → {0, 1}n which processes a fixed
length b-bit message and an n-bit input state producing an n-bit output state.
The message to be processed using H is always padded using any secure one-to-
one padding technique such that {0, 1}∗ → {0, 1}b.t where t is the number of b-bit
blocks. The padded message is represented with b-bit message blocks as m =
m[1]‖ . . .‖m[t]. Each block m[i] is processed using h to compute intermediate
hash values H [i] = hH[i−1](m[i]) where i = 1, . . . , t and H [0] is the fixed initial
value (IV) of H . The final state H [t] = hH[t−1](m[t]) is the hash value of m.

Side Channel Analysis of Some Hash Based MACs 115

The MD iterative structure [30,12] has been a popular iterated hash function
framework used in the design of standard hash functions such as SHA-1 and
SHA-2 family [35]. Let ec be the concatenation of e bit c times where e is either
0 or 1. MD hash functions specify an upper bound of 2l bits on the length of
m and always pad m by appending it with a 1 bit and 0b−l−d−1 where d is
the number of message bits in the incomplete block of m. The last l bits of m
are filled in with the binary encoded representation of the length of m in bits
(depending on the size of d, an additional block may be used for padding).

Often, compression function modes are constructed using block ciphers.
Twelve out of sixty-four PGV compression function modes [38] are provably
secure when their underlying block cipher is ideal [7]. This model of PGV uses
parameters p, q, r ∈ {H [i − 1], m[i], H [i − 1] ⊕ m[i], 0} and a block cipher G
to derive a compression function. See Table 2 for the description of these 12
schemes denoted with hj where j is from 1 to 12. Table 2 also includes three
possible implementations of the compression functions h3 and h7. The subscript
to G denotes its key input which is either a message block m[i] or a hash state
H [i− 1] when G is turned into the compression function h using one of the 12
PGV modes. In this paper, we shall often assume that b = n for these twelve
PGV schemes.

Table 2. 12 provably secure PGV compression functions

Compression function Description

h1 H [i] = GH[i−1](m[i]) ⊕ m[i]
h2 H [i] = GH[i−1](m[i] ⊕ H [i − 1]) ⊕ m[i] ⊕ H [i − 1]
h3 H [i] = GH[i−1](m[i]) ⊕ (m[i] ⊕ H [i − 1])
h4 H [i] = GH[i−1](m[i] ⊕ H [i − 1]) ⊕ m[i]
h5 H [i] = Gm[i](H [i − 1]) ⊕ H [i − 1]
h6 H [i] = Gm[i](H [i − 1] ⊕ m[i]) ⊕ (H [i − 1] ⊕ m[i])
h7 H [i] = Gm[i](H [i − 1]) ⊕ (m[i] ⊕ H [i − 1])
h8 H [i] = Gm[i](H [i − 1] ⊕ m[i]) ⊕ H [i − 1]
h9 H [i] = GH[i−1]⊕m[i](m[i]) ⊕ m[i]
h10 H [i] = GH[i−1]⊕m[i](H [i − 1]) ⊕ H [i − 1]
h11 H [i] = GH[i−1]⊕m[i](m[i]) ⊕ H [i − 1]
h12 H [i] = GH[i−1]⊕m[i](H [i − 1]) ⊕ m[i]

h(3,1) H [i] = (H [i − 1] ⊕ m[i]) ⊕ GH[i−1](m[i])

h(7,1) H [i] = (H [i − 1] ⊕ m[i]) ⊕ Gm[i](H [i − 1])

h(3,2) H [i] = (GH[i−1](m[i]) ⊕ m[i]) ⊕ H [i − 1]

h(7,2) H [i] = (Gm[i](H [i − 1]) ⊕ m[i]) ⊕ H [i − 1]

h(3,3) H [i] = (GH[i−1](m[i]) ⊕ H [i − 1]) ⊕ m[i]

h(7,3) H [i] = (Gm[i](H [i − 1]) ⊕ H [i − 1]) ⊕ m[i]

2.1 NMAC and HMAC

Let k2 and k1 be any two random and independent secret keys. If H is an MD
hash, the NMAC function [3, 2] is defined by NMACk1,k2(m) = hk1(Hk2(m))

116 P. Gauravaram and K. Okeya

where the keys k2 and k1 replace the IVs of the inner and outer H where outer
H is expected to perform only one iteration. If k is an n-bit random secret key
then HMACk(m) = HIV ((k‖0b−|k| ⊕ const1)‖HIV ((k‖0b−|k| ⊕ const2)‖m))).
HMAC and NMAC are related by HMACk(m) = hk1(Hk2(m)) where k1 =
hIV ((k‖0b−|k|) ⊕ const1), k2 = hIV ((k‖0b−|k|) ⊕ const2), const1 and const2
are the constants defined in [3] and ‖ is the concatenation operation.

3 Side Channel Attacks on Hash Based MACs

Here, we generalize the DPA attacks [36, 17] mounted on the NMAC/HMAC
algorithms instantiated with the 12 secure PGV compression functions based on
the DPA resistant block ciphers.

3.1 Differential Power Analysis (DPA) Attack

The main objective of mounting a DPA attack on a MAC function is to detect
target regions in the power consumption of a cryptographic device having a MAC
function implementation correlated with particular bits of the secret key.

x

y z(secret and fixed)

(public and variable)

Fig. 1. The DPA attack model

Lemma 1. A DPA attack is mounted on a MAC function with the target XOR
operation z = x⊕ y (See Figure 1) to detect the fixed secret key input y where x
is a public variable input.

The DPA attack on such a MAC function is outlined below:

1. Guess a certain bit b of the secret input y and run the MAC algorithm having
the above target XOR operation for N random values of message input xi

where i = 1 . . .N .
2. For each of the N message inputs xi, a discrete time power signal Sit is

collected and the corresponding output zi of the XOR operation is also
collected. The index i corresponds to the message input xi that produced
the signal and t corresponds to the time of the sample.

3. Let xi,k be the kth bit of input xi. Sort the inputs xi depending on whether
the target kth bit of z is 0 or 1. Let Sb = {Sit|xi,k ⊕ b = 0} and Sb =
{Sit|xi,k ⊕ b = 1} where b is the guessed kth bit of y.

4. Compute average power signal for each of the sets Sb and Sb where |Sb| +
|Sb| = N :

Side Channel Analysis of Some Hash Based MACs 117

APb[t] = 1/|Sb|
∑

Sit∈Sb

Sit

APb[t] = 1/|Sb|
∑

Sit∈Sb

Sit

5. Following the Hamming weight model of [31], the power consumed by the
target XOR operation depends on the Hamming weight of the manipulated
data. When there is a large power consumption, that is when APb[t] �
APb[t], the target bit of z is 1 since the other bits behave randomly and the
averaging eliminates their effect. This DPA bias signal is used to verify the
guess of the secret key bit b of y.

6. By repeating the above steps, the whole secret key y can be recovered. How-
ever, it is enough to reclassify the input x and compute average power signal
for the new sets using the power signal samples collected in the first instance.

Reverse DPA (RDPA) attack. It is a minor variant of DPA where instead
of known input a known output is used.

Lemma 2. An RDPA attack is mounted on a MAC function with the target
XOR operation z = x ⊕ y (see Figure 2) to detect the fixed secret key input y
where z is a public variable which may not be controlled.

x

y z(secret and fixed) (public and variable)

Fig. 2. The RDPA attack model

The RDPA attack on such a MAC function is outlined below:

1. Guess a certain bit of the secret input y and run the MAC algorithm for N
random values of input x and collect the discrete time power signals for the
XOR operation.

2. Observe the output z for all these N values and sort it out into two groups
depending on whether the target bit of input x is 0 or 1.

3. Compute the average power consumption for each group and verify the cor-
rectness of the original guess bit of y using the averages.

These results are also applicable when other SCA attacks such as timing or
electro magnetic analysis are mounted on the MACs [36].

4 DPA Analysis of Type-1 Schemes

In this section, we perform DPA analysis of the Type-1 MAC schemes. Some
of these MACs have their own padding rules whereas some others follow the
padding functionality defined for the MD hashes.

118 P. Gauravaram and K. Okeya

4.1 BNMAC and Its One-Key Variants

Yasuda [43] proposed BNMAC as an alternative to HMAC to achieve higher
performance than HMAC when it is implemented with the slower SHA-2 family.
BNMAC uses an alternative hash function framework to the MD called hyper
Merkle-Damg̊ard (HMD). Yasuda also proposed two practical variants of BN-
MAC that use only one secret key.

Hyper Merkle-Damg̊ard. An arbitrary length message m to be processed
using a HMD hash function H is split into blocks as m = m[1]‖m[2]‖ . . .m[2t−
1]‖m[2t] such that |m[2i−1]| = n and |m[2i]| = b for i = 1, 2, . . . , t. The interme-
diate hash value H [i] at any iteration i is given by H [i] = hH[i−1]⊕m[2i−1](m[2i])
where H [0] is the IV of H .

BNMAC and its variants. If k1 and k2 are two independent and random
secret keys then the BNMAC function is defined by:

BNMACk1,k2(m) = hk1(Hk2(m)‖1b−n)

BNMAC always uses a secure one-to-one padding for m so that the size of
m is always a multiple of b + n blocks. The first variant is BNMAC1k(m) =
hk1(Hk2(m)‖1b−n) where the two keys k1 and k2 are derived from the key k as
given by k1 = hk(1b) and k2 = hk(0b). The second variant is BNMAC2k(m) =
hk(Hhk(0b)(m)‖1b−n).

DPA attacks on BNMAC and its variants. By assuming b = n, we
can instantiate BNMAC with any of the twelve PGV schemes. Then we have
|k1| = |Hk2(m)|. In this setting, the first and second set of n input bits to the
compression function h correspond to the chaining value and the message block of
h. At every iteration i of BNMACk1,k2(m), the XOR operation H [i−1]⊕m[2i−1]
would become the target on which we mount the DPA attack to recover the pre-
vious secret state information H [i− 1] where H [0] is the secret key k2. In fact,
this inner key recovery attack on BNMAC is independent of the security of the
compression function as the target XOR operation on which we mount the DPA
attack is external to the compression function.

Once the key k2 is recovered, we can mount the DPA attack on the target oper-
ation k1⊕Hk2(m) = BNMACk1,k2(m) based on hj where j ∈ {2, 4, 6, 8, 9, 10, 11,
12} to recover the secret key k1. We can mount RDPA attack on this target
operation for BNMAC based on hj where j ∈ {5, (3, 1), (3, 2), (7, 1), (7, 2)} to
recover the secret key k1. There is no target XOR operation for BNMAC based
on hj where j ∈ {1, (3, 3), (7, 3)} on which we could mount the DPA attacks to
recover the key k1. These attacks also apply to BNMAC1 and BNMAC2.

Forging BNMAC. Recovering only k2, BNMAC based on any secure h can
be existentially forged with just one oracle query as follows:

1. Query the BNMAC oracle with m = m[1]‖m[2]‖ . . .m[2t] and obtain its tag
BNMACk1,k2(m).

Side Channel Analysis of Some Hash Based MACs 119

2. Forge BNMAC by computing the tag BNMACk1,k2(m∗) of the message
m∗ = m[1]‖m[2]‖h(m[1]⊕ k2‖m[2]) ⊕ (m[1] ⊕ k2)‖m[2]‖ . . .m[2t] such that
BNMACk1,k2(m∗) = BNMACk1,k2(m).

Note that one can trivially find collisions for the HMD hash. BNMAC invoked
with the PGV schemes for which both keys can be recovered can be universally
forged by computing the tag for any given message.

4.2 Enveloped Merkle-Damg̊ard (EMD) Transform

Bellare and Ristenpart [2] proposed a variant of MD called EMD which works
as a MAC when its keyed compression function is a PRF.

EMD construction. An arbitrary length message m to be processed using
EMD scheme H is split into b-bit blocks m[1]‖m[2]‖ . . .m[t− 1] and incomplete
bits are filled in the last block m[t] where b ≥ n + 64. The last 64 bits of m[t]
contain the binary format of |m|. At any iteration i of H , the intermediate hash
value is given by H [i] = hH[i−1](m[i]) where 1 ≤ i ≤ t− 1 and H [0] is the IV of
H . The hash value is H [t] = hH[0]∗(H [t− 1]‖m[t]) where H [0]∗ is the IV of the
final compression function h and H [0] �= H [0]∗. The constraint b > n allows us
to use only h5 as the compression function for the EMD hash.

Keying EMD. The EMD construction keyed through its IVs is defined by
EMDk1,k2(m) = hk1(Hk2(m[1]‖m[2]‖ . . .m[t− 1])‖m[t]).

Trail secret key-recovery of keyed EMD. We can mount the RDPA attack
on the target operation k1 ⊕ GHk2 (m)‖m[t](k1) = EMDk1,k2(m) in the outer
compression function of EMD MAC based on h5 to recover the secret key k1.
Note that the control over b−n−64-bit input in the block m[t] does not provide
us any additional advantage to recover the key k1. Once we know the key k1,
the current security proof of EMD MAC does not guarantee its security against
forgery attacks.

4.3 Merkle-Damg̊ard with Permutation (MDP)

Hirose, Park and Yun [18] proposed a minor variant of the MD called Merkle-
Damg̊ard with permutation (MDP). MDP keyed through its chaining value
works as a MAC when the underlying keyed compression function is a PRF
and secure against a very mild related-key attack.

MDP construction. The MDP construction is obtained by processing the
last intermediate hash value of MD using a fixed permutation π. An arbi-
trary length message m to be processed using MDP is split into b-bit blocks
m[1]‖m[2]‖ . . .‖m[t]. At any iteration i of the MDP construction, the interme-
diate hash value is given by H [i] = hH[i−1](m[i]) where 1 ≤ i ≤ t− 1. The hash
value of m is H [t] = hπ(H[t−1])(m[t]). The message m is padded such that the
last l bits of m[t] contain |m| in the binary format. We can instantiate MDP
using any of the twelve PGV schemes.

120 P. Gauravaram and K. Okeya

Keyed MDP. The MDP scheme keyed through its IV works as a MAC and
is called KMDP in [18]. For 1 ≤ i ≤ t, the KMDP function is defined by
KMDPk(m) = hπ(H[t−1])(hk(m[i])).

DPA analysis of KMDP. The DPA attack can be mounted on the tar-
get XOR operation H [i − 1] ⊕ m[i] = H [i] of KMDP based on hj for j ∈
{2, 3(1), 4, 6, 7(1), 8, 9, 10, 11, 12} to recover the secret key k where H [0] = k.
KMDP based on h5 is vulnerable to a variant of the RDPA attack as outlined
below:

1. Consider a variable 2-block message m = m[1]‖m[2] where the first b− l− 2
bits of m[2] contain the information followed by the padding bits 1‖0 and
then the binary format of b + b− l− 2-bit length of the true message in the
last l bits of m[2].

2. We repeat the following for N2 number of random values of m to collect N
values of H [1]:
– Choose m[1] and fix it. Mount the RDPA attack on the target opera-

tion π(H [1])⊕ Gm[2](π(H [1])) = KMDPk(m) in the second iteration of
KMDP to recover the secret π(H [1]) by collecting tags KMDPk(m) for
N values of m by varying the first b− l−2 bits of m[2]. We then compute
π−1(π(H [1])) to obtain the output H [1] of the first iteration.

3. Finally, we recover the key k by mounting the RDPA attack on the target
operation k ⊕Gm[1](k) = H [1] in the first compression function by using N
values of H [1] recovered in step 2.

Similarly, RDPA attack can also be mounted on the BNMAC function based on
h3(2) and h7(2) to detect the secret key k. In practice, about N = 100, 000 ≈ 217

samples are required to mount the RDPA attack once on the target operation
of a MAC function implemented in an IC chip [36]. Hence, about 235 runs of
the compression function of KMDP based on hj where j ∈ {5, 3(2), 7(2)} imple-
mented on an IC chip are required to recover the secret key.

KMDP based on h1, h3(3) and h7(3) does not have a target XOR operation on
which we could mount the DPA attacks. KMDP based on the PGV compression
functions that are vulnerable to the DPA attacks can be universely forged for
any given message.

4.4 Multilane NMAC

L-lane NMAC and HMAC algorithms. Yasuda [44] proposed a provably
secure n-bit L-Lane NMAC (L ≥ 2), which we call LNMAC, to increase the se-
curity level of n-bit NMAC from 2n/2 to 2n evaluations against forgery attacks.
LNMAC uses L lanes of an MD hash to process an arbitrary length message.
Each lane of LNMAC uses an independent random secret key of size n bits as
the IV of the hash function in that lane. The proof of security of LNMAC as a
PRF and hence as a MAC requires b ≥ 2n. This condition on b allows us to invoke

Side Channel Analysis of Some Hash Based MACs 121

the LNMAC algorithm with only h5 out of twelve PGV schemes. The 2NMAC
function is defined below where i = 1, 2, . . . , t and τ is the authentication tag:

2NMACk(m) = hk′(hk′
1
(m[i])‖hk′

2
(m[i])‖0b−2n) = τ

Trail secret key-recovery of LNMAC. There is no target XOR operation
in 2NMAC based on h5 on which we can mount the DPA attack to recover the
secret keys k′

1 and k′
2. Now let u = G(hk′

1
(m[i])‖hk′

2
(m[i])‖0b−2n)(k′). We can mount

the RDPA attack on the target operation k′ ⊕ u = τ in the last compression
function to recover the secret key k′. Similarly, we can recover the key k′ for
LNMAC as this RDPA attack is independent of the number of lanes. Once we
know the trail secret key of LNMAC, its security proof does not guarantee its
MAC security.

4.5 O-NMAC

The MAC function O-NMAC was proposed as a one-key variant of NMAC in [14].
O-NMAC computes a linear-XOR checksum using the intermediate hash values
of the MD hash function and process it as a final message block. While O-
NMAC was analysed informally in [14], a security proof for O-NMAC as a MAC
function was provided in [25] under the name Enveloped Checksum Merkle-
Damg̊ard (ECM) transform. The O-NMAC function keyed through its IV with
a random key k is defined by:

O-NMACk(m) = h⊕t
i=1hH[i−1](m[i])(hk(m)‖m′)

where m is split into b-bit blocks m[1]‖m[2]‖ . . .m[t] with the last block m[t]
having the binary encoded format of m in its last l bits, H [0] = k, H [i] =
hH[i−1](m[i]) and m′ contains the padding bits including the length encoding of
the n-bit value hk(m) in its last l bits. We assume |k| = b = n. Then there is
no need to pad hk(m) with the bits m′. Note that if the message has only one
block then a separate block is used to pad it. Hence, at least three iterations of
the compression function h are required to compute the authentication tag of
an arbitrary length message using O-NMAC.

DPA analysis of O-NMAC. The DPA attack can be mounted on the tar-
get XOR operation H [i − 1] ⊕ m[i] = H [i] of O-NMAC based on hj for j ∈
{2, 3(1), 4, 6, 7(1), 8, 9, 10, 11, 12} to recover the secret key k where H [0] = k.
Hence, O-NMAC instantiated with these PGV schemes can be universally forged.

When we try to mount the RDPA attack on O-NMAC instantiated with h5,
say using a 2-block message m = m[1]‖m[2], both operands on the left hand
side of the expression H [2] ⊕ GH[1]⊕H[2](H [2]) = O-NMACk(m) are variable.
Hence, we cannot mount the RDPA attack. Similar analysis holds for O-NMAC
implemented with h3(2) and h7(2). There is no target XOR operation in O-
NMAC based on hj where j ∈ {1, 3(3), 7(3)} on which we could mount the DPA
attacks.

122 P. Gauravaram and K. Okeya

5 DPA Analysis of Type-2 Schemes

In this section, we perform DPA analysis of the NMAC setting of the Type-2
hash schemes which can also be extended to their HMAC version.

5.1 MDC-2 Hash Function in the NMAC Setting

MDC-2 hash function. MDC-2 [11,32] is a 2n-bit provably secure hash func-
tion based on an n-bit ideal block cipher [39]. MDC-2 is an MD mode of MMO
scheme (h1) in parallel paths. We follow the description of MDC-2 in [39] which
is generalised for any ideal block cipher G with the same key and block sizes. If
H [0] and H ′[0] are two different IVs then the intermediate hash value of MDC-2
at any iteration i is defined by H [i]‖H ′[i] = h1

H[i−1](m[i])‖h1
H′[i−1](m[i]).

MDC-2 hash function in the NMAC setting. Let k1 = k′
1‖k∗

1 and k2 =
k′
2‖k∗

2 be any two 2n-bit keys such that k′
1,k∗

1 ,k′
2 and k∗

2 are four random and
independent keys each of n bits. Then the MDC-2 hash in the NMAC setting is
defined by MDC-2k1,k2(m) = h1

k1
(H1

k2
(m)). At any iteration i, the intermediate

hash value of this MAC is given by H [i]‖H ′[i] = h1
H[i−1](m[i])‖h1

H′[i−1](m[i])
where H [0] = k1 and H ′[0] = k2.

DPA analysis. There is no target XOR operation in the compression function
of MDC-2k1,k2(m) on which we could mount the DPA attacks to recover the
secret keys.

Remark 1. MDC-4 [8,29] is an extended MDC-2 which uses two sequential ex-
ecutions of MDC-2 to process one message block. The DPA analysis of keyed
MDC-2 is also applicable to keyed MDC-4. Similarly, NMAC version of the MD
mode of the MAME compression function [45] which uses a novel block cipher
algorithm in the MMO mode is also secure against our DPA attacks when its
block cipher algorithm is assumed to be ideal and secure against side channel
attacks. The MAME compression function was claimed to be transformed to a
light weight hash function using any domain extension algorithm and such hash
function can withstand side channel attacks when it is used as a key derivation
function. We note that not all MAC or key derivative versions of such hash
modes may resist DPA attacks even when the block cipher of MAME is ideal.
For example, BNMAC based on MAME can be existentially forged.

5.2 Grindahl Compression Function in the NMAC Setting

Grindahl compression function design. The Grindahl compression func-
tion [24] h processes every block m[i] by concatenating it with the previous
state H [i − 1] using the permutation G and then truncates the output of G
to n-bit state H [i]. At any iteration i, its intermediate hash value is defined
by H [i] = h′(G(m[i]‖H [i − 1])) where h′ is the truncation function. When h is
iterated in the MD mode, the output of the permutation of the last message

Side Channel Analysis of Some Hash Based MACs 123

block (padded block) is not truncated; instead an output transformation with a
pre-defined number of blank rounds is executed followed by the truncation step
to output n-bit hash value.

Keying Grindahl compression function. The MD hash iteration of Grindahl
compression function can be defined in the NMAC setting using two random and
independent secret keys k2 and k1. The initial value H [0] of the hash function is
replaced with the key k2 and a key k1 is used as a key to the outer compression
function h. The outer function may require more than one iteration if blank
rounds are also defined for the outer function. Its HMAC version can be defined
as in HMAC where the two keys k1 and k2 are derived from a master key k.

DPA analysis of Keyed Grindahl. There is no target XOR operation in the
NMAC setting of Grindahl on which we could mount the DPA attacks when the
block algorithm G is ideal. This result complements the claim of [24] on using
a side channel resistant AES implementation as the underlying block cipher
to protect the keyed implementations of Grindahl members from side channel
attacks. Note that the collision attack on Grindahl-256 [37], a specific 256-bit
hash function following the design strategy of Grindahl compression function
has no influence on our analysis as our analysis assumes an ideal G independent
of any specific details.

5.3 Wide-Pipe Hash Construction in the NMAC Setting

Wide-pipe hash. The wide-pipe hash construction [27] uses a large compres-
sion function h : {0, 1}2n × {0, 1}b → {0, 1}2n to process a b-bit message block
where b ≥ 2n and once the complete message is processed, it uses a function
h′ : {0, 1}2n → {0, 1}n to truncate 2n-bit output to an n-bit hash value. We
assume that the least n significant bits of the output are truncated to produce
high order n bits as the hash value.

NMAC with wide-pipe. As noted in [44], a variant of HMAC can be con-
structed using wide-pipe hash with an n-bit key k. Similarly, we can construct
NMAC using wide-pipe hash with two independent n-bit keys k1 and k2. Let
k = k1‖k1 and k′ = k2‖k2 be two 2n-bit keys keyed through the IV of the in-
ner/outer wide-pipe hashes of NMAC. We call keyed wide-pipe as WNMAC and
define it by WNMACk,k′(m) = h′(hk′(h′(Hk(m)))).

DPA analysis of WNMAC. For WNMAC based on hj for j ∈ {2, 3(1), 4,
6, 7(1), 8, 9, 10, 11, 12}, the secret key k can be recovered by mounting the DPA
attack on the target XOR operation H [i − 1] ⊕m[i] = H [i] in the function hj

where H [0] = k as for NMAC. For WNMAC based on h5, we can mount the
RDPA attack on the target XOR operation Gh′(Hk(m))(k′)⊕k′ = hk′(h′(Hk(m)))
to recover the high order n bits of k′ which are equal to the tag WNMACk,k′(m)
and then recover k′. Similarly, we can mount the RDPA attack on WNMAC

124 P. Gauravaram and K. Okeya

based on hj where j ∈ {3(2), 7(2)}. There is no target XOR operation in WN-
MAC based on hj where j ∈ {1, 3(3), 7(3)} on which we could mount the DPA
attacks.

Remark 2. Protecting a hash based MAC function from the DPA attacks by
masking target XOR or addition operations requires developing a whole new
hardware module for that MAC function instead of using a widely implemented
DPA resistant hardware module of a cryptographic algorithm such as a block
cipher. Hence, constructing DPA resistant hash based MACs by using combi-
nations of appropriate key settings and provably secure hash and compression
function modes that do not expose any target XOR or addition operations when
they are combined with DPA resistant cryptographic hardware modules allows
us to reuse these hardware modules.

6 Conclusion

Our research leaves a number of questions open: Among these, the most inter-
esting is, how to design a secure hash mode which can be turned into a DPA
resistant provably secure MAC when it is instantiated with any of the secure
PGV schemes. The other interesting question is on defining provably secure
MAC versions or NMAC settings for some new hash function frameworks such
as HAIFA [6] and double-pipe hash [27] invoked with 12 PGV schemes and anal-
yse them against DPA attacks. The final question is how to plug an alternative
hash framework to MD into NMAC/HMAC? We believe that our work and fu-
ture developments in this area of research would provide much needed insights
to the designers of hash functions who compete in the AHS process.

Acknowledgments. Many thanks to William Burr and John Kelsey for their
encouragement, discussions on the subject and timely responses to our questions
regarding SHA-3 evaluation process. We also thank Shoichi Hirose and Krystian
Matusiewicz for comments on our paper.

References

1. ANSI. ANSI X9.31:1998: Digital Signatures Using Reversible Public Key Cryptog-
raphy for the Financial Services Industry (rDSA). American National Standards
Institute (1998)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer, Hei-
delberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

Side Channel Analysis of Some Hash Based MACs 125

5. Bellovin, S.M., Rescorla, E.K.: Deploying a New Hash Algorithm. In: Proceedings
of NDSS. Internet Society (February 2006)

6. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007) (Accessed on 5/14/2008),
http://eprint.iacr.org/2007/278

7. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Bosselaers, A., Preneel, B.: Final Report of RACE Integrity Primitives Evalua-
tion RIPE-RACE 1040. In: Bosselaers, A., Preneel, B. (eds.) RIPE 1992. LNCS,
vol. 1007, pp. 31–67. Springer, Heidelberg (1995)

9. Burr, W.: Personal Communication regarding Frequently Asked Questions on AHS
Competition (March 2008)

10. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

11. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J.,
Brachtl, B., Schilling, M.: Data authentication using modification dectection codes
based on a public one way encryption function. U.S. Patent No. 4,908,861, March
13 (1990)

12. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

13. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

14. Gauravaram, P.: Cryptographic Hash Functions: Cryptanalysis, Design and Ap-
plications. PhD thesis, Information Security Institute, Queensland University of
Technogy (June 2007)

15. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect
Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

16. Gauravaram, P., McCullagh, A., Dawson, E.: Collision Attacks on MD5 and SHA-
1: Is this the “Sword of Damocles” for Electronic Commerce?. In: AusCERT R &
D Stream, pp. 1–13 (2006)

17. Gauravaram, P., Okeya, K.: An Update on the Side Channel Cryptanalysis of
MACs Based on Cryptographic Hash Functions. In: Srinathan, K., Rangan, C.P.,
Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Hei-
delberg (2007)

18. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

19. ISO/IEC 10118-2. Information Technology - Security Techniques- Hash Functions-
Hash functions using an n-bit block cipher. ISO (2000)

20. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

21. Kelsey, J.: How Should We Evaluate Hash Submissions?. In: ECRYPT Hash Func-
tion Workshop (2007) (Accessed on 02/13/2008),
http://csrc.nist.gov/groups/ST/hash/documents/kelsey-ECRYPT2007.pdf

http://eprint.iacr.org/2007/278
http://csrc.nist.gov/groups/ST/hash/documents/kelsey-ECRYPT2007.pdf

126 P. Gauravaram and K. Okeya

22. Kelsey, J.: How to Choose SHA-3?.In: ECRYPT Hash Function Workshop (2008)
(Accessed on 07/26/2008),
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf

23. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n̂ Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

24. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

25. Lei, D., Chao, L.: Extended Multi-Property-Preserving and ECM-construction. In:
Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 361–372. Springer, Heidelberg (2007)

26. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit Sized Boolean and Arithmetic Op-
erations and Its Application to IDEA, RC6, and the HMAC-Construction. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer,
Heidelberg (2004)

27. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

28. McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power
analysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2008)

29. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography, ch. 9, pp. 321–383. CRC Press, Boca Raton (1997)

30. Merkle, R.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

31. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis at-
tacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology, pp. 151–162. USENIX Association (1999)

32. Meyer, C., Schilling, M.: Secure program load with manipulation detection code.
In: Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM 1988), Paris, pp. 111–130 (1988)

33. NIST. Federal Information Processing Standard (FIPS PUB 198) The Keyed-Hash
Message Authentication Code (HMAC) (March 2002)

34. NIST. Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Docket No: 070911510-7512-01
(November 2007)

35. NIST. Federal Information Processing Standard (FIPS PUB 180-3) Secure Hash
Standard (2007)

36. Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based
Hash Functions.. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 432–443. Springer, Heidelberg (2006)

37. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

38. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

39. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf

Side Channel Analysis of Some Hash Based MACs 127

40. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

41. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

42. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

43. Yasuda, K.: Boosting Merkle-Damg̊ard Hashing for Message Authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007)

44. Yasuda, K.: Multilane HMAC - Security beyond the Birthday Limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

45. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel,
B.: MAME: A Compression Function with Reduced Hardware Requirements. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165.
Springer, Heidelberg (2007)

Key Recovery Attack on Stream Cipher Mir-1

Using a Key-Dependent S-Box

Yukiyasu Tsunoo1, Teruo Saito2, Hiroyasu Kubo2, and Tomoyasu Suzaki1

1 NEC Corporation
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan

{tsunoo@BL,t-suzaki@cb}.jp.nec.com
2 NEC Software Hokuriku, Ltd.

1, Anyoji, Hakusan, Ishikawa 920-2141, Japan
{t-saito@qh,h-kubo@ps}.jp.nec.com

Abstract. Mir-1 is a stream cipher proposed for Profile 1 at the ECRYPT
Stream Cipher Project (eSTREAM). The Mir-1 designer claims a secu-
rity level of at least 2128, meaning that the secret key cannot be recovered
or that the Mir-1 output sequence cannot be distinguished from a truly
random number sequence more efficiently than an exhaustive search.
At SASC 2006, however, a distinguishing attack on Mir-1 was proposed
making use of vulnerabilities in Mir-1 initialization. This paper shows
that unknown entries in the key-dependent S-box used by Mir-1 can
be classified into partially equivalent pairs by extending the SASC 2006
technique. It also demonstrates an attack that applies that information
to recovering the Mir-1 secret key more efficiently than an exhaustive
search. To the best of the authors’ knowledge, the results described in
this paper represent the first successful key recovery attack on Mir-1.

Keywords: eSTREAM, key-dependent S-box, key recovery attack,
Mir-1, stream cipher.

1 Introduction

Recently, there have been efforts around the world to standardize encryption.
For example, the selection of AES [13] as a standard cipher has been announced
in the United States, and the NESSIE project [14] was established in Europe to
select standard ciphers. The NESSIE project aimed, in particular, to select secure
encryption primitives choosing stream ciphers as one member of that category.
However, the stream ciphers offered by the NESSIE project were tackled by
numerous cryptanalyses during a 3-year evaluation phase, and ultimately not
even a single secure candidate stream cipher remained. In response, the design
and analysis of stream ciphers has been receiving increasing attention.

In February 2004, European Network of Excellence for Cryptology (ECRYPT)
[5] was established with the objective of encouraging cooperation among Euro-
pean researchers working on information security. The ECRYPT Stream Cipher
Project (henceforth “eSTREAM”) [4] was established in 2005 by the ECRYPT

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 128–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Key Recovery Attack on Stream Cipher Mir-1 129

working group Symmetric Techniques Virtual Lab (STVL), and new stream ci-
phers were made public. As a result, 34 candidates were submitted to eSTREAM.
After more than three years and three phases of evaluation at eSTREAM, 8
stream ciphers have been chosen for the final portfolio.

Mir-1 [10] is a stream cipher proposed at eSTREAM having a 128-bit se-
cret key and a 64-bit initial vector (IV). Although proposed for Profile 1 as a
stream cipher for high-speed software implementation, Mir-1 was archived in
phase 1. Mir-1 uses a multi-word T-function and a key-dependent S-box func-
tion whose security has not been sufficiently studied. Its designer, however,
claimed a security level of at least 2128, meaning that the secret key cannot
be efficiently recovered or that the Mir-1 output sequence cannot be efficiently
distinguished from a truly random number sequence faster than an exhaustive
search.

At SASC 2006, however, a distinguishing attack was proposed on Mir-1 [18].
This cryptanalysis method exploits vulnerabilities in T-function characteristics
and Mir-1 initialization. The method can distinguish with high probability the
output sequence of Mir-1 from a truly random number sequence by choosing only
three or four IV pairs. The amount of data needed here is theoretically no more
than 210 words. A countermeasure against this technique was also proposed in
2007 [19]. A key recovery attack on Mir-1, however, has not been reported.

In this paper, we show that unknown entries in the key-dependent S-box used
by Mir-1 can be classified into partially equivalent pairs by extending the tech-
nique of [18]. We also demonstrate an attack for recovering the Mir-1 secret
key more efficiently than an exhaustive search based on that information. This
attack can recover a secret key with a data complexity of about 230.32 bytes, a
computational complexity of about 2110.76 table lookups, and a memory com-
plexity of about 232.86 bytes. Furthermore, under conditions with no memory
limitations, the attack can recover a secret key with a data complexity of about
230.32 bytes, a computational complexity of about 279.32 table lookups, and a
memory complexity of about 265.81 bytes. We show that Mir-1 incorporating the
countermeasure described in [19] is robust to this attack.

To the best of our knowledge, the results described in this paper represent
the first successful key recovery attack on Mir-1. We expect the results provided
here to be useful in evaluating the security of the many previously proposed
block ciphers [2,3,12,16,17] and stream ciphers [1,6,7,9,11,15,20] that use a key-
dependent S-box.

Section 2 describes the structure of Mir-1. Section 3 describes a key recov-
ery attack on Mir-1, Section 4 discusses the complexity of this attack and a
countermeasure to it, and Section 5 concludes the paper.

2 Description of Mir-1

This section describes the structure of Mir-1, the stream cipher proposed by
Maximov at eSTREAM 2005. Ciphertexts are computed by exclusive ORing

130 Y. Tsunoo et al.

plaintexts with the keystream generated by the cipher. The keystream generation
and initialization of Mir-1 is explained below.

2.1 Notation and Definition

In this paper, bit-wise XOR, AND, and OR are represented by ⊕, &, and |,
respectively. Addition and multiplication on mod 264 are denoted by + and ·,
respectively. A 64-bit word X rotated to the left by t bits is represented by either
X ≪ t or ROLt(X). The byte unit and bit unit of 64-bit word X are set as
follows, where ‖ represents data concatenation.

X = X.byte7 ‖ X.byte6 ‖ · · · ‖ X.byte0

= X.bit63 ‖ X.bit62 ‖ · · · ‖ X.bit0

The ath through the bth bits of 64-bit word X are represented by X [a, b].
Using the notation described above, we express them as

X [a, b] = X.bitb ‖ X.bitb−1 ‖ · · · ‖ X.bita

The secret key KEY of Mir-1 is 128-bit long and its initial vector IV is 64-bit
long. They are defined as follows.

KEY = k15 ‖ k14 ‖ · · · ‖ k0

IV = IV7 ‖ IV6 ‖ · · · ‖ IV0

Here, ki (0 ≤ i ≤ 15) and IVi (0 ≤ i ≤ 7) are one-byte variables.

2.2 Keystream Generation

This section treats Mir-1’s keystream generation, which consists of roughly two
parts: the loop state update (LS update) and the automata state update (AS
update).

The LS update has four registers of 64-bit words xi(i = 0, 1, 2, 3). Register xi

is updated by a multiword T-function [8]. The LS update is shown in Fig. 1. It
guarantees the cycle of maximum length 2256.

The AS update holds two words of 64-bit registers A and B, and it computes
A′ and B′ using the update function shown in Fig. 2. A′ and B′ correspond to A
and B in the next time step. When A′ and B′ are computed, the register value
from the LS update is two 64-bit words obtained by concatenating the upper 32
bits of each of the four registers x0, x1, x2, and x3. Each 64-bit word is denoted
as follows.

(xi+2[32, 63] ‖ xi[32, 63]) (i = 0, 1)

The keystream generation part of Mir-1 performs the LS update and AS
update at each clock, and outputs keystream z, that is, the 64-bit B′ computed
by the AS update.

Key Recovery Attack on Stream Cipher Mir-1 131

x
0

x
1

x
2

x
3

x
0

+ (s) + 2 ⋅ x
2
⋅ (x

1
| C

1
)

x
1

+ (s & x
0
) + 2 ⋅ x

2
⋅ (x

3
| C

3
)

x
2

+ (s & x
0

& x
1
) + 2 ⋅ x

0
⋅ (x

3
| C

3
)

x
3

+ (s & x
0

& x
1

& x
2
) + 2 ⋅ x

0
⋅ (x

1
| C

1
)

s = (x
0
&x

1
&x

2
&x

3
+ C

0
) ⊕ x

0
&x

1
&x

2
&x

3

C
0

= 0x1248842112488421

C
1

= 0x1248124812481248

C
3

= 0x4812481248124812

Fig. 1. Loop state update

S

<<< 29

z

A B

A’ B’

x
3
[32,63] x

1
[32,63]

x
2
[32,63] x

0
[32,63]

Fig. 2. Automata state update

2.3 Initialization

This section describes Mir-1’s initialization part, which also consists of roughly
two parts: the key setup and the IV setup.

The key setup initializes register xi(i = 0, 1, 2, 3) and registers A and B, using
a 128-bit secret key. The key setup is shown in Fig. 3.

First, the key setup computes an 8-bit S-box, which varies depending on the
secret key value referred to as the secret S-box, using the equation shown below.

132 Y. Tsunoo et al.

1. Initialize secret S-box

2. A = x1 = (k7 || … || k0)

B = x3 = (k15 || … || k8)

x0 = C0

x2 = C1

3. Repeat 8 times

Loop State Update

Automata State Update

Fig. 3. Key setup

Here, SR[·] means the S-box of AES. Each entry is computed for i = 0, . . . , 255.

S[i] = SR[· · ·SR[SR[i⊕ k0]⊕ k1]⊕ · · · ⊕ k15]

The IV setup uses a 64-bit initial vector to update register xi(i = 0, 1, 2, 3) as
well as registers A and B. The IV setup is shown in Fig. 4.

3 Key Recovery Attack

This section explains how to apply a key recovery attack against the Mir-1 stream
cipher. On applying this attack, it is assumed that the following preconditions
are met in an actual situation using stream ciphers.

– The secret key is fixed during the attack.
– Attackers can choose the IV freely.
– Attackers can obtain the keystream generated using the given IV.

3.1 Previous Distinguisher and Extended Distinguisher

This following describes the distinguisher reported in [19] and the distinguisher
obtained by extending that distinguisher. To begin with, Theorem 1 holds with
respect to the keystream of Mir-1.1

Theorem 1. Given keystreams za and zb generated by IV a (IVi = a, 0x00
≤ a ≤ 0xff, 0 ≤ i ≤ 7) and IV b (IVi = b �= a, 0x00 ≤ b ≤ 0xff, 0 ≤ i ≤ 7) that
satisfy Eq. (1), Eq. (3) will be satisfied at time t satisfying Eq. (2).

S[a] ≡ S[b] (mod 2) (1)
za(t).byte0 = zb(t).byte0 (2)

ROL29(za(t−1) ⊕ zb(t−1)) ≡ za(t+1) ⊕ zb(t+1) (mod 2) (3)
1 See [19] for proof of Theorem 1.

Key Recovery Attack on Stream Cipher Mir-1 133

1. x
0
.byte

4
= x

0
.byte

4
⊕ S[IV

0
] ⊕ S[IV

1
] ⊕ S[IV

2
]

x
1
.byte

4
= x

1
.byte

4
⊕ S[IV

0
] ⊕ S[IV

3
] ⊕ S[IV

4
]

x
2
.byte

4
= x

2
.byte

4
⊕ S[IV

2
] ⊕ S[IV

5
] ⊕ S[IV

7
]

x
3
.byte

4
= x

3
.byte

4
⊕ S[IV

3
] ⊕ S[IV

6
] ⊕ S[IV

7
]

2. x
0
.byte

0
= x

0
.byte

0
⊕ S[IV

3
] ⊕ S[IV

5
]

x
1
.byte

0
= x

1
.byte

0
⊕ S[IV

7
] ⊕ S[IV

6
]

x
2
.byte

0
= x

2
.byte

0
⊕ S[IV

0
] ⊕ S[IV

1
]

x
3
.byte

0
= x

3
.byte

0
⊕ S[IV

2
] ⊕ S[IV

4
]

3. A.byte
0

= A.byte
0
⊕ S[IV

0
] ⊕ S[IV

5
] ⊕ S[IV

6
]

A.byte
4

= A.byte
4
⊕ S[IV

1
] ⊕ S[IV

3
] ⊕ S[IV

5
]

B.byte
0

= B.byte
0
⊕ S[IV

1
] ⊕ S[IV

4
] ⊕ S[IV

7
]

B.byte
4

= B.byte
4
⊕ S[IV

2
] ⊕ S[IV

4
] ⊕ S[IV

6
]

4. Repeat 2 times

Loop State Update

Automata State Update

Fig. 4. IV setup

A distinguishing attack using Theorem 1 was proposed in [19]. This attack re-
quires about 210 words at most to distinguish the output sequence of Mir-1 from
a truly random number sequence. Theorem 2 below can be easily obtained by
extending Theorem 1.

Theorem 2. Given keystreams za and zb generated by IV a (IVi = a, 0x00
≤ a ≤ 0xff, 0 ≤ i ≤ 7) and IV b (IVi = b �= a, 0x00 ≤ b ≤ 0xff, 0 ≤ i ≤ 7) that
satisfy Eq. (4), Eq. (6) will be satisfied at time t satisfying Eq. (2) and Eq. (5).

S[a] ≡ S[b] (mod 2n, 1 ≤ n ≤ 7) (4)
ROL29(za(t−1)) ≡ ROL29(zb(t−1)) (mod 2n, 1 ≤ n ≤ 7) (5)

za(t+1) ≡ zb(t+1) (mod 2n, 1 ≤ n ≤ 7) (6)

Proof. Denoting register xi updated by IV a and register xi updated by IV b as
xai and xbi, respectively, the condition of Eq. (1) in Theorem 1 can be replaced
by Eq. (4) so that register xi satisfies the following relation.

xai[0, 31 + n] = xbi[0, 31 + n] (0 ≤ i ≤ 3 , 1 ≤ n ≤ 7)

This leads to Eq. (7):

ROL29(za(t−1) ⊕ zb(t−1)) ≡ za(t+1) ⊕ zb(t+1) (mod 2n, 1 ≤ n ≤ 7) (7)

As a result, substituting Eq. (5) in Eq. (7) gives Eq. (6). �

134 Y. Tsunoo et al.

3.2 Classification of Key-Dependent S-Box

In this section, we describe a method for classifying unknown entries of the key-
dependent S-box into partially equivalent pairs using Theorem 2. Specifically, for
the case of n = 7, the following procedure classifies key-dependent S-box entries
into 128 pairs.

1-1. Obtain an N -word keystream for IV a where a is any of 256 values (IVi = a,
0x00 ≤ a ≤ 0xff, 0 ≤ i ≤ 7).2

1-2. For keystreams za and zb generated by IV a and IV b (a < b ≤ 0xff), check
whether Theorem 2 is satisfied for w successive times.3 If Theorem 2 is
satisfied, the IV a and IV b in question are taken to be the 1st pair.

1-3. Repeat step 1-2 for all combinations of (a, b).

The above procedure can classify unknown entries of the key-dependent S-box
into 128 pairs whose lower 7 bits are equal. Note, however, that this procedure
cannot determine entry values of the key-dependent S-box.

3.3 Key Recovery Method

This section describes a method for recovering a secret key using information
on the key-dependent S-box obtained by the method presented in Section 3.2.
Specifically, the following procedure - where step 0 signifies a precomputation
step - can recover the secret key.

0. For all (x, y) combinations (0x00 ≤ x < y ≤ 0xff), store secret-key m-byte
(k15−m, · · · , k15) candidates satisfying Eq. (8) in table tbl.

SR[· · ·SR[x⊕ k15−m]⊕ · · · ⊕ k15]
≡ SR[· · ·SR[y ⊕ k15−m]⊕ · · · ⊕ k15] (mod 27) (8)

Here, the index of tbl is a 16-bit value formed by concatenating x and y; it
can take on 215 values.

1. Classify key-dependent S-box entries using the method of Section 3.2.
2. Guess l-byte of the secret key (k0, · · · , kl−1, l = 16−m).
3. Choose the first pair (a, b) obtained in step 1 and calculate (x, y) using the

following equations.

x = SR[· · ·SR[a⊕ k0]⊕ · · · ⊕ kl−1]
y = SR[· · ·SR[b⊕ k0]⊕ · · · ⊕ kl−1]

4. Using the value of (x, y) calculated in step 3 as an index value, obtain a
secret-key m-byte candidate (k15−m, · · · , k15) from tbl.

2 Here, N represents the size necessary for classifying key-dependent S-box entries.
3 Here, w represents the number of times ts needed for classifying key-dependent S-box

entries.

Key Recovery Attack on Stream Cipher Mir-1 135

5. Choose the 2nd to 128th (a, b) pairs and narrow down the secret-key m-
byte (k15−m, · · · , k15) candidates by steps 3 and 4. Once no more candidates
remain, guess another l-byte (k0, · · · , kl−1) of the secret key in step 2 and
repeat steps 2 to 5.

6. If a secret-key m-byte (k15−m, · · · , k15) candidate becomes uniquely deter-
mined in steps 2 to 5, the 16 bytes that include the l-byte (k0, · · · , kl−1)
guessed in step 2 are taken to be the correct secret key.

Given that the key-dependent S-box can be correctly classified in step 1, the
above procedure can recover the secret key more efficiently than an exhaustive
search.

4 Discussion

4.1 Complexity of Attack

This section theoretically examines the complexity of each step in the procedure
presented in Section 3.3.

First, we investigate the complexity of step 0. The computational complexity
T0 for looking up SR 2m times for all combinations of (x, y, k15−m, · · · , k15) is
given by

T0 = 28 × 27 × 28m × 2m

= m× 28m+16

Furthermore, the size of memory M0 for storing tbl is the product of index size,
entry size, and number of entries as follows.

M0 = 215 ×m× 28(m−1)

= m× 28m+7

Next, we examine the complexity of step 1. Since the probability that a
keystream that satisfies the conditions of Eqs. (2) and (5) exists is 2−15, keystream
generation size is w× 215 words for one secret-key/IV-pair. Now, to classify the
key-dependent S-box into 128 pairs, we consider that the probability of erro-
neously satisfying Eq. (6) due to variation in the key-dependent S-box should
be made sufficiently small, and we therefore set w = 20 on the basis of 2−128 �
2−7w.4 Accordingly, the computational complexity T1 of step 1 is the sum of
computational complexity T ′

1 of step 1-1 and computational complexity T ′′
1 of

steps 1-2 and 1-3 as follows.
T1 = T ′

1 + T ′′
1

T ′
1 = 28 × 20× 215

= 227.32

4 Consider that 2−128 � 2−128

1000 .

136 Y. Tsunoo et al.

T ′′
1 = 20× 215 × (

255
2

+
253
2

+ · · ·+ 1
2
)

= 218.32 × 128(1 + 255)
2

= 232.32

In addition, the amount of required data D1 and memory M1 can be given as
follows.

D1 = M1 = 1× 28 × 219.32 × 23

= 230.32

Now, we examine the complexity of steps 2 to 5. Here, we guess l bytes of the
secret key and narrow down the remaining m bytes using tbl generated in step
1. If l-byte is correctly guessed, key candidates will be narrowed down to one
correct candidate via 128 table lookups. On the other hand, if the l-byte guess is
incorrect, key candidates will be narrowed down to one candidate on average on
the mth table lookup, and all erroneous key candidates will be rejected on the
(m+1)th table lookup. Computational complexity T2 for steps 2 to 5 is therefore
given as follows.

T2 = 1× (2l + 1)× 128 + (28l − 1)× (2l + 1)× (m + 1)
≈ (2l + 1)(m + 1)× 28l

The complexity of the attack presented in this paper is consequently the sum
of the complexities for each of the above steps. Computational complexity T ,5

amount of data D, and memory M are each given as follows:

T = T0 + T1 + T2

= m× 28m+16 + 227.32 + 232.32 + (2l + 1)(m + 1)× 28l

≈ m× 28m+16 + (33− 2m)(m + 1)× 2128−8m

D = D1

= 230.32

M = M0 + M1

= m× 28m+7 + 230.32

Finally, we examine the case for which the attack presented in this paper is
most efficient. Assuming no memory limitations, computational complexity T
when satisfying

m× 28m+16 ≈ (33− 2m)(m + 1)× 2128−8m

takes on a minimum value for m = 7. At this time, computational complexity T is:
T ≈ 7× 272 + 19× 8× 272

≈ 279.32

5 Although the units of computational complexity differ, the number of table lookups
effectively dominates.

Key Recovery Attack on Stream Cipher Mir-1 137

In this case, memory M becomes:

M = 7× 263 + 230.32

≈ 265.81

This amount of data cannot, however, be realistically stored. If we therefore as-
sume that the maximum amount of memory that can be realistically provided
is 1 terabyte, then, from M = m× 28m+7 + 230.32 < 240, we get m = 3. Compu-
tational complexity T in this case turns out to be:

T ≈ 3× 240 + 27× 4× 2104

≈ 2110.76

Memory M at this time is:

M = 3× 231 + 230.32

≈ 232.86

4.2 Experiment

We performed an experiment to determine whether a secret key could indeed be
recovered by the method presented in Section 3.3. The following conditions were
established for this experiment.

– Let (l, m) = (15, 1). However, because an exhaustive search across 15 bytes
is computationally difficult, the correct secret key was substituted for the 12
bytes (k0, · · · , k11) and an exhaustive search was performed over the 3 bytes
(k12, · · · , k14).6

– Letting w = 20, a 221-word keystream was prepared beforehand for one
secret-key/IV-pair.

– The probability of success was determined from the results of 100 trials with
randomly set secret keys.

– The size of tbl generated by the precomputation step was determined.
– The number of tbl lookups that dominate computational complexity T was

determined.

On performing the experiment based on the above conditions, we successfully
classified the key-dependent S-box and derived the secret key for all of the secret
keys used in the experiment. The size of tbl needed for the precomputation step
turned out to be about 215 bytes, which agreed with the theoretical value given
in Section 4.1.

On the other hand, the number of tbl lookups required for the attack was
228.55, which was less than the theoretical value7 given in Section 4.1. This is
because tbl generated by the precomputation step is ideally not a table with 1
entry per index value.8 If we therefore consider the number of tbl lookups taking
6 The 3 bytes used here for performing an exhaustive search can be any 3 bytes from

k0 to k14 and not just k12 to k14.
7 31 × 2 × 224 = 229.96

8 Since the SR differential probability is 2−6, the number of entries per index value is
divided into 4, 2, and 0.

138 Y. Tsunoo et al.

into account the number of entries per index value in tbl, a correctly guessed
key would coincide with a correct key obtained on average in 223 attempts in
a 24-bit exhaustive search. Here, we have 1 tbl lookup (number of entries =
0) at probability 1/2 per index value and 2 tbl lookups (number of entries =
2; all candidates are rejected at the 2nd tbl lookup) at probability 1/2, so that
expectation E of the number of tbl lookups needed for the attack would be as
follows.

E = 223 × 31× 1
2
(1 + 2) ≈ 228.54

The result obtained by experiment is therefore about the same as the expected
value.

4.3 Countermeasure

This section discusses a countermeasure to the attack presented in this paper.
The following three structural factors can be given as vulnerabilities in the Mir-1
cipher with respect to this attack.

1. A difference intended for register xi can be input by choosing the IV.
2. If the difference in the lower n bits of register xi is 0, it will remain 0

regardless of the number of times LS update is performed.
3. The input value of the key-dependent S-box can be freely chosen by choosing

the keystream.

In particular, items 1 and 2 describe vulnerabilities related to IV setup and LS
update using the T-function, and item 3 describes a vulnerability related to AS
update using the key-dependent S-box. In [19], a distinguishing attack based on
vulnerabilities 1 and 2 is proposed along with a countermeasure to that attack.
This countermeasure has the following two features.

1. Modifies the method for inserting IV and improves IV setup.
2. Adds bit-permutation processing in which register xi straddles word bound-

aries (loop state permutation).

Either of the above enhancements aims to eliminate vulnerabilities in the Mir-
1 initialization process. Enhancement 1 aims to prevent a chosen IV attack from
being mounted while enhancement 2 aims to spread differential characteristics
of the T-function throughout words.

It is shown in [19] that Theorem 1 does not hold as a result of this counter-
measure, which means that Theorem 2 likewise does not hold. It can therefore
be seen that, in the same way that the distinguishing attack cannot be mounted,
neither can classification of the key-dependent S-box be performed. In short, the
countermeasure presented in [19] is also robust to the attack presented in this
paper.

In addition to the countermeasure proposed in [19], we can consider a means
of eliminating the vulnerability in AS update that uses a key-dependent S-box

Key Recovery Attack on Stream Cipher Mir-1 139

(vulnerability 3 above). Such an enhancement, however, could have a big effect
on security with respect to other types of attacks, and for this reason, a careful
study must be made. Nevertheless, we have seen that an attack of the kind
presented here is capable of recovering the secret key by grouping the entries
of the key-dependent S-box in a certain way even though the values of those
entries are unknown. Care must therefore be taken when designing a cipher
using a key-dependent S-box.

5 Conclusion

In this paper, we showed how unknown entries in the key-dependent S-box used
by Mir-1 could be classified into 128 pairs by extending the distinguisher pre-
sented in [19] to 7 bits. We described an attack for recovering the Mir-1 secret
key more efficiently than an exhaustive search based on that information.

With this method, the secret key can be recovered with a data complexity of
about 230.32 bytes, a computational complexity of about 2110.76 table lookups,
and a memory complexity of about 232.86 bytes. And under conditions with no
memory limitations, the attack can recover the secret key with a data com-
plexity of about 230.32 bytes, a computational complexity of about 279.32 table
lookups, and a memory complexity of about 265.81 bytes. We also reported that
the countermeasure presented in [19] is effective in resisting this type of attack.

To the best of our knowledge, the results described in this paper represent
the first successful key recovery attack on Mir-1. The attack described here
can recover the secret key without having to directly determine the values of
key-dependent S-box entries. This result shows the possibility of uncovering in-
formation on the secret key in ciphers that do not use the key-dependent S-box
appropriately. Accordingly, we expect this result to be useful in evaluating the
security of block ciphers and stream ciphers that use a key-dependent S-box.

References

1. Anashin, V., Bogdanov, A., Kizhvatov, I., Kumar, S.: ABC: A New Fast Flexible
Stream Cipher. eSTREAM submission (2005)

2. Crowley, P.: Mercy: A Fast Large Block Cipher for Disk Sector Encryption. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 49–63. Springer, Heidelberg
(2001)

3. Cusick, T.W., Wood, M.C.: The REDOC II Cryptosystem. In: Menezes, A., Van-
stone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 545–563. Springer, Heidel-
berg (1991)

4. ECRYPT Stream Cipher Project (eSTREAM),
http://www.ecrypt.eu.org/stream/

5. European Network of Excellence for Cryptology (ECRYPT),
http://www.ecrypt.eu.org/

6. Halevi, S., Coppersmith, D., Jutla, C.S.: Scream: A Software-Efficient Stream Ci-
pher. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 195–209.
Springer, Heidelberg (2002)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/

140 Y. Tsunoo et al.

7. Hawkes, P., Paddon, M., Rose, G.G., de Vries, M.W.: Primitive Specification for
SSS. eSTREAM submission (2005)

8. Klimov, A., Shamir, A.: New Cryptographic Primitives Based on Multiword T-
functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 1–15.
Springer, Heidelberg (2004)

9. Li, A.-P.: A New Stream Cipher: Dicing. eSTREAM submission (2005)
10. Maximov, A.: A New Stream Cipher “Mir-1”. eSTREAM submission (2005)
11. McGrew, D.A., Fluhrer, S.R.: The Stream Cipher LEVIATHAN. NESSIE submis-

sion (2000)
12. Merkle, R.C.: Fast Software Encryption Functions. In: Menezes, A., Vanstone, S.A.

(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 476–501. Springer, Heidelberg (1991)
13. National Institute of Standards and Technology (NIST), Federal Information Pro-

cessing Standard (FIPS) 197, Advanced Encryption Standard (AES)
14. New European Schemes for Signature, Integrity, and Encryption (NESSIE),

https://www.cosic.esat.kuleuven.be/nessie/
15. Rose, G.G., Hawkes, P.: Turing: A Fast Stream Cipher. In: Johansson, T. (ed.)

FSE 2003. LNCS, vol. 2887, pp. 290–306. Springer, Heidelberg (2003)
16. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-

fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

17. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
A 128-Bit Block Cipher. NIST AES proposal (1998)

18. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M.: Cryptanalysis of Mir-1, a T-
function Based Stream Cipher. In: Proceedings of SASC 2006, pp. 185–197 (2006),
http://www.ecrypt.eu.org/stvl/sasc2006/

19. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T.: Cryptanalysis of Mir-1: A T-function-
Based Stream Cipher. IEEE Transactions on Information Theory 53(11), 4377–
4383 (2007)

20. Wu, H.: A New Stream Cipher HC-256. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 226–244. Springer, Heidelberg (2004)

https://www.cosic.esat.kuleuven.be/nessie/
http://www.ecrypt.eu.org/stvl/sasc2006/

Analysis of Two Attacks on Reduced-Round

Versions of the SMS4

Deniz Toz1 and Orr Dunkelman2,3

1 Middle East Technical University
Institute of Applied Mathematics, Ankara, Turkey

deniz.toz@gmail.com
2 Katholieke Universiteit Leuven

Department of Electronical Engineering ESAT SDC-COSIC
and

Interdisciplinary Institute for BroadBand Technology (IBBT)
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

orr.dunkelman@esat.kuleuven.be
3 École Normale Supérieure

Département d’Informatique,
CNRS, INRIA

45 rue d’Ulm, 75230 Paris, France

Abstract. SMS4 is a 128-bit block cipher used in WAPI (the Chinese
national standard for wireless networks). Up until recently, the best at-
tacks on SMS4 known, in terms of the number of rounds, were the rect-
angle attack on 14 rounds and the impossible differential attack on 16
rounds (out of 32 rounds) presented by Lu. While analyzing them, we
noticed that these attacks have flaws and that their complexity analysis
is inaccurate. In this paper we make a more comprehensive analysis of
these attacks and further improve these results.

1 Introduction

SMS4 [1] is a Generalized Feistel Network (GFN) cipher, specified in the Wire-
less Authentication and Privacy Infrastructure (WAPI), which is mandatory in
wireless networks in China. The cipher has block size of 128 bits, and each block
is processed in 32 rounds using a secret key of 128 bits long.

The Chinese Standards Association (SAC) submitted WAPI to ISO for recog-
nition as an international standard, at about the same time as the IEEE 802.11i
standard. As a result, SMS4 was the subject of an extensive international de-
bate since its introduction. Despite that, up until recently little cryptanalysis
of SMS4 was performed. The previously published cryptanalytic results are the
differential fault analysis presented in [11], the integral attack on 13 rounds [8],
the rectangle attack on 14 rounds and the impossible differential attack on 16
rounds [9], the rectangle attack on 16 rounds and the differential attack on 21
rounds [12], and finally the rectangle attack on 18 rounds, the differential attack
and linear attack on 22 rounds [6]1.
1 We note that the results in [6,12] were found independently of our line of research.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 141–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 D. Toz and O. Dunkelman

The cryptanalytic results on SMS4, on which we focus are those of [9]. The
proposed rectangle attack on 14 rounds of SMS4 uses 2121.82 chosen plaintexts
and has a claimed time complexity of 2116.66 14-round SMS4 computations2.
The impossible differential attack on 16-round SMS4 from [9] uses 2105 chosen
plaintexts and its time complexity is conjectured to be 2107 16-round SMS4
computations.

While verifying the results of [9], we found several flaws and possible im-
provements. In this paper, we show that the actual probability of the 12-round
rectangle distinguishers of [9] is 2−230.71, rather than the claimed probability of
2−237.64. We also present better 12-round rectangle distinguishers with proba-
bility of 2−209.78. Moreover, we show that the claimed time complexity of the
rectangle attack of [9] is flawed due to the deficient process of obtaining candi-
date quartets, which is not considered in the original time complexity analysis.
Therefore, given our improved distinguishers and refined analysis, we present
a 14-round rectangle attack that uses 2106.89 chosen plaintexts pairs and has
running time of 2107.89 encryptions for obtaining the data, 2107.89 memory ac-
cesses to find the pairs, and 287.97 encryptions for the analysis. Similarly, we
identify several flaws in the impossible differential attack of [9]. We first show
that more data is needed than the claimed figures, and then we point out a
delicate issue concerning the running time of this attack. We then follow to
suggest a corrected attack with data complexity of 2117.06 chosen plaintexts
and time complexity of 2117.06 encryptions for obtaining the data, 2132.06

memory accesses for the preliminary elimination, and 295.09 encryptions for the
analysis.

Independent of our research, SMS4 was analyzed also in [6,12]. A rectangle
attack on 16 rounds of SMS4 which requires 2124 chosen plaintexts with a time
complexity of 2116 encryptions, and a differential attack on 21 rounds of SMS4
with data and time complexities of 2118 and 2112.83, respectively are presented
in [12]. These results are improved in [6], by using the early abort technique, to a
rectangle attack on 18 rounds of SMS4 with a data complexity of 2120 and time
complexity of 2116.83, a differential attack on 22 rounds of SMS4 with a data
complexity of 2118 chosen plaintexts, and a time complexity of 2125.71 encryp-
tions. Also, a linear attack on 22 rounds of SMS4 which has data complexity of
2117 known plaintexts, and time complexity of 2109.86 encryptions is described
in [6].

This paper is organized as follows: In Section 2, we give a brief description
of the SMS4 cipher and its properties. In Section 3, we give an overview of
the rectangle attack, followed by the previous rectangle attack of [9] on SMS4.
Then, we present our observations and improvements for this attack on SMS4.
In Section 4, we follow the same outline for the impossible differential attack.
Finally, we conclude this paper and summarize our findings in Section 5.

2 This is the claimed time complexity in [9], but in fact the actual number should
be 2121.82, which is the time required to obtain the ciphertexts to perform attack,
according to [9].

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 143

2 A Description of SMS4

2.1 Notation

Throughout this paper, we will use the following notation. Each 128-bit block is
composed of four 32-bit words (X0, X1, X2, X3). Note that the words and blocks
are in a “Chinese”-endian order (i.e., the most significant bit is the leftmost bit
numbered 0, and the least significant bit is bit 31 for a 32-bit word). Similarly,
the most significant byte of a word is the leftmost byte numbered 0, and least
significant byte is numbered 3. We denote the bit rotation of the word w by r
positions to the left by w ≪ r; ej denotes a word whose all positions except the
j-th bit are zero and

ei1,...,ij = ei1 ⊕ ...⊕ eij for 0 ≤ i1, . . . , ij ≤ 31

2.2 The SMS4 Cipher

SMS4 [1] accepts a 128-bit plaintext P = (P0, P1, P2, P3) and a 128-bit user key
as inputs, and is composed of 32 rounds. In each round, the least significant
three bytes of the state are xored with the round key and the result passes the
S transformation. The S transformation uses an 8-bit to 8-bit bijective SBox
four times in parallel to process each byte, then the concatenated bytes are
processed using a linear transformation L. Let Xi = (Xi,0, Xi,1, Xi,2, Xi,3) and
Xi+1 = (Xi+1,0, Xi+1,1, Xi+1,2, Xi+1,3) denote the 128-bit input and output to
the i-th round, respectively. Then the round function may be formally described
by the following equations:

Xi+1,0 = Xi,1

Xi+1,1 = Xi,2

Xi+1,2 = Xi,3

Xi+1,3 = Xi+1,0 ⊕ L(S(Xi,1 ⊕Xi,2 ⊕Xi,3 ⊕RKi))

where the S transformation uses the SBox given in [1] and L is the linear trans-
formation:

L(x) = x⊕ (x ≪ 2)⊕ (x ≪ 10)⊕ (x ≪ 18)⊕ (x ≪ 24) where x ∈ Z32
2

The transformation L ◦ S is named T in the specification document. RKi is
the 32-bit round sub key for the i-th round, obtained from the key schedule.
Decryption is identical to the encryption except for the order of the subkeys,
which are used in the reverse order.

Key Schedule: The key schedule is similar to the encryption function. The
only difference is that instead of using the linear transformation L, the following
linear transformation L′ is used:

L′(x) = x⊕ (x ≪ 13)⊕ (x ≪ 23) where x ∈ Z32
2

144 D. Toz and O. Dunkelman

X
i+1,1

RK i

i,2 i,3

X
i+1,2

X
i+1,3

X
i+1,0

X
i,0

T

L S

X
i,1

XX

Fig. 1. Round Function

In addition, the user supplied key K is xored with a system parameter, FK.
The subkey RKj of the j-th round is computed as follows:

FK = (0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC)
k = (k0, k1, k2, k3) = K ⊕ FK

RKj = kj+4 = kj ⊕ L′(S(kj+1 ⊕ kj+2 ⊕ kj+3 ⊕ CKj))

where CKj = (ckj,0, ckj,1, ckj,2, ckj,3) and ckj,k = 28j + 7k (mod 256).

2.3 Properties and Definitions

Since SMS4 uses a bijective SBox, thus, S(∆x) = 0 if and only if ∆x = 0. The
difference distribution table (DDT) of the SBox contains exactly 127 nonzero
output differences for a given nonzero input difference. Only one of these val-
ues has probability of 2−6 while the other 126 remaining nonzero values have
probability of 2−7.

The following definitions are used for observing the propagation of any nonzero
input difference to the other rounds. In [9], it is not clearly stated to what these
sets refer, and the formulas contain typos. Thus, the reader may find the original
terminology confusing. Therefore, we rewrite the equations defining these sets,
using the same names for the sets (but with a clearer representation).

Given the input difference (0, eΛ, eΛ, eΛ) to the n-th round, where Λ is an
arbitrary but nonempty subset of {0, 1, . . . , 31}, the set θ(eΛ) is composed of all
the 32-bit differences that an input difference eΛ to the T function can cause:

θ(eΛ) = {x|x = L(∆d1), Pr[S(eΛ)→ ∆d1] > 0 for x, eΛ ∈ Z32
2 }

Now, the input difference to the (n + 1)-th round is (eΛ, eΛ, eΛ, X) where X ∈
θ(eΛ). The Υ (eΛ, X) is the set of all 32-bit differences, that an input difference
X to the T function may cause after an xor with eΛ.

Υ (eΛ, X) = {y|y = L(∆d2) ⊕ eΛ, Pr[S(X) → ∆d2] > 0 for X ∈ θ(eΛ), y, eΛ ∈ Z32
2 }

Similarly, the input difference to the (n+2)-th round is of the form (eΛ, eΛ, X, Y)
where X ∈ θ(eΛ) and Y ∈ Υ (eΛ, X). The corresponding 32-bit output differ-
ences, caused by an input difference eΛ ⊕ X ⊕ Y to T are denoted by the set

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 145

Π(eΛ, X, Y).

Π(eΛ, X, Y) = {z|z = L(∆d3) ⊕ eΛ, Pr[S(eΛ ⊕ X ⊕ Y) → ∆d3] > 0 for z, eΛ ∈ Z32
2 }

Finally, the input difference to the (n + 3)-th round is of the form (eΛ, X, Y, Z)
where X ∈ θ(eΛ), Y ∈ Υ (eΛ, X), and Z ∈ Π(eΛ, X, Y) . The set of 32-bit
differences after the XOR operation in the (n+3)-th round by an input difference
X ⊕ Y ⊕ Z to T is denoted by the set Ω(X, Y, Z).

Ω(X, Y, Z) = {w|w = L(∆d4)⊕ eΛ, Pr[S(X ⊕ Y ⊕ Z)→ ∆d4] > 0 for w ∈ Z32
2 }

3 The Rectangle Attack

The amplified boomerang and rectangle attacks [2] are a chosen plaintext at-
tacks, which evolved from the boomerang attack [10]. The main idea in these
attacks is to use two short differential characteristics with high probabilities in-
stead of one long characteristic with a lower probability. The only difference is
that the boomerang attack generates a quartet at an intermediate value halfway
through the cipher, whereas the rectangle attack looks for quartets within a
given set of pairs.

For this purpose, the block cipher E is treated as a cascade of two sub-ciphers
E0 and E1 (i.e, E = E1 ◦E0). Assume that a differential characteristics ∆→ ∆∗

with probability p for E0, and ∇∗ → ∇ with probability q for E1 are known. The
boomerang attack is based on generating right quartets (P1, P2, P3, P4) which
satisfy a set of relations:

1. P1 ⊕ P2 = ∆ = P3 ⊕ P4.
2. E0(P1)⊕ E0(P2) = ∆∗ = E0(P3)⊕ E0(P4).
3. E0(P1)⊕ E0(P3) = ∇∗ = E0(P2)⊕ E0(P4).
4. C1 ⊕ C3 = ∇ = C2 ⊕ C4 where Ci = E1(E0(Pi)).

A right quartet which satisfies the above equations is formed as follows:

1. Choose a random plaintext P1 and compute P2 = P1 ⊕∆.
2. Ask for the encryptions of P1 and P2 to obtain C1 = E(P1) and C2 = E(P2).
3. Calculate C3 = C1 ⊕∇ and C4 = C2 ⊕∇.
4. Ask for the decryptions of C3 and C4 to obtain P3 = D(C3) and P4 = D(C4).
5. Check whether P3 ⊕ P4 = ∆.

The amplified boomerang attack is a chosen plaintext attack in which the same
differential conditions have to be satisfied. But instead of generating quartets as
given above, a set of plaintext pairs with input difference ∆ is generated. Then
the aim is to find quartets ((P1, P2), (P3, P4)) such that C1⊕C3 = ∇ = C2⊕C4

when P1 ⊕ P2 = ∆ = P3 ⊕ P4 by using birthday paradox.
By a more careful analysis and a better key recovery algorithm, the ampli-

fied boomerang attack was evolved into the rectangle attack. For an optimized
method of finding the right rectangle quartet, one may refer to [3].

146 D. Toz and O. Dunkelman

In [2,10], it is shown that it is possible to use all possible ∆∗’s and ∇∗’s
simultaneously. In [2], it is also stated that, if N plaintext pairs with input
difference ∆, then the number of expected right quartets is N22−128p̂2q̂2 for
128-bit block ciphers, where

p̂ =
√∑

∆∗

Pr2[∆→ ∆∗] and q̂ =
√∑

∇
Pr2[∇∗ → ∇]

3.1 The Rectangle Attack on 14-Round SMS4 from [9]

The 14-round rectangle attack in [9] uses 12-round rectangle distinguishers with
probability3 2−230.71 and requires 2121.82 chosen plaintexts to attack 14-round
SMS4. Let E0 denote rounds 0 to 7 and let E1 denote rounds 8 to 11 of SMS4.
The differentials used for the 12-round distinguishers of [9] are as follows:

1. For E0: All 8-round differentials of the form (eψ1 , eψ, eψ, eψ) → (eψ2 , eψ3 , eψ4 , eψ5)
where only one byte of eψ is nonzero and eψ1 , eψ2 ∈ θ(eψ), eψ3 ∈ Υ (eψ, eψ2),
eψ4 ∈ Π(eψ, eψ2 , eψ3), eψ5 ∈ Ω(eψ2 , eψ3 , eψ4), and eψ1 is fixed.

2. For E1: All 4-round differentials of the form (eΦ, eΦ, eΦ, 0) → (eΦ, eΦ, eΦ, eΦ2)
where only one byte of eΦ is nonzero and eΦ2 ∈ θ(eΦ).

To calculate the overall probability, the sum of the squares of the probabil-
ities of all used differentials is needed. As there are many 8-round differential
characteristics, we list the ones that follow the path in Table 1. In Table 2, we
list how many differential characteristics of a given probability follow this path.

Therefore, the lower bound can be calculated as:

p̂2 = (2−6)2 · [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2

+ (42) · 1262 · (2−26)2 + (41) · 1263 · (2−27)2 + 1264 · (2−28)2]3

= 2−102.71

We note that the second differential is a truncated differential with 127 possible
output differences and probability one. Therefore:

q̂2 = 1

Thus, the expected number of right rectangle quartets generated by N plaintext
pairs is:

N2 · 2−128 · p̂2 · q̂2 = N2 · 2−230.71

Attack Procedure: The above 12-round distinguishers are used to mount a
rectangle attack on 14-round SMS4. Given the 127 input differences4 (eΦ, eΦ,

3 In [9] the probability of these 12-round distinguishers is calculated as 2−237.64 due
to a miscalculation of q̂.

4 This is the output difference of the distinguisher, and eΦ2 can take any value (of
the 127 possible ones). Thus, the probability of the last step is one. In [9], proba-
bility is also calculated for this step, leading to a faulty, lower, probability for the
distinguisher.

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 147

Table 1. The number of differences and their probabilities for the 8-round characteristic

eψ1 eψ2 eψ3 eψ4 eψ5

(for a fixed eψ) (for a given eψ2) (for a given eψ2 , eψ3) (for a given eψ2 , eψ3 , eψ4)

No Pr No Pr No Pr No Pr No Pr

1 2−6 1 2−6 1 2−24 1 2−24 1 2−24

126 2−7 (43) · 126 2−25 (43) · 126 2−25 (43) · 126 2−25

(42) · 1262 2−25 (42) · 1262 2−25 (42) · 1262 2−25

(41) · 1263 2−27 (41) · 1263 2−27 (41) · 1263 2−27

1264 2−28 1264 2−28 1264 2−28

Table 2. The number of characteristics and their probabilities for E0

Probability 2−84 2−85 2−86 2−87 2−88 2−89 2−90

Number 1 210.678 220.312 229.217 237.514 245.277 252.561

Probability 2−91 2−92 2−93 2−94 2−95 2−96 2−97

Number 259.411 265.872 271.972 277.692 282.920 287.428 290.704

eΦ, eΦ2) to round 12, there are 1275 possible output differences (eΦ, eΦ, eΦ2 , eΦ3)
just after round 12, where eΦ3 ∈ Υ (eΦ, eΦ2) and 1279 possible output differences
(eΦ, eΦ2 , eΦ3, eΦ4), where eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3). For sake of clarity, we define all
these output differences by the set Φ:

Φ = {(eΦ, eΦ2, eΦ3 , eΦ4)|eΦ2 ∈ Θ(eΦ), eΦ3 ∈ Υ (eΦ, eΦ2), eΦ4 ∈ Π(eΦ, eΦ2 , eΦ3)}

The proposed attack uses an early abort technique, which allows partially
determining whether or not a candidate quartet is a right one by guessing only
a small fraction of the subkey, and if not discarding the quartet.

The attack procedure of [9] is as follows:

1. Choose 2120.82 pairs of plaintexts5 (Pi, P
′
i) with input difference (eψ1 , eψ,

eψ, eψ)

(a) Obtain the corresponding ciphertext pairs (Ci, C
′
i).

(b) Generate all candidate quartets ((Ci1 , C
′
i1), (Ci2 , C

′
i2)).

(c) Check whether Ci1 ⊕ Ci2 ∈ Φ and C′
i1
⊕ C′

i2
∈ Φ.

2. For each remaining quartet ((Ci1 , C
′
i1

), (Ci2 , C
′
i2

)):

(a) For each pair ((Ci1 , C
′
i1) and (Ci2 , C

′
i2)) compute the differences in the

4 bytes of their intermediate values just before the L transformation
in round 13, and denote them by ∆13

i1,i2
and ∆

′13
i1,i2

, respectively. (i.e,
compute ∆13

i1,i2 = L−1(Ci1 ⊕ Ci2) and ∆
′13
i1,i2 = L−1(C′

i1 ⊕ C′
i2).

(b) For j=0 to 3:

5 The required number of plaintext pairs is not adapted for the new probability, since
it has no effect on our findings.

148 D. Toz and O. Dunkelman

i. Guess the j-th byte of the subkey RK13 and partially decrypt ev-
ery remaining quartet to obtain the j-th byte of their intermediate
values just after the S transformation in round 13. Denote them by
((Xi1,j, Xi2,j), (X ′

i1,j, X
′
i2,j)).

ii. Check if Xi1,j⊕Xi2,j = ∆13
i1.i2,j and X ′

i1,j⊕X ′
i2,j = ∆

′13
i1.i2,j and keep

only the quartets for which both equalities are satisfied.
3. For each remaining quartet ((Ti1 , T

′
i1

), (Ti2 , T
′
i2

)) repeat Step 2, for round 12
and RK12.

4. If for a subkey guess (RK12, RK13), there are 6 (or more) remaining quartets
try all possible (RK10, RK11) values and perform a trial encryption with
one known plaintext/ciphertext pair. If the correct key is not found for all
checked (RK12, RK13) values output “failure”.

3.2 Improving the 14-Round Attack

By a simple observation, one can conclude that E0 in the 14-round attack has too
many rounds. After round 3, each additional round comes with a cost (in terms
of probability) increasing exponentially. Therefore, the attack can be improved
by using a shorter characteristic for E0 with higher probability in exchange for
making E1 longer. We suggest the use of following differential characteristics:

1. For E0: The 6-round differentials (eψ1 , eψ, eψ, eψ)→ (eψ, eψ, eψ2 , eψ3) where
only one byte of eψ is nonzero, eψ1 , eψ2 ∈ θ(eψ), eψ3 ∈ Υ (eψ, eψ2), and eψ1

is fixed.
2. For E1: The 6-round differentials (eΦ6 , eΦ5 , eΦ, eΦ)→ (eΦ, eΦ, eΦ, eΦ2) where

only one byte of eΦ is nonzero and eΦ5 , eΦ2 ∈ θ(eΦ), eΦ6 ∈ Υ (eΦ, eΦ5).

The details of the rectangle distinguishers for the original attack and the
proposed improvement are given in Table 3.

The probability of the new proposed distinguisher can be calculated as follows:
As mentioned earlier in Section 3.1, there exists one possible eψ2 with prob-

ability 2−6 and 126 possible eψ2 values with probability 2−7 in round 4. And in
round 5, for each of the eψ2 values, we have one possible eψ3 with probability
2−24, (41)× 126 possible values with probability 2−25, (42)× 1262 possible values
with probability 2−26, (41)× 1263 possible values with probability 2−27 and 1264

possible values with probability 2−28. Hence for E0, we have:

p̂2 = (2−6)2 · [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2

+ (42) · 1262 · (2−26)2 + (41) · 1263 · (2−27)2 + 1264 · (2−28)2]
= 2−46.8881

Similarly, for E1, in round 7, we have one possible eΦ5 with probability 2−6

and 126 possible eΦ5 with probability 2−7. In round 6, for each of the eΦ5 values,
there is one possible eΦ6 with probability 2−24, (41) × 126 possible values with
probability 2−25, (42) × 1262 possible values with probability 2−26, (41) × 1263

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 149

Table 3. The rectangle attack distinguishers

Previous Attack Improved Attack
Round ∆Xi,0 ∆Xi,1 ∆Xi,2 ∆Xi.3 Prob Round ∆Xi,0 ∆Xi,1 ∆Xi,2 ∆Xi,3 Prob

0 eψ1 eψ eψ eψ 2−6 0 eψ1 eψ eψ eψ 2−6

1 eψ eψ eψ 0 1 1 eψ eψ eψ 0 1
2 eψ eψ 0 eψ 1 2 eψ eψ 0 eψ 1
3 eψ 0 eψ eψ 1 3 eψ 0 eψ eψ 1
4 0 eψ eψ eψ †a 4 0 eψ eψ eψ †
5 eψ eψ eψ eψ2 † 5 eψ eψ eψ eψ2 †
6 eψ eψ eψ2 eψ3 † output eψ eψ eψ2 eψ3

7 eψ eψ2 eψ3 eψ4 † 6 eΦ6 eΦ5 eΦ eΦ ‡b
output eψ2 eψ3 eψ4 eψ5 7 eΦ5 eΦ eΦ eΦ ‡

8 eΦ eΦ eΦ 0 1 8 eΦ eΦ eΦ 0 1
9 eΦ eΦ 0 eΦ 1 9 eΦ eΦ 0 eΦ 1
10 eΦ 0 eΦ eΦ 1 10 eΦ 0 eΦ eΦ 1
11 0 eΦ eΦ eΦ 1 11 0 eΦ eΦ eΦ 1

output eΦ eΦ eΦ eΦ2 output eΦ eΦ eΦ eΦ2

a The probabilities given with dagger are stated in Table 1.
b The probability of eΦ5 is equal to the probability of eψ2 , since they both belong to

the same set. Similarly eΦ6 and eψ3 have the same probability.

possible values with probability 2−27 and 1264 possible values with probability
2−28. Therefore:

q̂2 = [(2−6)2 + 126 · (2−7)2] · [(2−24)2 + (43) · 126 · (2−25)2 + (42) · 1262 · (2−26)2

+ (41) · 1263 · (2−27)2 + 1264 · (2−28)2]
= 2−34.8881

Thus, the expected number of right quartets generated by N plaintext pairs is:

N2 · 2−128 · p̂2 · q̂2 = N2 · 2−209.78

In order to have sufficient pairs to perform the improved attack N = 2106.89 and
from this point on we use this figure throughout the analysis.

A flaw in the preliminary elimination: In the original attack of [9], the
time complexity is calculated only for candidates of right quartets after the
preliminary elimination (the pairs which enter Step 2), and it does not include the
time-complexity of the first elimination itself. However, due to the large amount
of data, it is impossible to take all the possible pairs and detect candidates for
right quartets immediately. We propose the following algorithm for the detection
of right quartet candidates:

150 D. Toz and O. Dunkelman

A more efficient algorithm for the preliminary elimination:

1. Let Ci = (Ci,0, Ci,1, Ci,2, Ci,3) and C′
i = (C′

i,0, C
′
i,1, C

′
i,2, C

′
i,3) denote a ci-

phertext pair.
2. For each ciphertext pair (Ci, C

′
i), insert the following entries into a hash

table:

(a) Ci||C′
i to the bin indexed by Ci,0Ci,1||C′

i,0C
′
i,1.

(b) C′
i||Ci to the bin indexed by C′

i,0C
′
i,1||Ci,0Ci,1.

3. For every (eΦ2 , e
′
Φ2

) pair, where eΦ2 , e
′
Φ2
∈ Θ(eΦ):

(a) initialize for each bin a flag to the state of “active”.
(b) For every “active”bin satisfying Ci,0Ci,1 ≤ C′

i,0C
′
i,1, go to the corre-

sponding bin Ci,0Ci,1||C′
i,0C

′
i,1 ⊕ eΦeΦ2 ||eΦe′Φ2

= Cj,0Cj,1||C′
j,0C

′
j,1.

i. For all possible combinations of entries ((Ci, C
′
i), (Cj , C

′
j)), check

whether:
A. Ci,2 ⊕ Cj,2 ∈ Υ (eΦ, eΦ2) and C′

i,2 ⊕ C′
j,2 ∈ Υ (eΦ, e′Φ2

)
B. Ci,3 ⊕ Cj,3 ∈ Π(eΦ, eΦ2 , eΦ3) and C′

i,2 ⊕ C′
j,2 ∈ Π(eΦ, e′Φ2

, e′Φ3
)

(Once a condition fails, do not check the remaining conditions.)
ii. Flag the bins Cj,0Cj,1||C′

j,0C
′
j,1 and C′

j,0C
′
j,1||Cj,0Cj,1 as “analyzed”.

4. If two pairs satisfying (i)-(ii) are found, keep them as candidates for right
quartets, and apply steps 2–4 of the attack in Section 3.1.

If we have N pairs of ciphertexts, the expected number of entries in each of
the 2128 bins is 2 · N/2128 = N · 2−127 after Step 2. Therefore, we can form
1272 · (N/2127)2 = N2/2240.02 candidate quartets for each pair of bins. Since we
are only forming quartets for the bins whose first two words is smaller than its
last two words, we analyze 2127 pairs of bins. Flagging in Step (b) also prevents
analyzing the same quartet twice. So the number of candidate quartets entering
Step (i) is 2127/2 · N2/2240.02 = N2/2114.02. Now, the probability of passing
Step (A) is (1274/232)2 ≈ 2−8.08 and 2−8.08 · N2/2114.02 = N2/2122.1 quartets
remain. The probabilities of Step (A) and (B) are same, thus we have N2/2130.18

candidates for right quartets in Step 3.
The time complexity of the preliminary elimination is as follows: In Step 2,

we have 2N memory accesses. In step 4, the number of analyzed quartets, which
is the number of required memory access is N2/2114.02. Note that there is no
need to go over all bins. In total 2N + N2/2114.02 memory accesses is required,
and thus for N = 2106.89, the total running time of the preliminary elimination
is expected to be 2107.89 + 299.76 memory accesses.

For N = 2106.89, we have (2106.89)2/2130.18 = 283.6 candidates of right quar-
tets. The time complexity of the attack is dominated by the partial decryptions
in Step 2(b) for j=0 in [9]. Therefore, the running time of steps 2-4 of the attack
is 28 · 283.6 · 1/14 = 287.69. The total running time is dominated by Step 1, i.e.
2107.89 memory accesses.

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 151

4 Impossible Differential Attack on 16-Round SMS4

4.1 Impossible Differential Attack

Unlike traditional differential cryptanalysis which tracks differences that propa-
gate through the cipher with high probability, impossible differential cryptanal-
ysis exploits differentials with probability zero.

The attack used in [9] is a combination of the general technique called miss
in the middle, which is used to construct impossible differential, and the early
abort technique which partially determines whether or not a candidate pair is
useful. The main idea is to find two characteristics with probability one, whose
conditions cannot be met together [4]. Then, the key can be found by analyzing
the rounds surrounding the impossible event, and guessing the subkeys of these
rounds. If the impossible event occurs when a candidate key is used, it is obvious
that the suggested key is not the right key.

4.2 The Previous Attack on 16-Round SMS4

The attack uses a set of 12-round impossible differentials of the form (eΓ , eΓ ,
eΓ , 0) �→ (0, eΓ , eΓ , eΓ). Two 6-round differentials with probability one are con-
catenated for the attack. The first differential used in the construction of the
impossible differential is (eΓ , eΓ , eΓ , 0) → (eΓ , x1, y1, z1) and the second differ-
ential is (z2, y2, x2, eΓ) → (0, eΓ , eΓ , eΓ), where xi ∈ Θ(eΓ), yi ∈ Υ (eΓ , xi),
zi ∈ Π(eΓ , xi, yi) for i = 1, 2. These 12-round differentials are used to conduct
an impossible differential attack on SMS4 reduced to 16 rounds by adding two
additional rounds before and after the differentials.

The attack uses Γ ⊆ {0, 1, . . . , 15}. Hence, in round 1, for every Γ , there are
1272 input differences that may lead to eΓ as the output difference of T, and
they can be generated by 1276 input differences in round 0, which is denoted by
the set Σ1(Γ) for each Γ . Similarly, there are 1272 output differences after round
14, that can be generated by eΓ , and they cause 1276 possible output differences
after round 15 which, is denoted by the set Σ2(Γ) for each Γ .6

The attack procedure of [9] is as follows:

1. Choose 29 structures of 296 plaintexts each where the most significant 2 bytes
of the two rightmost words of the plaintexts in each structure is fixed. (Thus,
each structure generates (296)2/2 = 2191 plaintext pairs7 (Pi, Pj) with the
desired input difference (∗, ∗, eΓ , eΓ)).
(a) Obtain the corresponding ciphertext pairs of the structures.
(b) Choose the pairs that satisfy both Pi⊕Pj ∈ Σ1(Γ) and Ci⊕Cj ∈ Σ2(Γ)

simultaneously for the same Γ , for all possible Γ ’s.
2. For all the remaining ciphertext pairs (Ci, Cj):

6 In [9], these sets are denoted by Σ1 and Σ2. But actually they are not independent
of the choice of Γ . Since the attack procedure runs over all possible such Γ ’s, it is
more clear and more accurate to denote these sets as a function of Γ .

7 In [9], it was claimed that each structure proposes only 2190 plaintext pairs.

152 D. Toz and O. Dunkelman

Table 4. The two 6-round differentials

Round ∆Xi.0 ∆Xi.1 ∆Xi.2 ∆Xi.3

0 eΓ eΓ eΓ 0
1 eΓ eΓ 0 eΓ

2 eΓ 0 eΓ eΓ

3 0 eΓ eΓ eΓ

4 eΓ eΓ eΓ x1

5 eΓ eΓ x1 y1

6 eΓ x1 y1 z1

6 ez2 y2 x2 eΓ

7 y2 x2 eΓ eΓ

8 x2 eΓ eΓ eΓ

9 eΓ eΓ eΓ 0
10 eΓ eΓ 0 eΓ

11 eΓ 0 eΓ eΓ

12 0 eΓ eΓ eΓ

(a) Compute the 4-byte difference just before the L transformation in round
15, and denote it by ∆15

i,j (i.e., ∆15
i,j = L−1(Ci,3 ⊕ Cj,3)).

(b) For l=0 to 3:
i. Guess the l-th byte of the subkey RK15 and partially decrypt (Ci, Cj)

to get the l-th byte of the difference just after the S transformation
in round 15, denote them by (Ti,l, Tj,l).

ii. Check if Ti,l⊕Tj,l = ∆15
i,j,l and keep the pairs that satisfy the equality.

3. For all the remaining pairs (Ti, Tj):
(a) Compute the 4-byte difference just before the L transformation in round

14 and denote it by ∆14
i,j .

(b) For l=0 to 1:
i. Guess the l-th byte of the subkey RK14 and partially decrypt (Ti, Tj)

to get the l-th byte of their intermediate values just after the S
transformation in round 14, denote them by (Qi,l, Qj,l).

ii. Check if Qi,l ⊕ Qj,l = ∆14
i,j,l and keep the pairs that satisfy the

equality.
4. For all plaintext pairs (Pi, Pj) corresponding to the remaining ciphertexts

after Step 3:
(a) Compute the 4-byte difference just before the L transformation in round

0 and denote by it ∆0
i,j .

(b) For l=0 to 3:
i. Guess the l-th byte of the subkey RK0 and partially encrypt (Pi, Pj)

to get the l-th byte of their intermediate values just after the S
transformation in round 0, denote them by (Ri,l, Rj,l).

ii. Check if Ri,l⊕Rj,l = ∆0
i,j,l and keep the pairs that satisfy the equality.

5. For all the remaining pairs (Ri, Rj):

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 153

(a) Compute the 4-byte difference just before the L transformation in round
1 and denote by ∆1

i,j .
(b) For l=0 to 1:

i. Guess the l-th byte of the subkey RK1 and partially encrypt (Ri, Rj)
to get the l-th byte of their intermediate values just after the S
transformation in round 1. Denote them by (Si,l, Sj,l).

ii. Check if Si,l⊕Sj,l = ∆1
i,j,l. If there exists a qualified pair then discard

the guess of 96 subkey bits and try another, otherwise proceed to the
next step.

6. Guess the user key from the known subkey values, and perform a trial en-
cryption. If a key is suggested then output it. Otherwise, continue with a
new guess of RK15 (i.e., go to Step 2).

The claimed time complexity of this attack is of 2107 16-round SMS4 computa-
tions in [9] and it requires 2105 chosen plaintexts.

4.3 Fixing and Improving the 16-Round Attack

Like in the rectangle attack of [9], in the impossible differential attack of [9], the
time complexity analysis is also calculated only for candidates of right pairs after
preliminary elimination (the pairs which enter Step 2), and it does not include
the time complexity of the first elimination itself. Also, the data complexity
suggested in [9] is too low.

Data Complexity Issues: Each structure is composed of 296 plaintexts of the
form (∗, ∗, (a, bi), (c, di)) where ∗ denotes all possible values and a, c denote the
chosen constants of the structure, i.e., each structure suggests (296)2/2 = 2191

pairs. In order to have the desired input difference (∗, ∗, eΓ , eΓ), we must have
bi ⊕ bj = di ⊕ dj = ẽΓ where ẽΓ is the least significant two bytes of eΓ for
each Γ .

In a structure, for each (bi, bj , di, dj), there are 264 · 264 = 2128 possible pairs
of plaintexts. There are 216 · 216/2 = 231 possible (bi, bj) pairs, and for each pair
there exists 216 possible di’s. Given (bi, bj) and di, there exists a unique dj value
satisfying the above condition. Hence, only 2128 ·231 ·216 = 2175 of the 2191 pairs
satisfy the desired input difference.

Σ1(Γ) is composed of 1276 � 242 possible input differences for each Γ . There-
fore, the probability of a pair to have P1 ⊕ P2 ∈ Σ1(Γ) is 242/264 = 2−22, and
2175 · 2−22 = 2153 pairs pass this step. Note that once the plaintext pair is fixed,
Γ is also fixed, so does Σ1(Γ) and Σ2(Γ). Similar to Σ1(Γ), Σ2(Γ) is composed
of 1276 � 242 possible output differences for each Γ . Therefore, the probability
of a pair to have C1 ⊕ C2 ∈ Σ2(Γ) is 242/2128 = 2−84 and the number of pairs
for a given structure passing the Step 1 of the algorithm is 2153 · 2−84 = 269.

Starting with S such structures, the number of plaintext pairs passing the pre-
liminary elimination is S · 269. The probability that a given subkey is discarded
by a given structure is thus, 269 · (2−7)12 = 2−15, and that it is not discarded by
all S structures is (1 − 2−15)S . In order to discard all wrong subkeys, we need

154 D. Toz and O. Dunkelman

to make sure that the probability of a wrong key to remain is about 2−96, i.e.,
2−96 = 1 − (1 − 2−15)S . Thus for S = 29, it is not probable to discard most of
the subkey guesses.

The number of required structures can be calculated as follows: There are
296 possible subkeys, and S · 2−15 pairs are expected for each subkey. In order
to have all wrong subkeys with one pair (i.e., suggested by some pair and thus
identified as wrong ones), the probability of a wrong key to have no pairs should
be less than 2−96. The probability of having no pairs is e−S·2−15

. Solving this,
we obtain that S = 221.06 structures are needed for the attack.
Algorithm for the detection of candidate pairs: Denote a plaintext by
Pi = (Pi,0, Pi,1, (ai, bi), (ci, di)), a ciphertext by Ci = ((wi, xi), (yi, zi), Ci,2, Ci,3).
1. Insert every plaintext-ciphertext pair (Pi, Ci) of each structure, indexed by

the least significant 2 bytes of the rightmost two words of the plaintext
and the most significant two words of the corresponding ciphertext (i.e,
bi||di||wi||xi||yi||zi) into a hash table.

2. For each ẽΓ :
(a) For every non-empty bin satisfying bi < bj :

i. go to the corresponding bin:
bi||di||wi||xi||yi||zi ⊕ ẽΓ ||ẽΓ ||eΓ ||eΓ = bj||dj ||wj ||xj ||yj||zj

(i.e. wi = wj and yi = yj).
ii. For all possible combinations of entries, pick the plaintext pairs for

which:
A. Pi,1 ⊕ Pj,1 ∈ θ(eΓ)
B. Ci,2 ⊕ Cj,2 ∈ θ(eΓ)
C. Pi,0 ⊕ Pj,0 ∈ Υ (eΓ , Pi,1 ⊕ Pj,1)
D. Ci,3 ⊕ Cj,3 ∈ Υ (eΓ , Ci,2 ⊕ Cj,2)
is satisfied. (If one of them fails, do not check the remaining condi-
tions.)

3. If any pair satisfying (A)-(D) is found, analyze it in Steps 2-6 of the attack.
The time complexity of the preliminary elimination is as follows: In Step 1, we

have 296 memory accesses for each structure. There are 296 plaintext-ciphertext
pairs in a structure, therefore, the expected number of entries in each of the
296 bins is 1. The resulting number of required memory accesses for Step 2 is
216 · 296/2 = 2111 for a given structure. Therefore, the total number of memory
accesses of the algorithm is S · 2111 = 2132.06.

As mentioned earlier in data complexity issues, the number of pairs pass-
ing the preliminary elimination is 269 per structure. Therefore, starting with
S = 221.06 structures, which results in 2117.06 chosen plaintexts, the number of
plaintext pairs passing the preliminary elimination is 221.06 · 269 = 290.06. The
time complexity of the partial encryptions/decryptions in Steps 2(b), 3(b), 4(b)
and 5(b) of the algorithm is:

12∑
i=1

(
291.06 · 1

127i−1
· 28

)
· 1
16

= 295.07

However, the time complexity of the attack is dominated by the 2117.06 partial
encryptions required to obtain the ciphertext pairs in Step 1, and by the 2132.06

memory accesses performed for the preliminary elimination.

Analysis of Two Attacks on Reduced-Round Versions of the SMS4 155

5 Summary

In this paper, we reviewed the rectangle attack on 14-rounds and impossible
differential attack on 16-rounds SMS4 presented by Lu. We identified some flaws
in the attack algorithms and in the time and data complexity analysis of these
attacks. We then followed by correcting and improving these attacks.

We first showed that a better 12-round rectangle distinguisher with probability
2−209.78 can be found, reducing the amount of required chosen plaintexts to
perform the attack from 2121.82 to 2107.89. Then, we presented a more efficient
algorithm to perform the preliminary elimination.

We also identified some flaws in the previous impossible differential attack
of [9]. We first showed that more data is needed for the analysis, and we also
presented a more efficient algorithm for the preliminary elimination. The results
are summarized in Table 5.

Table 5. Comparison of the Results for the Existing Attacks

Attack Type #of Rounds Complexity Source
Data Timea

Integral Attack 13 216 2114 Enc [7]
Rectangle Attack 14 2121.82,b 2116.66 ,b Enc [9]

Impossible Differential Attack 16 2105,b 2107,b Enc [9]

Rectangle Attack [New] 14 2107.89 2107.89 MA Section 3.2
Impossible Differential Attack [New] 16 2117.06 2132.06 MA Section 4.3

Rectangle Attack 16 2125 2116 Enc [12]
Boomerang Attack 18 2120 2116.83 Enc [6]
Rectangle Attack 18 2124 2112.83 Enc [6]
Differential Attack 21 2118 2126.6 Enc [12]
Linear Attack 22 2117 2109.86 Enc [6]
Differential Attack 22 2118 2125.71 Enc [6]

Enc - Encryptions, MA - Memory Accesses.

a Time complexities are calculated only for the given algorithms, and they do not
include the complexity of obtaining the required data for the attack, which may be
higher.

b As noted in Sections 3.1 and 4.3, these figures are underestimated.

References

1. Beijing Data Security Technology Co. Ltd, Specification of SMS4 (2006) (in Chi-
nese), http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

2. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack Rectangling the Ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

3. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

156 D. Toz and O. Dunkelman

4. Biham, E., Birjukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

5. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

6. Kim, T., Kim, J., Hong, S., Sung, J.: Linear and Differential Cryptanalysis of
Reduced SMS4 Block Cipher, Cryptology ePrint Archive: Report 2008/281 (2008)

7. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

8. Liu, F., et al.: Analysis of the SMS4 Block Cipher. In: Pieprzyk, J., Ghodosi, H.,
Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg
(2007)

9. Lu, J.: Attacking Reduced-Round Versions of the SMS4 Block Cipher in the Chi-
nese WAPI Standart. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 306–318. Springer, Heidelberg (2007)

10. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

11. Zhang, L., Wu, W.: Differential Fault Attack on SMS4. Chinese Journal of Com-
puters 29(9) (2006)

12. Zhang, L., Zhang, W., Wu, W.: Cryptanalysis of Reduced-Round SMS4 Block
Cipher. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 216–229. Springer, Heidelberg (2008)

Applying Time-Memory-Data Trade-Off to

Meet-in-the-Middle Attack

Jiali Choy, Khoongming Khoo, and Chuan-Wen Loe

DSO National Laboratories
20 Science Park Drive, Singapore 118230

{cjiali,kkhoongm,lchuanwe}@dso.org.sg

Abstract. In this paper, we present several new attacks on multiple
encryption block ciphers based on the meet-in-the-middle attack. In the
first attack (GDD-MTM), we guess a certain number of secret key bits
and apply the meet-in-the-middle attack on multiple ciphertexts. The
second attack (TMTO-MTM) is derived from applying the time-memory
trade-off attack to the meet-in-the-middle attack on a single ciphertext.
We may also use rainbow chains in the table construction to get the
Rainbow-MTM attack. The fourth attack (BS-MTM) is defined by com-
bining the time-memory-data trade-off attack proposed by Biryukov and
Shamir to the meet-in-the-middle attack on multiple ciphertexts. Lastly,
for the final attack (TMD-MTM), we apply the TMTO-Data curve,
which demonstrates the general methodology for multiple data trade-offs,
to the meet-in-the-middle attack. GDD-MTM requires no pre-processing,
but the attack complexity is high while memory requirement is low. In
the last four attacks, pre-processing is required but we can achieve lower
(faster) online attack complexity at the expense of more memory in com-
parison with the GDD-MTM attack. To illustrate how the attacks may
be used, we applied them in the cryptanalysis of triple DES. In partic-
ular, for the BS-MTM attack, we managed to achieve pre-computation
and data complexity which are much lower while maintaining almost
the same memory and online attack complexity, as compared to a time-
memory-data trade-off attack by Biryukov et al. at SAC 2005. In all, our
new methodologies offer viable alternatives and provide more flexibility
in achieving time-memory-data trade-offs.

Keywords: block cipher, meet-in-the-middle, time-memory-data trade-
off, triple DES.

1 Introduction

In [4], Diffie and Hellman described a meet-in-the-middle (MTM) attack that
can be applied on a multiple encryption cipher consisting of a concatenation of
L ≥ 2 block ciphers, each with independent keys. Due to this attack, the effective
security of triple DES with a 168-bit key is reduced to 112 bits. We give a brief
description of the MTM attack in Section 3.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 157–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J. Choy, K. Khoo, and C.-W. Loe

There were subsequent improvements on the MTM attack after its discovery.
One such improvement, described in [6, Section 7.37], is to apply a guess-and-
determine technique to the MTM attack. We shall call this attack a guess-and-
determine MTM attack (GD-MTM). The GD-MTM attack stipulates that the
attacker must initially guess a certain number of key bits of the first block cipher.
We propose an extension of this attack, which we call guess-and-determine MTM
attack with multiple data (GDD-MTM) to cater for the case when a plaintext
is encrypted by the cipher under several keys of which only one needs to be re-
covered. When applied to triple DES, as compared to the typical MTM attack
without pre-computation which needs time complexity of 2112 and memory com-
plexity of 256, the GD-MTM attack achieves lower memory complexity of 248 at
the cost of higher time complexity of 2120, while the GDD-MTM attack achieves
lower time complexity of 2104 at the expense of 214 data and 264 memory require-
ments. We expound on the GD-MTM and GDD-MTM attacks in Section 4.

In [5], Hellman introduced the time-memory trade-off (TMTO) attack which is
a generic cryptanalytic attack that can be applied to any cipher algorithm using
one data point. This attack circumvents exhaustive search by pre-computing
and pre-storing a large amount of data. During the online phase, the attack uses
the data generated by an unknown key to conduct a ciphertext or keystream
comparison in order to recover the key quickly. The advantage of this attack
is that with pre-computation done offline, the time taken in the online stage
is shortened at the expense of more memory required. Later in 2003, Oechslin
[8] proposed an improved technique called rainbow chains to derive a single pre-
computation table. His method reduces the TMTO attack complexity by a factor
of 2.

Then in [3], Biryukov et al. suggested a time-memory-data trade-off attack
adapted from [2], which we shall call the BS attack. In the BS attack, they only
need to find one key out of a family of ciphertexts which are the encryptions of
the same plaintext under different keys. In this way, only a portion of the key
space needs to be covered in the pre-computation phase. In addition, they also
performed a new unified analysis of Hellman’s attack in the presence of multiple
data, thereby achieving new time-memory-data trade-offs previously unknown.
This paved the way for more flexibility in attack modes depending on case-by-
case time-memory-data requirements. The BS attack is a special case of this new
framework which we name as the TMD attack.

However, for block ciphers with a large key size such as triple DES, we found
that by applying the attacks suggested in [3], the data requirements and pre-
computation complexity tend to be high. For example, for the BS attack on triple
DES, the data complexity is 242 and the pre-computation complexity is 2126, with
284 complexity for both time and memory. In Sections 5 to 7 of our paper, we
address this issue by proposing novel ways of applying the TMTO, Rainbow, BS,
and TMD attacks to the MTM attack. We derive four new attacks: the TMTO-
MTM, Rainbow-MTM, BS-MTM, and TMD-MTM attacks. While the earlier
two sections (on GD-MTM and GDD-MTM attacks) deal with attacks that
involve no pre-computation, the last four attacks all require pre-computation.

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 159

When applying the TMTO-MTM attack to triple DES using single data, we
found that the attack complexity was 280 and the memory complexity was 2101.
The pre-processing stage has a complexity of 2113. The Rainbow-MTM attack
achieves a slightly better attack complexity of 279 while maintaining the same
requirements for memory and data. These can be considered as attacks with
attack and memory complexities which are in between the MTM attack without
precomputation (2112 attack complexity and 256 memory complexity) and the
MTM attack with precomputation (256 attack complexity, 2113 pre-computation
and memory complexities).

The BS-MTM attack is a further generalization of the TMTO-MTM attack
in which the goal is now to recover one key out of several keys which are used to
encrypt the same plaintext. This attack can be viewed as an improvement of the
TMTO-MTM attack as the pre-computation complexity is reduced by a factor
equal to the data complexity. Also, if the data, time and memory complexities
are denoted by D, M and T respectively, then M2T is reduced by a factor
equal to at least D2. When applied to triple DES, with pre-computation of
299 and a data complexity of 214, we can achieve 284 complexity for online
attack time and 285 complexity for memory. Thus it has comparable time and
memory requirements as Biryukov et al.’s attack [3] but requires less data and
pre-computation complexity. This will make the attack more feasible as it is
usually very hard to obtain many encryptions (242 compared to 214) of the same
plaintexts under different keys. Moreover, a pre-computation complexity of 299

seems more achievable than a pre-computation complexity of 2126.
More flexibility is achieved by the TMD-MTM attack where we apply the new

TMD trade-off in [3] to the MTM attack. For example, if we can afford a larger
memory in our previous attack, e.g. 299, then we can reduce the online attack
complexity to 271 while keeping the data complexity at 214 and pre-computation
at 299.

2 Number of Plaintext-Ciphertext Pairs Needed for
Verification

Suppose that the B-bit encryption function, E, is the composition of two block
ciphers, E1K1(·) and E2K2(·), so that E acts on a plaintext P and outputs the
ciphertext C given by

C = E(K1,K2)(P) = E2K2(E1K1(P)).

Suppose that K1 ∈ GF (2)n1 , K2 ∈ GF (2)n2 , and that K1, K2 are independent.
Then there will be at least �n1+n2

B � keys mapping a given plaintext P to a certain
ciphertext C. Therefore, in order to verify if a possible key (S1, S2) is indeed the
cipherkey (K1, K2), q = �n1+n2

B � plaintext-ciphertext pairs

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)

need to be tested to check if E2S2(E1S1(PTi)) = CTi for all i. If so, then
(K1, K2) = (S1, S2).

160 J. Choy, K. Khoo, and C.-W. Loe

In the case of multiple data where we only need to find one key out of several
keys used to encrypt the same plaintext, the size of the key space is still fixed
at 2n1+n2 . Therefore, for both cases of single and multiple data, q = �n1+n2

B �
plaintext-ciphertext pairs are required to verify the correct key.

3 Background: Meet-in-the-Middle Attack (MTM)

The meet-in-the-middle attack is a well-known attack (e.g. see [6, page 235]). We
shall give a description of it here. Suppose, as before, that the B-bit encryption
function is the composition of two block ciphers so that

C = E(K1,K2)(P) = E2K2(E1K1(P)),

where K1 ∈ GF (2)n1 , K2 ∈ GF (2)n2 . Assume further, that there are q plaintext-
ciphertext pairs available,

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)

where q = �n1+n2
B �. The meet-in-the-middle (MTM) attack tries to find the key

(K1, K2) and works according to Algorithm 1 in Appendix A.
Note that if n2 < n1, we could have stored a table of C′ = E2−1

K2
(C) in step 1

and then computed C′′ = E1K1(P) to search for collision from the table in step
2. This will take up less memory.

The meet-in-the-middle attack on multiple encryption uses 2n1 memory. The
attack complexity is as follows:

1. If n1 > B, then

attack complexity = 2n1 + 2n2 + 2n2+(n1−B) · (�n1 + n2

B
� − 1).

The first term corresponds to encryption of PT1 over possible values of K1.
The middle term corresponds to decryption of CT1 over possible values of
K2. The magnitude of the last term is due to the fact that for each partially
decrypted ciphertext C′′ = E2−1

K2
(C1), there will be 2n1−B keys, S1, mapping

P to C′′, so that 2n2+(n1−B) possible keys will be identified and each has to
be verified by �n1+n2

B � − 1 other plaintext-ciphertext pairs. In this instance,
the attack complexity can be subdivided into two cases:
(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ 2n1 if n2 ≤ B.

2. If n1 ≤ B, then

attack complexity = 2n1 + 2n2 + 2n2 · (�n1 + n2

B
� − 1)

since there will be at most one key, S1, mapping P to each C′′. Therefore,
(a) attack complexity ≈ 2n2 if n2 > B; or
(b) attack complexity ≈ max(2n1 , 2n2) if n2 ≤ B.

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 161

Remark 1. The attack complexity is increased by a factor of at most �n1+n2
B �

times the approximate complexities we have given in 1(a),(b) and 2(a),(b) above.
However, since �n1+n2

B � usually lies between 2 and 4, the increase is not signifi-
cant and hence, we choose not to take it into account in our paper. We will make
similar approximations in subsequent derivations.

As can be observed from the discussion above, this attack has complexity much
less than the exhaustive search complexity of 2n1+n2 but requires the use of
memory.

Example 1. Suppose we apply the MTM attack on triple DES where E1K1(·) is
encryption over the first DES block with a 56-bit key and E2K2(·) is encryption
over the remaining two DES blocks with a 112-bit key. This falls into case 2(a)
and hence, the attack complexity is 2112. The memory used is 256. This is less
than the exhaustive search complexity of 2168.

Sometimes when we can afford to have high pre-computation complexity and
large memory, we can pre-compute step 1 of the MTM attack by fixing a par-
ticular plaintext, P , to speed up the actual attack. In this case, n1 > n2. The
attack complexities are similar to cases 1 and 2 described above, except that
this time, we exclude the first term, 2n1 , corresponding to the first step in Al-
gorithm 1 since this is done in the pre-computation. In order to ensure that
the attack complexity is always given by 2n2 , we shall assume that the key size
of K1 is always bounded by the effective block size by executing the attack on
�n1

B � blocks of B-bit plaintexts, where B is the true block size of the cipher.
Then both the memory required and the pre-computation complexity will be
increased to �n1

B � · 2n1 and the effective block size is B′ = B · �n1
B �. In this case,

only �n1+n2
B �−�n1

B � plaintext-ciphertext pairs are needed for verification of each
possible key in step 2 of Algorithm 1. Although we stipulate this requirement
only for the MTM attack with pre-computation so far, it shall turn out, as we
will see in later sections, that this rule will also apply to all the other attacks
in this paper which need pre-computation. Those without pre-computation will
not need this requirement. The MTM attack with pre-computation is illustrated
in the following example.

Example 2. Suppose we apply the MTM attack on triple DES where E1K1(·)
is encryption over the first two DES blocks with a 112-bit key and E2K2(·) is
encryption over the remaining DES block with a 56-bit key. Since �n1

B � = 2,
the effective fixed plaintext is taken to be a concatenation of two 64-bit fixed
plaintext blocks. We can pre-compute step 1 of the MTM attack with 2 · 2112 =
2113 complexity and store the result in 2 · 2112 = 2113 memory. In this way, we
can recover the key from any ciphertext C encrypted from P with complexity
256 by step 2 of the MTM attack.

Note that in the attack of Example 2, we require the ciphertext to be the en-
cryption of a fixed plaintext. This still works in practice because many plaintext
messages contain some fixed header, e.g. MIME header, postscript header, pdf
header, version number, and we can take this as PT1.

162 J. Choy, K. Khoo, and C.-W. Loe

To avoid confusion, we shall refer to the attack in Example 1 as a MTM attack
without pre-computation and the attack in Example 2 as a MTM attack with
pre-computation.

4 Applying Guess-and-Determine Method to
Meet-in-the-Middle Attack Using Single and Multiple
Data (GD-MTM and GDD-MTM Respectively)

In [6, Section 7.37], there is a suggestion to independently guess s bits of K1 for
some fixed s (0 ≤ s ≤ n1). In this modification of the MTM attack (without
pre-computation), the table for K1 requires 2n1−s memory for each set of s bits
guessed. We call this version from [6] the GD-MTM attack. As before, suppose
that there are q plaintext-ciphertext pairs available,

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)

where q = �n1+n2
B �. The GD-MTM attack is described in Algorithm 2 in Ap-

pendix A.
The memory complexity is 2n1−s since all computations are done online and

the memory is cleared whenever the attacker rebuilds the table for each new
guess. The attack complexity is as follows:

1. If n1 − s > B, then

attack complexity = 2s

[
2n1−s + 2n2 + 2n2+(n1−s−B) · (�n1 + n2

B
� − 1)

]
≈ 2n1 + 2n2+s + 2n1+n2−B

The last term is derived from the fact that for each value of K1 with s bits
fixed and each partially decrypted ciphertext C′′, there will be 2n1−s−B keys,
S1, identified. Again, the attack complexity is given by:
(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ 2n1 if n2 ≤ B.

2. If n1 − s ≤ B, then

attack complexity = 2s

[
2n1−s + 2n2 + 2n2 · (�n1 + n2

B
� − 1)

]
≈ 2n1 + 2n2+s + 2n2+s

Therefore,
(a) attack complexity ≈ 2n2+s if n2 > B; or
(b) attack complexity ≈ max(2n1 , 2n2+s) if n2 ≤ B.

Comparing the usual MTM attack outlined in Section 3 with the GD-MTM
attack, it can be observed that if n1 ≤ B and n2 > B, then the GD-MTM attack
is effective for building smaller lookup tables using less memory in exchange for
more time needed to repeat the procedure.

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 163

We propose a simple extension of GD-MTM to GDD-MTM (guess-and-
determine MTM attack with multiple data) for the case where a plaintext is
encrypted by the block cipher under several keys and the attacker only needs to
recover one key out of several keys. Assume that we have D = 2d encryptions of
P using different keys and we are only required to find one of them,

(
K

(i)
1 , K

(i)
2

)
by attacking:

C0 = E
(K

(0)
1 ,K

(0)
2)

(P), C1 = E
(K

(1)
1 ,K

(1)
2)

(P), . . . , C2d−1 = E
(K

(2d−1)
1 ,K

(2d−1)
2)

(P)

where E(K1,K2)(·) = E1K1(E2K2(·)). Also assume that for each i = 0, 1, . . . ,

2d−1, we have q′ other plaintext-ciphertext pairs available:

(PT
(i)
1 , CT

(i)
1), (PT

(i)
2 , CT

(i)
2), . . . , (PT

(i)
q′ , CT

(i)
q′),

all encrypted using key (K(i)
1 , K

(i)
2), where q′ = �n1+n2

B � − 1. With multiple
data applied to the usual MTM attack without pre-computation described in
Algorithm 1, C′ only needs to be computed over 2n1−d values of K1. However,
if we also guess s bits of K1 at the beginning of the attack, then each table of
K1 will contain just 2n1−d−s entries. The assumption is that one of the s bits
guess should correspond to at least one of the 2d keys with high probability. The
process is outlined in the Algorithm 3 in Appendix A.

In this case, the memory complexity is 2n1−d−s. The attack complexity is
given as follows:

1. If n1 − d− s > B, then

attack complexity
= 2s

[
2n1−d−s + 2d

(
2n2 + 2n2+(n1−d−s−B) · (�n1+n2

B � − 1)
)]

≈ 2n1−d + 2n2+d+s + 2n1+n2−B

The two subcases are:
(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ max(2n1−d, 2n1+n2−B) if n2 ≤ B.

2. If n1 − d− s ≤ B, then

attack complexity
= 2s

[
2n1−d−s + 2d

(
2n2 + 2n2 · (�n1+n2

B � − 1)
)]

≈ 2n1−d + 2n2+d+s + 2n2+d+s

Therefore,
(a) attack complexity ≈ 2n2+d+s if n2 > B; or
(b) attack complexity ≈ max(2n1−d, 2n2+d+s) if n2 ≤ B.

Example 3. Now let us apply the GD-MTM attack to the 168-bit triple DES
encryption of a fixed plaintext P where E1K1(·) is encryption of a fixed plaintext
P over the first DES block with a 56-bit key and E2K2(·) is encryption over
the remaining two DES blocks with a 112-bit key. Assume that our system
has a memory limitation of 248, that is, s = 8. Then the time complexity is
2112+8 = 2120.

164 J. Choy, K. Khoo, and C.-W. Loe

Example 4. In this example, we shall apply the GDD-MTM attack to 168-bit
triple DES encryption of a fixed plaintext P to recover one key out of a key-
pool of 214 keys, that is, d = 14. We take E1K1(·) to be encryption of a fixed
plaintext P over the first two DES blocks with a 112-bit key and E2K2(·) to
be encryption over the remaining DES block with a 56-bit key. Suppose we can
afford 264 memory so that s is fixed at 34. Then the time complexity is given by
max(2112−14, 256+14+34) = 2104.

Comparing Examples 3 and 4, we see that with multiple data, the attacker can
achieve lower time complexity at the expense of more memory requirement.

5 Applying Time-Memory Trade-Off to Meet-
in-the-Middle Attack (TMTO-MTM and
Rainbow-MTM)

In this section, we apply the time-memory trade-off (TMTO) attack of [5] to
the MTM attack with pre-computation and we call it the TMTO-MTM attack.
Basically, we apply the TMTO attack to the pre-computation step 1 of the
MTM attack. Again we have the same restriction as Example 2, i.e. we require
the ciphertext to be the encryption of a fixed plaintext P . Furthermore, for
this attack and subsequent ones (Rainbow-MTM, BS-MTM, and TMD-MTM),
all of which require pre-computation, we shall also assume that the key size of
K1 is always bounded by the effective block size, B′. This is done by attacking
�n1

B � blocks of B-bit plaintexts, where B is the effective block size of the cipher.
Then B′ = B · �n1

B � and both the memory and pre-computation complexities are
increased by a factor of �n1

B �. Let E′ be defined by

E′
(K1,K2)

(P1 ‖ . . . ‖ P�n1
B) = E2K2(E1K1(P1)) ‖ . . . ‖ E2K2(E1K1(P�n1

B)).

E1′ and E2′ are also defined in a similar way.
For the TMTO-MTM attack, assume that we have C = E′

(K1,K2)
(P) (where

P is a concatenation of �n1
B � fixed plaintext blocks). Also assume that we have

q′′ other plaintext-ciphertext pairs available:

(PT1, CT1), (PT2, CT2), . . . , (PTq′′ , CTq′′),

all encrypted with E using key (K1, K2), where q′′ = �n1+n2
B � − �n1

B �. The
algorithm is shown in Algorithm 4 in Appendix A.

As we have noted, the pre-processing complexity in step 1 is 2n1 · �n1
B � =

mt2 · �n1
B �. Assuming we use a memory of 2mem · �n1

B � = mt · �n1
B � for our attack,

the attack complexity in step 2 is

t2 · 2n2 · �n1
B �+ 2n2 ·

(
�n1+n2

B � − �n1
B �
)

= (mt2/mt)2 · 2n2 · �n1
B �+ 2n2 ·

(
�n1+n2

B � − �n1
B �
)

= (2n1/2mem)2 · 2n2 · �n1
B �+ 2n2 ·

(
�n1+n2

B � − �n1
B �
)

= 22(n1−mem)+n2 · �n1
B �+ 2n2 ·

(
�n1+n2

B � − �n1
B �
)

≈ 22(n1−mem)+n2 + 2n2 .

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 165

Example 5. Suppose as in Example 2, we apply the TMTO-MTM attack on
triple DES where E1K1(·) is encryption over the first two DES blocks with 112-
bit key and E2K2(·) is encryption over the remaining DES block with 56-bit keys.
The effective fixed plaintext is taken to be a concatenation of two 64-bit fixed
plaintext blocks. Suppose we can only afford 2101 instead of 2113 memory. Then
the pre-processing complexity of TMTO-MTM is 2113 but the attack complexity
is now 22(112−100)+56 = 280 instead of 256.

Thus the TMTO-MTM attack is a trade-off of less memory at the expense of
more attack complexity for the pre-computed MTM attack.

In [8], Oechslin published a new way of forming the pre-computation table
using rainbow chains. In this method, only one table is required with mt starting
points and chains of length t, where mt2 = size of key space. Each chain uses t
reduction functions, fi, starting with reduction function f1 and ending with re-
duction function ft. If two chains collide, they merge only if the collision appears
at the same position in both chains. The probability of success of the rainbow
attack was found to be approximately equal to the success probability of t clas-
sical tables of size m× t. This method reduces the number of table look-ups by a
factor of t compared to the Hellman’s original TMTO method. Rainbow chains
eliminate the occurrence of loops and any merges amongst chains are detectable.
Furthermore, they reduce the total complexity of the attack by a factor of 2.

We may apply the rainbow attack to the precomputation step of the MTM
attack in a way analogous to how the TMTO-MTM attack was constructed.
We call this the Rainbow-MTM attack. More specifically, the process is given in
Algorithm 5.

So for this attack, as compared to the TMTO-MTM attack, the time com-
plexity is reduced slightly to 22(n1−mem)+n2−1 ·�n1

B �+2n2 while the memory and
pre-computation requirements remain the same.

Remark 2. In [1, Section 6.1], there was a criticism levelled against rainbow
chains. According to them, in the Hellman scheme, it is possible to store just half
the number of bits of the start and end points compared to the Rainbow scheme,
reducing time complexity by a factor of 4 and therefore offsetting the claimed
improvement of the Rainbow scheme which only reduces the time complexity by
a smaller factor of 2. However, we believe that rainbow chains still offer other
important advantages as given in [8, Section 3].

Remark 3. In [7], the authors suggested another method of dealing with the case
when the key size is greater than the block size of the cipher. For their attack,
the pre-processing stage computes 2n1−B tables, where each row of a particular
table starts with a B-bit string which is then concatenated with an (n1−B)-bit
fixed string to encrypt the zero vector. The result is then concatenated with
the fixed string again and the same procedure is repeated to obtain a chain of
values. Note, however, that they assume the more stringent requirement that
B < n1 ≤ 2B.

166 J. Choy, K. Khoo, and C.-W. Loe

6 Applying Biryukov-Shamir Time-Memory-Data
Trade-Off to Meet-in-the-Middle Attack (BS-MTM)

Let us consider a scenario where a plaintext is encrypted by a block cipher under
several keys. One such example was suggested by Biryukov et al. in [3] where
they attacked the Unix password encryption scheme. Because they only need
to recover one key out of several keys, they can apply the time-memory-data
(TMD) trade-off attack of [2]. To distinguish between this attack and a more
general attack that we will discuss in the next section, we will refer to this
attack as the BS attack. In the BS attack, the complexity of pre-processing can
be reduced from N to N/D where N is the key space and D is the size of the
keypool from which one needs to be found.

In this section, we shall try to recover the key from ciphertexts encrypted
from a fixed plaintext P by applying the BS attack to the MTM attack with
pre-computation. Our new attack is called the BS-MTM attack. Assume, as in
Section 4 that we have D = 2d encryptions of P (where P is a concatenation of
�n1

B � fixed plaintext blocks) using different keys and we only need to find one of
them, i.e. find one of (K(i)

1 , K
(i)
2) by attacking:

C0 = E′
(K

(0)
1 ,K

(0)
2)

(P), C1 = E′
(K

(1)
1 ,K

(1)
2)

(P), . . . , C2d−1 = E′
(K

(2d−1)
1 ,K

(2d−1)
2)

(P),

where E′
(K1,K2)

(·) = E1′K1
(E2′K2

(·)). This means that the effective block size to
be B′ = B · �n1

B � ≥ n1. Also assume that for each i = 0, 1, . . . , 2d−1, we have q′′

other plaintext-ciphertext pairs available:

(PT
(i)
1 , CT

(i)
1), (PT

(i)
2 , CT

(i)
2), . . . , (PT

(i)
q′′ , CT

(i)
q′′),

all encrypted with E using key (K(i)
1 , K

(i)
2), where q′′ = �n1+n2

B � − �n1
B �. Algo-

rithm 6 in Appendix A illustrates the attack.
As we have noted, the pre-processing complexity in step 1 is 2n1−d · �n1

B �.
Assuming we use a memory of 2mem · �n1

B � = mt/2d · �n1
B � for our attack, the

attack complexity in step 2 is

2d · t2/2d · 2n2 · �n1
B �+ 2d · 2n2 ·

(
�n1+n2

B � − �n1
B �
)

= (mt2/mt)2 · 2n2 · �n1
B �+ 2n2+d ·

(
�n1+n2

B � − �n1
B �
)

= (2n1/(2mem × 2d))2 · 2n2 · �n1
B �+ 2n2+d ·

(
�n1+n2

B � − �n1
B �
)

= 22(n1−d−mem)+n2 · �n1
B �+ 2n2+d ·

(
�n1+n2

B � − �n1
B �
)

≈ 22(n1−d−mem)+n2 + 2n2+d.

Example 6. Suppose we want to attack the 168-bit triple DES encryption of
a fixed plaintext P and we only need to recover one key out of a key pool
of 214 keys. We apply the BS-MTM attack where E1K1(·) is encryption of a
fixed plaintext P over the first two DES blocks with a 112-bit key and E2K2(·)
is encryption over the remaining DES block with a 56-bit key. If we use 285

memory, then the pre-computation complexity is 2112−14 ·2 = 299 and the attack
complexity is 22(112−14−84)+56 = 284. In comparison, according to [3, Table 2],

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 167

a direct application of the time-memory-data trade-off attack on triple DES
where we recover one key out of a pool of 242 keys requires: 284 memory, 2126 pre-
computation and 284 attack complexity. Therefore, our BS-MTM attack achieves
lower data and pre-processing complexity than the BS attack.

7 Applying TMTO - Data Curve to Meet-in-the-Middle
Attack (TMD-MTM)

In [3], the authors also presented a unifying framework for the analysis of multiple
data trade-offs. The BS attack adapted from [2] is considered as a special case of
this more general framework. Furthermore, they identified a new class of single
table multiple data trade-offs which cannot be obtained from the BS attack. In
this section, we shall apply their more general TMD attack to the MTM attack
with pre-computation and we call our new attack the TMD-MTM attack. The
mode of this attack follows a similar procedure to the BS-MTM attack as outlined
in Algorithm 6. The main difference lies in the use of the birthday bound as will
be highlighted later. Suppose, as before, that B′ = B · �n1

B � ≥ n1. The attack is
given by Algorithm 7 in Appendix A.

It is now easy to see that the BS-MTM attack is a special case of the TMD-
MTM attack with z = 1, i.e. mt2 = N . In Example 6, we used the parameters
(w, x, y, z) = (1

8 , 1, 3
4 , 1).

Example 7. Now let us apply the TMD-MTM attack to the 168-bit triple DES
encryption of a fixed plaintext P to recover one key out of a keypool of 214 keys.
In this case w = 1

8 . As before, E1K1(·) is encryption of a fixed plaintext P over
the first two DES blocks with a 112-bit key and E2K2(·) is encryption over the
remaining DES block with a 56-bit key. In order to achieve minimum attack
complexity T ′ = 256 ·Nx−y + 270, we take x to be minimum (i.e. x = 1) and y
to be maximum (i.e. y = 1−w = 7

8). Then z = 3− (2w + x + y) = 7
8 . This gives

M ′ = 299, PC′ = 299 and T ′ = 271 with parameters (w, x, y, z) = (1
8 , 1, 7

8 , 7
8).

Since r = x = 1, only 1 table is needed. Comparing with the BS-MTM attack in
Example 6, this TMD-MTM attack has lower attack complexity at the expense
of more memory required.

8 Conclusion

In this paper, we presented one new no pre-computation attack using the guess-
and-determine technique for multiple data — the GDD-MTM attack — impro-
vising the previously known GD-MTM attack for single data. We have also
proposed four new attacks involving pre-computation — the TMTO-MTM,
Rainbow-MTM, BS-MTM, and TMD-MTM attacks — by applying the TMTO,
Rainbow, BS, and TMD attacks respectively to the MTM attack. Figure 1 in Ap-
pendix B gives a comparison of the time-memory-data trade-offs of the attacks
on triple DES.

168 J. Choy, K. Khoo, and C.-W. Loe

Remark 4. For all the attacks with pre-computation in Figure 1 except the BS
attack, the attacks are done on two blocks of fixed plaintext.

As can be observed, the attacks without pre-computation generally have higher
attack complexities but require less memory. The attacks with pre-computation
can afford much lower online attack complexities but require larger memory and
pre-computations. Another difference is that the no pre-computation attacks are
known plaintext attacks while the pre-computation attacks are chosen plaintext
attacks. In both types of attacks, the presence of multiple data can help reduce
the time/memory/pre-computation complexities.

Our proposed attacks provide viable methods to achieve new time-memory-
data trade-offs apart from previously known attacks. In particular, our new
attacks involving pre-computation are desirable as they can achieve lower data
and pre-computation complexity than the attacks suggested by Biryukov [3].

References

1. Barkan, E., Biham, E., Shamir, A.: Rigorous Bounds on Cryptanalytic Time/Memory
Tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 1–21. Springer,
Heidelberg (2006)

2. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Trade-offs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

3. Biryukov, A., Mukkhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-Off
with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006)

4. Diffie, W., Hellman, M.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer 10(6), 74–84 (1977)

5. Hellman, M.: A Cryptanalytic Time-Memory Trade-Off. IEEE Trans. on Informa-
tion Theory 26, 401–406 (1980)

6. Menezes, A., van Oorshot, P.C., Vanstone, S.: Handbook of Applied Cryptography,
ch. 7. CRC Press, Boca Raton (1996)

7. Mihaljevic, M., Fossorier, M., Imai, H.: Security Evaluation of Certain Broadcast
Encryption Schemes Employing a Generalized Time-Memory-Data Trade-off. IEEE
Communication Letters 11, 988–990 (2007)

8. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

A Algorithms

Algorithm 1: MTM Attack

1. Compute C′ = E1K1(PT1) over all possible values of K1. Store the pair
(C′, K1) and sort according to C′. This step has complexity 2n1 and needs
2n1 memory.

2. Compute C′′ = E2−1
K2

(CT1) over all possible values of K2. For all K2, look
for a match for C′′ from the pair (C′′, K2) in the stored table. Once any
possible key (S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 169

all i = 2, . . . , q. Discard (S1, S2) if it does not satisfy this equation for any i.
After this step, all the wrong keys will be filtered out, leaving only the correct
key with overwhelming probability.

Algorithm 2: GD-MTM Attack

1. Fix s bits of K1 at a particular value.
2. Compute C′ = E1K1(PT1) over all values of K1 with the s bits fixed as

stated in step 1. The table for K1 will only contain 2n1−s entries. This step
has 2n1−s time complexity and requires 2n1−s memory.

3. Compute C′′ = E2−1
K2

(CT1) over all possible values of K2. For all K2, look
for a match for C′′ from the pair (C′′, K2) in the table. Once any possible
key (S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for all i =
2, . . . , q. Discard (S1, S2) if it does not satisfy this equation for any i.

4. Repeat steps 2 and 3 by varying the same s bits over all possible values.

Algorithm 3: GDD-MTM Attack

1. Fix s bits of K1 at a particular value.
2. Compute C′ = E1K1(P) over 2n1−d−s values of K1 with the s bits fixed as

stated in step 1. The table for K1 will only contain 2n1−d−s entries. This
step has time complexity 2n1−d−s and requires 2n1−d−s memory.

3. Compute C′′
0 = E2−1

K2
(C0) over all possible values of K2. For all K2, look for

a match for C′′
0 from the pair (C′′

0 , K2) in the table. Once any possible key
(S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for �n1+n2

B � − 1
other plaintext-ciphertext pairs (PTi, CTi). Discard (S1, S2) if it does not
satisfy this equation for any i.

4. If the correct key (K(0)
1 , K

(0)
2) is not found, then repeat steps 3 and 4 for

j = 1, . . . , 2d − 1 consecutively until one correct key is found. Note that the
set of �n1+n2

B �− 1 plaintext-ciphertext pairs used for verification need not be
uniform across all the different Cj .

5. If no correct key is found by step 4, vary the same s bits of K1 over the rest
of the 2s possibilities and repeat steps 1 to 4 until a correct key is found.

Algorithm 4: TMTO-MTM Attack

1. Pre-processing:
(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext

P (where P is a concatenation of �n1
B � plaintext blocks) and let C =

E2′K2(E1′K1(P)). Define a one-way function g(K) = E1′K(P).
(b) Form t tables of size m× t as follows: For each table, randomly choose

m distinct start points Xi,0, i = 0, 1, . . . , m−1 and compute m chains of
values of length t, Xi,1 = f(Xi,0), Xi,2 = f(Xi,1), . . . , Xi,t = f(Xi,t−1),
where f(x) = h ◦ g(x) and h is a simple reversible modification of the
output of f (e.g. bit shuffling) if n1 = B′; otherwise, h is a truncation
from B′ bits to n1 bits followed by a simple transformation if n1 < B′.

170 J. Choy, K. Khoo, and C.-W. Loe

This will form a table of size m × t. Repeat this process to form t such
tables where all the start points are distinct. Each h should be different
for all t tables. We expect to cover most of the key space of K1 by this
process, which has complexity mt2 · �n1

B � = 2n1 · �n1
B �.

(c) To reduce memory requirements, discard all intermediate points and sort
the start and end points (Xi,0, Xi,t) according to the end points Xi,t.
Store the start and end points of each table using mt · �n1

B � memory.
2. Attack:

(a) Compute C′ = h(E2′−1
K2

(C)) over all possible values of K2.
(b) For a particular K2, check to see if C′ is equal to an end-point Xi,t of

a table. If it is, then we can guess that (Xi,t−1, K2) is a possible en-
cryption key. The value Xi,t−1 can be computed from f t−1(Xi,0). Check
whether E2′−1

K2
(C) = E1′Xi,t−1

(P) to see if (Xi,t−1, K2) is a possible key.
If it is, test if E2K2(E1Xi,t−1 (PTi)) = CTi for

(
�n1+n2

B � − �n1
B �
)

other
plaintext-ciphertext pairs. Discard (Xi,t−1, K2) if it does not satisfy this
equation for any i.

(c) If not, compute f j(C′), j = 1, . . . , t − 1 and check to see if it is equal
to an end-point Xi,t of a table. If it is, then (Xi,t−1−j , K2) is a possible
encryption key. The value Xi,t−1−j can be computed from f t−1−j(Xi,0).
Again, check whether E2′−1

K2
(C) = E1′Xi,t−1−j

(P) to see if (Xi,t−1−j , K2)
is indeed a possible key. If it is, test if E2K2(E1Xi,t−1−j (PTi)) = CTi for(
�n1+n2

B � − �n1
B �
)
other plaintext-ciphertext pairs. Discard (Xi,t−1−j , K2)

if it does not satisfy this equation for any i. The complexity of covering
a table (excluding verification) is t · �n1

B �.
(d) If the key (K1, K2) is not found in a table, then repeat steps 2(b) and 2(c)

for the other t−1 tables to find the key. Thus the total complexity of cov-
ering these tables for all keys K2 (excluding verification) is t2 ·2n2 · �n1

B �.

Algorithm 5: Rainbow-MTM Attack

1. Pre-processing:
(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext P

and define a one-way function g(K) = E1′K(P).
(b) Form a table of size mt × t as follows: Randomly choose mt distinct

start points Xi,0, i = 0, 1, . . . , mt−1 and compute mt chains of values of
length t, Xi,1 = f1(Xi,0), Xi,2 = f2(Xi,1), . . . , Xi,t = ft(Xi,t−1), where
fi(x) = hi ◦ g(x) and hi is a simple reversible modification of the output
of f (e.g. bit shuffling) if n1 = B′; otherwise, hi is a truncation from B′

bits to n1 bits followed by a simple transformation if n1 < B′. This will
form a table of size mt× t. Ensure that all the mt endpoints are distinct.
This pre-processing step has complexity mt2 · �n1

B � = 2n1 · �n1
B �.

(c) Sort the start and end points (Xi,0, Xi,t) according to the end points Xi,t.
Store them using mt · �n1

B � memory.
2. Attack:

(a) Compute C′ = E2′−1
K2

(C) over all possible values of K2.

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 171

(b) For a particular K2, check to see if ht(C′) is equal to an end-point Xi,t

of a table. If it is, then we can guess that (Xi,t−1, K2) is a possible
encryption key. The value Xi,t−1 can be computed by rebuilding the chain
from the corresponding start point Xi,0. Check whether C′ = E1′Xi,t−1

(P)
to see if (Xi,t−1, K2) is indeed a possible encryption key. If it is, test
if E2K2(E1Xi,t−1(PTi)) = CTi for

(
�n1+n2

B � − �n1
B �
)

other plaintext-
ciphertext pairs. Discard (Xi,t−1, K2) if it does not satisfy this equation
for any i.

(c) If the correct key is not found, compute ft ◦ ft−1 ◦ . . .◦ ft−j+1 ◦ht−j(C′),
j = 1, . . . , t− 1 and check to see if it is equal to an end-point Xi,t. If it
is, then (Xi,t−1−j , K2) is a possible encryption key. The value Xi,t−1−j

can be computed from the start point Xi,0. Again, check whether C′ =
E1′Xi,t−1−j

(P) to see if (Xi,t−1−j , K2) is indeed a possible key. If it is, test
if E2K2(E1Xi,t−1−j (PTi)) = CTi for

(
�n1+n2

B � − �n1
B �
)

other plaintext-
ciphertext pairs. Discard (Xi,t−1−j , K2) if it does not satisfy this equation
for any i.The total complexity of covering this table for all keys K2 (ex-
cluding verification) is t(t+1)

2 · 2n2 · �n1
B � ≈

t2

2 · 2n2 · �n1
B �.

Algorithm 6: BS-MTM Attack

1. Pre-processing:
(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext P

and define a one-way function g(K) = E1′K(P).
(b) Form t/2d tables of size m× t as in step 1(b) of Algorithm 4 with com-

plexity mt2/2d · �n1
B � = 2n1−d · �n1

B �. This will cover 1/2d of the keyspace
of K1.

(c) Sort and store the start and end points of each table using mt/2d · �n1
B �

memory as in step 1(c) of Algorithm 4.
2. Attack:

(a) Compute C′
0 = h(E2′−1

K2
(C0)) over all possible values of K2.

(b) Search to see if C′
0, f(C′

0), . . . , f
t−1(C′

0) is equal to one of the end points
of any of our stored tables and compute the key K1 from the correspond-
ing start point as in steps 2(b), 2(c) and 2(d) of Algorithm 4. The com-
plexity of covering these tables for all keys K2 (excluding verification) is
t/2d · t · 2n2 · �n1

B �.
(c) If the correct key

“
K

(0)
1 , K

(0)
2

”
is not contained in the space of 2n1−d keys com-

puted, then proceed to repeat the attack for Cj, j = 1, . . . , 2d − 1 consecutively
until one correct key is found. Note that the set of

`
�n1+n2

B
� − �n1

B
�
´

plaintext-
ciphertext pairs used for verification phase need not be uniform across all the
different Cj.

Algorithm 7: TMD-MTM Attack

1. Pre-processing:
(a) Fix a plaintext P and define a one-way function g(K) = E1′K(P).

172 J. Choy, K. Khoo, and C.-W. Loe

(b) Form r tables of size m×t as in step 1(b) of algorithm 4. The parameters
(r, m, t) are chosen such that the tables will cover 1/2d of the keyspace
of K1 (where D = 2d is the number of encryptions of P using different
keys). The exact conditions that they must satisfy will be given below.

(c) Sort and store the start and end points of each table using rm · �n1
B �

memory as in step 1(c) of Algorithm 4.
2. Attack:

(a) Compute C′
0 = h(E2′−1

K2
(C0)) over all possible values of K2.

(b) Search to see if C′
0, f(C′

j), . . . , f
t−1(C′

0) is equal to one of the end points
of any of our stored tables and compute the key K1 from the correspond-
ing start point as in steps 2(b), 2(c) and 2(d) of Algorithm 4.

(c) If the correct key
(
K

(0)
1 , K

(0)
2

)
is not contained in the space of 2n1−d

keys computed, then proceed to repeat the attack and verification for Cj,
j = 1, . . . , 2d − 1 consecutively until one correct key is found. Note that
the set of

(
�n1+n2

B � − �n1
B �
)

plaintext-ciphertext pairs used for verifica-
tion phase need not be uniform across all the different Cj .

In our TMD-MTM attack, we shall assume that the number of columns of each
table is � 1 and

time for one table look-up ≈ time for one invocation of f.

Then we have the relations:

N = 2n1

PC = rmt (# g invocations in the pre-computation phase)
= N

D (coverage)
PC′ = PC · �n1

B � (pre-computation complexity)
M = rm
M ′ = M · �n1

B � (memory)
D = 2d (# encryptions of P using different keys)
T = rtD
T ′ = 2n2 · T · �n1

B �+ 2n2+d ·
(
�n1+n2

B � − �n1
B �
)

≈ 2n2+drt + 2n2+d (time for online phase)
mt2 ≤ N (birthday bound)
T ′ < PC′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The last inequality in (1) was added since in practical attacks, we usually require
the online attacking time to be less than the offline table preparation time. We
can solve for r, m and t to get:

t = N
MD ≥ 1 (number of columns)

m = N
T (number of rows)

r = MT
N ≥ 1 (number of tables)

mt2 = N3

TM2D2 ≤ N (birthday bound)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2)

Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack 173

Based on these, we can derive the TMTO curve given by:

D = Nw

MT = Nx

M = Ny

mt2 = Nz

PC = N1−w

T = Nx−y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3)

where
2w + x + y + z = 3

0 ≤ w < 1
0 ≤ y, x− y < 1 ≤ x

w + y ≤ 1
0 ≤ z ≤ 1

n2
n1

< 1− (w + x) + y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4)

Therefore, any set of parameters (w, x, y, z) satisfying (4) gives a valid attack.
We can also express (r, m, t) in terms of (w, x, y, z) as follows:

r = Nx−1

m = N1−(x−y)

t = N1−w−y

⎫⎬⎭ (5)

B Tables

Fig. 1. Attacks on 3-key triple DES

Beyond User-to-User Access Control for Online

Social Networks

Mohamed Shehab1, Anna Cinzia Squicciarini2, and Gail-Joon Ahn3

1 University of North Carolina at Charlotte, NC, USA
2 The Pennsylvania State University, PA, USA

3 Arizona State University, AZ, USA
mshehab@uncc.edu, acs20@psu.edu, gahn@asu.edu

Abstract. With the development of Web 2.0 technologies, online so-
cial networks are able to provide open platforms to enable the seamless
sharing of profile data to enable public developers to interface and ex-
tend the social network services as applications (or APIs). At the same
time, these open interfaces pose serious privacy concerns as third party
applications are usually given full read access to the user profiles. Cur-
rent related research has focused on mainly user-to-user interactions in
social networks, and seems to ignore the third party applications. In
this paper, we present an access control framework to manage the third
party to user interactions. Our framework is based on enabling the user
to specify the data attributes to be shared with the application and at
the same time be able to specify the degree of specificity of the shared
attributes. We model applications as finite state machines, and use the
required user profile attributes as conditions governing the application
execution. We formulate the minimal attribute generalization problem
and we propose a solution that maps the problem to the shortest path
problem to find the minimum set of attribute generalization required to
access the application services.

1 Introduction

The recent growth of social network sites such as Facebook, del.icio.us and Mys-
pace have created many interesting and challenging problems to the research
communities. In social networks users self-organize into different communities,
and manage their own profile, as a form of self-expression. Users profiles usually
include information such as the user’s name, birthdate, address, contact infor-
mation, emails, education, interests, photos, music, videos, blogs and many other
attributes. The structure of an example social network profile is depicted in Fig-
ure 1(a). Controlling access to the user profile information is a challenging task
as it requires average internet users to act as system administrators to specify
and configure access control policies for their profiles. To control interactions
between users, the user’s world is divided into a trusted and a non-trusted set
of users, referred to as friends and strangers respectively. Furthermore, some
social networks allow users to further partition the set of friends by geographical

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 174–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Beyond User-to-User Access Control for Online Social Networks 175

location, social group, organization, or by how well they know them. Users are
provided with group based access control mechanisms that apply access rules on
the different groups of friends and strangers. Facebook [6] enables users to cre-
ate a limited profile and to select which users map to that profile. For example,
a user could share his wedding album with his family members and not with
his colleagues from work. In addition to the issues involved with enabling fine
grain access control for each user profile [5] to control data attributes viewable
by other users, a yet unexplored problem is related to users’ profile access from
entities different from other social network users.

With the development of Web 2.0 technologies [20], online social networks are
able to provide open platforms to enable the seamless sharing of profile data to
enable public developers to interface and extend the social network services as
applications (or APIs). For example, Facebook allows anyone to create software
plug-ins that can be added to user profiles to provide services based on profile
data. These features have been a great success, the most popular Facebook
applications have around 24 million users as of May 2008, and competing social
networking sites have moved to create their own imitation platforms. However,
although these open platforms enable such advanced features, they also pose
serious privacy risks. Users’ profiles in fact have a great commercial value to
marketing companies, competing networking sites, and identity thieves. Data
mining through the development platform can potentially affect more people
than screen scraping, because it exposes information that might otherwise be
hidden.

Applications that are currently added to the users’ profiles are given full
read access to all the profiles information [6,18]. The user is able to add the

Profile

Personal
Information

Birth Date Address Phone
Number

Marital
Status

Friends

Friend
F1

Friend
FN

…

Albums

Album
A1

Album
AN

…

Videos

Video
V1

Video
VN

…

Notes

Note
N1

Note
NN

…

Events

Event
E1

Event
EN

…

.

(a) Example User Profile Schema

(b) App. Addition Error Message

Fig. 1. Social Networks Profiles and Applications

176 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

application only if he/she agrees to give the application access not only to his
profile, but also to profile data of other users viewable through that user. In
other words, the user enables the application to read information on his behalf.
If the user refuses to grant full read access to the application the installation
process fails. For example, Figure 1(b), shows the error message displayed by the
Facebook platform when the user rejects to give the application full read access
to his profile data. Basically, the application access control model adopted by the
request management module is an all-or-nothing policy. As such, API developers
have access to users’ data, regardless of the actual applications’ needs, leading
to potentially serious privacy breaches. Such information flow is often hidden or
not clear to social network users, who are often not aware of the amount of data
that is actually being disclosed, since they do not really distinguish among social
network users and developers outside the social network boundaries. We believe,
in order to promote healthy development of social networks environments and
protect fundamental individuals’ privacy rights, users should be in control at
any time of their data and be well informed about their usage. Applications
should be given limited privileges to the user profile and only given access to
the smallest set of profile data required to perform their tasks. For example, a
horoscope application should be given access to only the birthday information,
while a fortune cookie application that displays a random daily quote on the
user’s profile should not be given access to any profile data.

Although this issue has been recognized by the media [16,2,4] and by social
network users, to date, no technical solution has been proposed so far. Ideally,
users’ should be able to take advantage of the available applications while still
having a stronger control on their data. The problem is not trivial, in that
it requires new access control models for APIs in social networks, as well as
extending social network applications. Applications should be designed so to be
customized, based on users’ profile preferences and second, users should have
the ability to specify the data that they are willing to reveal. Additionally, users
should be able to use data privacy mechanisms such as generalization to enjoy
the services provided through APIs without having to disclose identifying or
private information.

In this paper we address this issue, by deploying an access control mechanism
for applications in social networks. Our goal is to provide a privacy-enabled
solution that is in line with social network ethics of openness, and does not hin-
der users’ opportunities of adding useful and entertaining applications to their
profiles. Our access control mechanism is based on enabling the user to specify
the data attributes to be shared with the application and at the same time be
able to specify the degree of specificity of the shared attributes. Enabling such a
mechanism requires application to be developed to accommodate different user
preferences. We model applications as finite state machines, and use the re-
quired user profile attributes as conditions governing the application execution.
The challenge the user is faced with is what is the minimum set of attributes and
their minimum generalization levels required to acquire specific services provided
by the application. In order to address this problem we proposed the weighted

Beyond User-to-User Access Control for Online Social Networks 177

application transition system and formulated the Minimal Attribute General-
ization Problem. Furthermore, we propose a solution that maps the problem to
the shortest path problem to find the minimum set of attribute generalization
required to access the application services.

The rest of the paper is organized as follows. In Section 2, we provide back-
ground information related to Social Network APIs. In Section 3, we introduce
our developer APIs access control framework. In Section 4, we discuss how to
provide customized applications. Section 5 describes the related work. The con-
clusion and future work are discussed in Section 6.

2 Background on Social Network APIs

With the emergence of new web technologies, and with the establishment of the
Web 2.0, a large number of web sites are exposing their services by providing web
programming interfaces (APIs). For example, Google Web API [12] provides a
programming interface to query web pages through Google from user developed
applications. Several social network web sites have released APIs that allow
developers to leverage and aggregate information stored in user profiles and
provide extended social network services. The exposed APIs are basically a set
of web services that provide a limited and controlled view for the application to
interface with the social network site. The social network application architecture
includes three interacting parties namely the user, social network server, and the
third party application server. Figure 2(a), shows the different blocks used in a
the social networks architecture. Note that, the application server is able to
connect to social network through the exported web APIs. Furthermore, these
requests are filtered through the request management module which will be
discussed in detail in the next section.

For example, consider an application that recommends stores in your area that
are having sales. In this case, the application requires to retrieve your address,
age, marital status, and gender. The address information is required to be able

Policy
Base

User
Profiles

Social Network Platform

Web
APIs

Request
Management

U
se

r B
ro

w
se

r

Ap
pl

ic
at

io
n

Pl
at

fo
rm

(a) Social Network System Architecture

Social Network
Server

Request
Profile {Bob}

Request
{TESTAPP}

Request {API 1}

Reply {API 1}

Request {API n}

Reply {API n}

.

.

.

Reply
{TESTAPP}

Reply
Profile {Bob}

Application
Server

1

2

3

4

5

User
Browser

(b) Application Interactions

Fig. 2. Social Network Architecture and Application Interactions

178 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

to locate shops in your region, and the other parameters are required to provide
a more focused recommendation. Some other applications would not only require
data from your profile but would also require data from your friends’ profiles.
For example, consider an application that projects your friends on an online map
according to the address listed on their profiles. This application requires your
address and your friend list, then for each friend it would retrieve their address.

Social networks provide mechanisms for users to customize their profiles and
to add applications developed by external developers. The application provides
the customized services by accessing the exported APIs. Figure 2(b), depicts the
interaction stages between the user browser, social network and the third party
developer application. The interaction starts when a user requests an application
APP (Steps 1-2). The application server interacts with the social network server
by instantiating API calls (Step 3). Upon receiving the responses of the API calls,
the application server compiles and sends a response to the social network which
is forwarded to the requesting user (Steps 4-5). Note that in this model the social
network outsources the application development and execution to an external
third party application server.

3 Developer APIs Access Control Framework

Applications require to access user’s profile data to provide a service customized
to the user’s profile data. In this section we present our approach to enable
fine grain access control [5,21] for developer’s applications, to limit applications’
access only to relevant user’s profile data. We first provide some preliminary
definitions related to applications and API set, then discuss our proposed fine
grain access control framework for API based applications, and then focus on
the relevant phases that characterize our approach.

3.1 Social Network Profiles and Data Sets

For the purpose of our work, the two main components of a social network are
represented by applications and users’ profiles.

Users’ Profiles. Users’ profiles are modeled as collection of data items that are
uniquely associated to them. Each data item is defined over a finite domain of
legal values.

Definition 1. (User Profile) A user profile for user i, is characterized by an
attribute vector x = {x1, . . . , xn}, where attribute xi takes values in a domain
Di, which also includes the null value referred to by ⊥.

Profile data items in our approach can be generalized to increase privacy of users.
A common practice in privacy preservation mechanisms is to replace data records
with suppressed or more general values [24,25] in order to ensure anonymity and
prevent disclosure of sensitive data. A simple disclosure policy can simply sup-
press an attribute if certain disclosure criterion are met, in this case that is a

Beyond User-to-User Access Control for Online Social Networks 179

all or none policy. A generalization disclosure policy, is accomplished by assign-
ing a disclosed value that is more general than the original attribute value. For
example, the user can make the address information less specific by omitting
the street and city and revealing just the zip code. Figure 3, shows an example
partial value generalization hierarchy of the address attribute. We assume that
domain Di for a certain data item xi (see Definition 1) is a partially ordered set
(Di

j ,≺), where Di
j are the attribute generalizations and ≺ is the ordering oper-

ator. In the domain Di the largest element corresponds to the non-generalized
attribute value and the smallest element is the most generalized value which
is the suppressed value ⊥. The domain Di contains li generalization levels, an
attribute generalized to the hth level of generalization is denoted by Di

h, where
0 ≤ h < li. Data attribute generalized to Di

1 is more general than an attribute
generalized to Di

2, Di
2 ≺ Di

1, which implies that Di
2 discloses more information

than Di
1. Given a user profile x, by specifying generalization preferences for each

⊥

North Carolina

Mecklenburg Wake County

Charlotte

South East

Florida

Davidson Huntersville Matthews Mint Hill Pineville

South
Charlotte

North
Charlotte

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 3. A partial value generalization hierarchy of the address field

of the profile attributes the user is able to specify a different view for each appli-
cation. The user generalization preferences for an application is defined by the
attribute generalization vector UP = [h1, . . . , hn] where hi represents the gen-
eralization level Di

h permitted for profile attribute i. Different attributes have
different disclosure sensitivity, for example some users might regard their home
address more sensitive than their cell phone number. To capture attribute sen-
sitivity, for each profile attribute xi ∈ x the user assigns a sensitivity metric Φi,
which is specified for the non-generalized attribute Di

li−1. Note that the sensi-
tivity of an attribute xi generalized to level hi is proportional to Φihi. Given a
user generalization preference vector the UP = [h1, . . . , hn], the risk of attribute
disclosure is proportional to Θ(UP) =

∑n
i=1 Φihi. Note that the function Θ()

provides a mechanism to compare user generalization preferences. The general-
ization model can be applied not only to the data explicitly mentioned on the
profile in addition it can be applied to the tags and the metadata that are at-
tached to the profile data.

180 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

Applications. The building block for our model is represented by applications.
Applications are composed of a set of API’s which are functions called by the
application.

Definition 2. (Application API Set). Given an application App, the application
API set App.apiset is the set of APIs called by application App, represented as
the set App.apiset = {api1, . . . , apin}.

For example, consider a horoscope application HoroAPP , illustrated in Fig-
ure 4. It calls the “user.get birthday()” and “user.get friends()” APIs. The
application API set for HoroAPP is HoroAPP.apiset = {user.get birthday(),
user.get friends()}. From the API calls the set of data set accessed by the
application can be obtained by tracing the data acquired by the called API’s.
For example, consider an API “user.get birthday()”, the profile data accessed
is {profile.birthday}. Other APIs involve the processing of several profile data
items for example, consider the API “user.get photos with friends()”, this API
returns the photos taken with friends. The API performs a join between the user
friends and the user photo album meta data, in this case the data items access
are {profile.ablums, profile.friends}. Accordingly, an application can be trans-
lated from a set of API calls to a set of data accesses. This set of accessed data
can be then presented to the user to enable the selection of what data items to
expose.

ExampleApplication(){
a = get friends(userid);
...
b = get albums(userid);
...
Query = "SELECT birthday FROM user db

WHERE uid=userid";
c = send query(Query);
...

}

Fig. 4. Example of horoscope application

3.2 The Access Control Framework

Our framework adopts the Principle of Least Privilege [23], which requires that
each principal be accorded the minimum access privileges needed to accomplish
its task. In our context, principals are the application developers, and the appli-
cation should be awarded access to the minimum set of profile data in order to
provide the requested service. To achieve this goal we present a mechanism that
enables fine grain access control on the profile data. Such a mechanism enables
the application developer to select the data items required by the application
and at the same time enables the user to opt-in or opt-out or generalize each of
the requested data items. Specifically, our framework is characterized by three
main phases: application registration, to register the application at the social
network server; user application addition, to add the application in a local pro-
file; and application adaptation, within which the application adapts according
to the provided data items. We discuss them in what follows.

Beyond User-to-User Access Control for Online Social Networks 181

Application Registration. The application developers register the applica-
tion with the social network server. The developers are required to share the
application API calls and the application business state diagram describing the
application process, the details of this requirement will be discussed in following
sections. As part of the registration process, developers need to tag the appli-
cation, by labeling each API within the application with the set of user’s data
items used by the application. The tags provided during this stage only refer to
the user’s profile data involved and do not include any external output or addi-
tional user input that may be required when executing the API. The provided
application information is used to compile an application sheet describing the
data attributes required by the application.

User Application Addition. Once the application is registered with the social
network server, it becomes available for social network users to add to their
social network profiles. Upon selecting the application, the application sheet is
presented to the user, who is prompted with the following options for each data
item required by the API: choose to opt-in, opt-out, or generalize. Intuitively, the
user opts-in for the data items he is willing to disclose to the application. If the
user opts-out for some data the application needs to adapt in order to be properly
executed without such input. In case the generalize option is chosen for certain
data item, then the user only accepts the application to employ generalized data
attribute [24,25]. The user selections are input in the user sheet, which indicates
the user access preference for the added application.

<APPSHEET>
<APP id="332198764">

<DESCRIPTION>
<NAME> Horoscope App </NAME>
<INFO> Provide daily horoscope
from www.horoscope.com </INFO>

</DESCRIPTION>
<DATA-GROUP>

<DATA ref="profile.birthday"/>
<DATA ref="profile.gender"/>
<DATA ref="profile.address"/>

</DATA-GROUP>
</APP>

</APPSHEET>

(a) Application Sheet

<USERSHEET>
<APP id="332198764">

<ALLOW>
<DATA-GROUP>

<DATA ref="profile.birthday.day"/>
<DATA ref="profile.birthday.month"/>

</DATA-GROUP>
</ALLOW>

</APP>
</USERSHEET>

(b) User Sheet

Fig. 5. Application and User Sheets

An example of XML encoding for the horoscope application is reported in
Figure 5. In Figure 5(a) we report the application sheet, where birthday, gender
and address are requested. In Figure 5(b) we report the user sheet in case the
user opted to disclose only month and year of birth.

User Application Adaptation. At this stage the user sheet is used to gener-
ate a version of the application executable using the input obtained by the pro-
file data items. This phase requires the application to differentiate provisioning

182 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

according to the permissible data items and their respective generalization levels.
We discuss in the next section how this not trivial task is achieved.

4 Customized Application Service Provisioning

The user sheet provides a mechanism for users to specify generalization pref-
erences on the profile attributes to restrict the data accessible to the applica-
tion. On the other hand, by enabling attribute generalizations the application
is faced with the problem of missing data, and might not ensure the provi-
sioning of the request service based on the provided data generalizations. To
address this issue we propose that during the application registration phase the
application developer is required to provide the process execution description of
the application. The process execution description describes the interactions be-
tween the composed APIs. A candidate process description language standard is
BPEL (Business Process Execution Language for Web Services, also WS-BPEL,
BPEL4WS) [19] which provides a rich vocabulary for expressing composition,
orchestration and coordination of web services to describe the behavior of busi-
ness processes. Figure 6, shows an example process execution diagram describing
the service invocations and service transitions required by an application that
aggregates the user’s friends’ addresses and projects them on Google Maps. Note
that the transitions are labeled with conditions on the returned API calls. The
web services composition and choreography described by BPEL can be formal-
ized based using finite state processes (FSP) [8,22,7]. In what follows we define
the application as a transition system.

Definition 3. (Application Transition System). An application transition sys-
tem is a tuple TS = (S, Σ, δ), where:

– S is a finite set of states. The set of states includes a single initial state s0

and a finite set of final states F ⊆ S.
– Σ is the alphabet of operations offered by the service and the data required

by this service.
– δ : S × Σ → S is the transition function that maps states and alphabets to

another state. The transition δ(si, α) = sj, represents that transition from
state si to state sj subject to services and data in α.

The mapping function δ is used to represent the constraints required to tran-
sition from one state to another. In this paper, we focus on constraints related
to the required profile data generalization levels requested by the application to
enable the successful transition from a state to another. For example, an ap-
plication requesting the user’s address through the service get address(), the
application will transition to a different state depending on the generalization
level of the returned address attribute. From an application perspective the user
generalization preference vector specifies the permitted attribute generalization
levels, which in turn dictates the set of permissible state transitions. The set of
final states represents the different service levels provided by the application.

Beyond User-to-User Access Control for Online Social Networks 183

<<Invoke(get_friends)>>

Get friends of user “Bob”

<<Invoke(get_address)>>

Get address for each use in

Bob’s friendlist

[R
e
s
u
lt

=
=

N
U
L
L
]

<<Invoke(geo_getXY)>>

Get map coordinates on the

map using the address

R
e
s
u
l
t
=
=
N
U
L
L

<<Invoke(update_map)>>

Update map using the (X,Y)

and the user name

<<Invoke(get_address)>>

Get address of Bob

<<Invoke(geo_getXY)>>

Get map coordinates on the

map using the address

<<Invoke(update_map)>>

Update map using the (X,Y)

and the user name

[R
e
s
u
lt

=
=

N
U
L
L
]

Fig. 6. Example Application Process

Definition 4. Given an application transition system TS = (S, Σ, δ) and a user
preference vector UP , the reduced application transition system TSUP is defined
as the tuple (SR, ΣR, δR), where:

– SR = S and ΣR = Σ.
– δR = δ for δ(si, α) = sj where the attributes α satisfies the user preference

vector UP .

The reduced application transition system includes only the state transitions
that are permitted by the user preferences. It also indicates the states that are
reachable after the user preferences are applied to the application.

We model the application transition system TS as a directed graph G =
(V, E), where the vertices V represent the states, and the edges E represent the
state transitions. The edges E are labeled with the minimum attribute general-
ization levels required to enable the state transition. For an edge e ∈ E the edge
label e.h represents the generalization level required for the state transition. For
example, in Figure 7(a) the edge (S0, S1) is labeled with h1

2 indicating that the
generalization level 2 is required for attribute x1 to enable transition from state
S0 to state S1. A user preference is said to satisfy a transition if the specified user
attribute generalization level is greater than or equal to the edge generalization
level. The reduced application transition system is computed by generating a

184 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

graph GR = (VR, ER), where VR = V and ER ⊆ E includes only the transi-
tions E that satisfy the user preferences. Figure 7(b), shows an example reduced
application transition graph for the user preference vector up = {h1

1, h
2
1, h

3
2, h

4
1}

and the original application state diagram in Figure 7(a).

Definition 5. (Application Service Path) Given an application transition in-
stance TS, the path P = {e0, . . . , en−1} is sequence of state transitions, where
the edge e0 starts at the initial state s0 and the ending edge en−1 terminating at
a final state sn ∈ F . The path generalization vector g(P) = {e1.h, . . . , en−1.h} is
defined as the set of data attribute generalization levels required to traverse this
path.

The Application Service Path represents an instance of an application execution
that starts at the start state s0 and ends at a target ending state sn.

S5

S1 S2

S3 S4

Se2 Se5Se4

S0

S6

Se3

Se1

�
�

� �
�

� �
�

�

�
�

�
�
�

� �
�

� �
�

�
�
�

�

�
�

� �
�

�

�
�

� �
�

��
�

�
�
�

�

�
�

� �
�

�

(a) Application State
Diagram

S5

S1 S2

S3 S4

Se2 Se5 Se4

S0

S6

Se3

Se1

�
�

� �
�

�

�
�

�
�
�

� �
�

�

�
�

�

�
�

�
�
�

�

�
�

�

(b) Reduced State Dia-
gram, up = {h1

1, h
2
1, h

3
2, h

4
1}

S5

S1 S2

S3 S4

Se2 Se5 Se4

S0

S6

Se3

Se1

�
�

�

�
�

�
�
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�

��
�

�

(c) Weighted State Dia-
gram, wi

j = hi
j ∗ Φi

Fig. 7. Application State Diagram and User Preferences

Beyond User-to-User Access Control for Online Social Networks 185

4.1 Optimal User Application Preferences

In our framework, when trying to install an application, the user specifies an
attribute generalization preferences and a target final application state. The
challenge the user is faced with is to identify the minimal attribute generaliza-
tion preference required to enable the application to successfully terminate to
the requested final state. According to the well-known security principle of Least
Privilege [23], which requires that each principal be accorded the minimum ac-
cess privileges needed to accomplish its task, this translates to the requirement
that an application should be awarded the access to the smallest set of profile at-
tributes at the minimum generalization levels in order to provide the requested
service. Formally, the minimal attribute generalization problem is defined as
follows:

Definition 6. Minimal Attribute Generalization Problem, Given an application
transition instance TS = (S, Σ, δ), and a target final state sf ∈ F , determine the
minimal user attribute vector UP ∗ = [h∗

1, . . . , h
∗
n] required to enable the successful

transition from the start state s0 to the final state sf .

The minimal user attribute vector is the vector that requires the minimum expo-
sure of the user attributes and enables the application to transition to the target
final state. Using the graph based application transition model, an application
service path beginning at start state and terminating at the final target state
holds the set of generalization levels required to take such a path. The minimal
attribute generalization problem translates to finding the minimal application
service path from the start state to the target final state in a weighted application
transition system defined as follows:

Definition 7. (Weighted Application Transition System). A weighted applica-
tion transition system TSW = (G, W) where:

– G is the application transition graph G = (V, E), where V is the set of ver-
tices representing the finite set of states, and E is the set of edges representing
the state transitions.

– W : E×Φ→ w ∈ �+ is the edge weight function that maps the edge attribute
generalization labeling E.h and the attribute sensitivity Φ to an edge weight
w.

Given an application service path P = {e0, . . . , en−1}, the path length is defined
as follows:

Θ(UP) =
n−1∑
i=0

W (ei, Φi) =
n−1∑
i=0

Φiei.h

Given the weighted application transition system and the path length defini-
tion, the minimal attribute generalization problem simply maps to finding the
shortest path from the start state s0 to the final target state sf . The initially

186 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

specified user preferences are used as an upper limit on the user preferences and
are referred to as the upper limit user preferences UPL = [h0, . . . , hn]. Figure 8,
depicts the algorithm used to compute the minimal user attribute preferences
vector. Lines 1-9, initialize the application transition graph to generate the edges
that are not allowed by the specified user attribute generalization upper limits
buy setting the edge weights to ∞, and the weights of the permitted transitions
using the edge weight function that incorporates both the user attribute sen-
sitivity and generalization level. Lines 10-14, initialize the distance from s0 to
other vertices, where d[u] and pi[u] represent the shortest distance from s0 to u
and the predecessor of u on the shortest path respectively. Lines 15-24, computes
the shortest path from s0 to all the transition states. Lines 25-34, computes the
minimal user preferences vector required to transition from state s0 to the target
final state sf .

Algorithm: generate minimal preference
Input: Application transition graph G = (V, E),
User upperlimit preferences UPL = [h0, . . . , hn], User target state st

Output: User Minimal Attribute Preferences UP ∗

1. VR ← V
2. ER ← E
3. //Generating the reduced graph
4. for each e ∈ ER

5. for each h ∈ UPL
6. if h ≺ e.h
7. e.w = ∞
8. else
9. e.w = Φe.a ∗ e.h
10. //Initialize distance from s0
11. for each v ∈ VR

12. d[v] = ∞
13. pi[v] = {}
14. d[s0] = 0
15. //Computing Shortest Path from s0
16. S = {}
17. Q ← VR //Priority Queue on d[u]
18. while Q is not Empty
19. u = ExtractMin(Q)
20. S ← S ∪ {u}
21. for each v ∈ adjacent(u)
22. if d[v] > d[u] + w(u, v)
23. d[v] = d[u] + w[u, v]
24. pi[v] = u
25. //Tracing Minimal User Preferences from s0 to st

26. UP ∗ = {}
27. if d[st] == ∞
28. return UP ∗

29. u = st

30. do
31. UP ∗ = (pi[u], u).h ∪ UP ∗

32. u = pi[u]
33. while pi[u] �= s0
34. return UP ∗

Fig. 8. User Minimal Attribute Preferences Algorithm

Beyond User-to-User Access Control for Online Social Networks 187

5 Related Work

Security and privacy in Social Networks, and more generally in Web 2.0 are
emerging as important and crucial research topics [15,1,14,10]. Several pilot
studies conducted in the past few years have identified the need for solutions
to address the problem of information leakage networks, based on interpersonal
relationships and very flexible social interactions. Some social networking sites,
such as FaceBook (http://www.facebook.com), have started to develop some
forms of control, however the level of assurance are still limited. For example,
FaceBook allows a user to join various networks (e.g., home university, home
city) and control what information is released to each network. Further, a user
can specify if a particular person should be “limited” from seeing particular
material or blocked entirely from seeing any material. However, there is limited
control over the amount of data API’s can access related to user’s data.

An interesting research proposal has been presented in [11], where a social-
networking based access control scheme suitable for online sharing is presented.
In the proposed approach authors consider identities as key pairs, and social re-
lationship on the basis of social attestations. Access control lists are employed to
define the access lists of users. A more sophisticated model has been proposed in
[3]. The authors presented a rule-based access control mechanism for social net-
works. Such an approach is based on enforcement of complex policies expressed
as constraints on the type, depth, and trust level of existing relationships. The
authors also propose using certificates for granting relationships authenticity,
and the client-side enforcement of access control according to a rule-based ap-
proach, where a subject requesting to access an object must demonstrate that it
has the rights of doing that. However, both in both projects [11,3], the authors
do not consider the issue of API’s in their models, and they do not propose a
method to control API’s access to profile’s personal data.

An ongoing research project is represented by PLOG [13]. The goal of PLOG
is to facilitate access control that is automatic, expressive and convenient. The
authors are interested in exploring content based access control to be applied in
SN sites. We believe this is an interesting direction that we plan on investigating
as extension of Private Box. Another interesting work related to ours is [9]. The
authors present an integrated approach for content sharing supporting a light-
weight access control mechanism. HomeViews facilitates ad hoc, peer-to-peer
sharing of data between unmanaged home computers. Sharing and protection
are accomplished without centralized management, global accounts, user authen-
tication, or coordination of any kind. This contribution, although very promising
does not specifically focus on SNs and thus the proposed solution, although in-
line with our selective approach to user’s data is complementary to ours.

Some related work has also been conducted with specific focus on trust rela-
tionships in social networks. An important contribution on this topic has been
proposed by [10]. The work introduces a definition of trust suitable for use in
web-based social networks with a discussion of the properties that will influence
its use in computation. The authors designed an approach for inferring trust re-
lationships between individuals that are not directly connected in the network.

188 M. Shehab, A.C. Squicciarini, and G.-J. Ahn

Specifically, they present TrustMail, a prototype email client that uses varia-
tions on these algorithms to score email messages in the user’s inbox based on
the user’s participation and ratings in a trust network.

Our idea of transitional states was partly inspired by [17]. The authors propose
a conversation-based access control model that enables service providers to retain
some control on the disclosure of their access control policies while giving clients
some guarantees on the termination of their interactions. Similarly to ours, the
authors represent web service possible conversations as finite transition systems,
in which final states in this context. Many have identified [14] the need of a new
access control paradigm specific for so represent those in which the interaction
with the client can be (but not necessarily) ended. We adopt a similar approach
in that we represent possible applications as state machines, and we provide a
labeling technique to enable the comparison of the possible application paths.

6 Conclusions

In this paper we have presented an access control framework for social networks
developer applications that enables users to specify profile attribute preferences
and requires applications to be designed so to be customized based on users’
profile preferences. Our framework provided a privacy-enabled solution that is
in line with social network ethics of openness, and does not hinder users’ op-
portunities of adding useful and entertaining applications to their profiles. We
modeled the applications as finite state machine with transition labeling indicat-
ing the generalization level required to enable application state transitions. We
defined the reduced application transition system that only includes the state
transitions possible with a given user generalization vector. Then we incorpo-
rated the user sensitivity metric to generate the weighted applications transition
system.

Furthermore, we formalized the Minimal Attribute Generalization Problem
and presented the Weighted Application Transition System which incorporates
the user attribute sensitivity metric to generated a weighted graph representing
the application state transitions. Using the weighted graph we transformed the
Minimal Attribute Generalization Problem to the shortest path problem and
provided an algorithm that generates the optimal user generalizations vector
that will enable the transition to a target final state.

References

1. Acquisti, A., Gross, R.: Imagined communities: Awareness, information sharing,
and privacy on the facebook. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS,
vol. 4258, pp. 36–58. Springer, Heidelberg (2006)

2. CNET Blog. Exclusive: The next facebook privacy scandal (2008),
http://news.cnet.com/8301-13739 3-9854409-46.html

3. Carminati, B., Ferrari, E., Perego, A.: Rule-based access control for social networks.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops (2). LNCS,
vol. 4278, pp. 1734–1744. Springer, Heidelberg (2006)

http://news.cnet.com/8301-13739_3-9854409-46.html

Beyond User-to-User Access Control for Online Social Networks 189

4. Wahington Chronicle. Study raises new privacy concerns about facebook (2008),
http://chronicle.com/free/2008/02/1489n.htm

5. Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: A fine-grained access
control system for XML documents. ACM Transactions on Information and System
Security 5(2), 169–202 (2002)

6. Facebook (2007), http://www.facebook.com
7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Ltsa-ws: A tool for model-based

verification of web service compositions and choreography, pp. 771–774 (May 2006)
8. Foster, H., Uchitel, S., Magee, J., Kramer, J., Hu, M.: Using a rigorous approach

for engineering web service compositions: a case study, vol. 1, pp. 217–224 (July
2005)

9. Geambasu, R., Balazinska, M., Gribble, S.D., Levy, H.M.: Homeviews: peer-to-peer
middleware for personal data sharing applications. In: SIGMOD Conference, pp.
235–246 (2007)

10. Golbeck, J., Hendler, J.A.: Inferring binary trust relationships in web-based social
networks. ACM Trans. Internet Techn. 6(4), 497–529 (2006)

11. Gollu, K.K., Saroiu, S., Wolman, A.: A social networking-based access control
scheme for personal content. In: Proc. 21st ACM Symposium on Operating Systems
Principles (SOSP 2007) (2007); Work in progress

12. Google Code. Google’s Developer Network, http://code.google.com/
13. Hart, M., Johnson, R., Stent, A.: More content - less control: Access control in the

Web 2.0. Web 2.0 Security & Privacy (2003)
14. Hogben, G.: Security issues and recommendations for online social networks.

ENISA Position Paper N.1 (2007)
15. IEEE. W2SP 2008: Web 2.0 Security and Privacy (2008)
16. Irvine, M.: Social networking applications can pose security risks. Associated Press

(April 2008)
17. Mecella, M., Ouzzani, M., Paci, F., Bertino, E.: Access control enforcement for

conversation-based web services. In: WWW Conference, pp. 257–266 (2006)
18. MySpace (2007), http://www.myspace.com
19. OASIS. OASIS WSBPEL TC Webpage,

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel
20. O’Reilly, T.: What Is Web 2.0. O’Reilly Network, pp. 169–202 (September 2005)
21. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-

niques for fine-grained access control. In: SIGMOD 2004: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pp. 551–562.
ACM, New York (2004)

22. Salaun, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra, pp. 43–51 (June 2005)

23. Saltzer, J., Schroeder, M.: The Protection of Information in Computer Systems.
Proceedings of the IEEE 63(9), 1278–1308 (1975)

24. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclos-
ing information (abstract). In: PODS ’98: Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, p. 188.
ACM, New York (1998)

25. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

http://chronicle.com/free/2008/02/1489n.htm
http://www.facebook.com
http://code.google.com/
http://www.myspace.com
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Revocation Schemes for Delegation Licences

Meriam Ben-Ghorbel-Talbi1,2, Frédéric Cuppens1, Nora Cuppens-Boulahia1,
and Adel Bouhoula2

1 Institut TELECOM/TELECOM Bretagne, 2 rue de la Chtaigneraie, 35576 Cesson
Sévigné Cedex, France

{meriam.benghorbel,frederic.cuppens,nora.cuppens}@telecom-bretagne.eu
2 SUP’COM Tunis, Route de Raoued Km 3.5, 2083 Ariana, Tunisie

bouhoula@planet.tn

Abstract. The paper presents revocation schemes in role-based access
control models. We are particularly interested in two key issues: how to
perform revocation and how to manage the revocation policy. We show
how to deal with these two aspects in the delegation model based on the
OrBAC formalism and its administration licence concept. This model
provides means to manage several delegation types, such as the dele-
gation or transfer of permissions and roles, multi-step delegation and
temporary delegation. We state formally in this paper how to man-
age the revocation of these delegation schemes. Our model supports
a wide spectrum of revocation dimensions such as propagation, domi-
nance, dependency, automatic/user revocation, transfer revocation and
role/permission revocation.

1 Introduction

In the field of access control, delegation is an important aspect and is managed
as a special case of an administration task. An administration policy defines
who is permitted to manage the security policy, i.e. who is permitted to create
new security rules, or update or revoke existing security rules. A delegation
policy defines who is permitted to manage existing security policies, i.e. who is
permitted to delegate or revoke existing roles and privileges (e.g. permissions or
obligations).

Many delegation schemes are defined in the literature, such as permanence, to-
tality, monotonicity, multiple delegation and multi-step delegation. A complete
access control model must provide a flexible administration model to manage
these delegation aspects securely. But, it is also important to manage the revo-
cation of such delegations. In [1] the authors propose a delegation model based
on the OrBAC formalism and its administration licence concept [2]. This model
provides means to deal with several delegation schemes thanks to the use of con-
textual and multi-granular licences. It supports the delegation and transfer of
licences and roles, user-to-user and user-to-role delegation, permanent and tem-
porary delegation, multiple delegation, simple and multi-step delegation, self-
acted and agent-acted delegation. Moreover, several delegation constraints are

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 190–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revocation Schemes for Delegation Licences 191

specified thanks to the taxonomy of contexts defined in OrBAC, namely prereq-
uisite, provisional, temporal, spatial.

We base our work on this delegation model and we focus on the revocation
mechanism. Our approach provides means to express various revocation dimen-
sions suggested in the literature [3,4] such as propagation, dominance, grant
dependency, automatic revocation. We focus our work on two aspects of revo-
cation. The first aspect is how to perform the revocation, i.e. automatically or
manually, and the effect of the revocation on other delegations (e.g. cascade re-
vocation). The second issue is how to manage the right of revocation, i.e. who
is permitted to revoke delegations.

We show that using the contextual licences our model is more flexible and
expressive. We deal with the different revocation schemes in a simple manner,
and unlike the other work on revocation management, we do not need to define
many kinds of revocation actions. Moreover, we can specify several revocation
constraints that were not supported previously. Existing models only support
constraints on the role membership of the grantor or the grantee, whereas, in
our model we may specify several conditions using prerequisite, temporal, spa-
tial, user-declared and provisional contexts and use them to specify contextual
licences.

This paper is organized as follows. In section 2 we start with the system
description. We give the basic concept of the delegation model and we introduce
some definitions. In section 3 we present the revocation mechanism. This section
focuses on how revocation is performed and managed in our model. Then, section
4 presents related work and shows the advantages of our approach. Finally,
concluding remarks and future work are made in section 5.

2 System Description

In the model presented in [1] the administration and delegation privileges are
managed in a homogeneous unified framework using the OrBAC formalism [5].
This model provides means to specify the security policy at the organization
level that is independent of the implementation of this policy. Thus, instead of
modelling the policy by using the concrete concepts of subject, action and object,
the OrBAC model suggests reasoning with the roles that subjects, actions or
objects play in the organization. The role of a subject is simply called a role,
whereas the role of an action is called an activity and the role of an object is
called a view.

In OrBAC, there are eight basic sets of entities: Org (a set of organizations), S
(a set of subjects), A (a set of actions), O (a set of objects), R (a set of roles), A
(a set of activities), V (a set of views) and C (a set of contexts). In the following
we give the basic OrBAC built-in predicates:

– Empower is a predicate over domains Org x S x R. If org is an organization,
s a subject and r a role, then Empower(org, s, r) means that org empowers
subject s in role r.

192 M. Ben-Ghorbel-Talbi et al.

– Use is a predicate over domains Org x O x V . If org is an organization, o is
an object and v is a view, then Use(org, o, v) means that org uses object o
in view v.

– Consider is a predicate over domains Org x A x A. If org is an organization,
α is an action and a is an activity, then Consider(org, α, a) means that org
considers that action α implements activity a.

– Hold is a predicate over domains Org x S x A x O x C. If org is an organi-
zation, s a subject, α an action, o an object and c a context, Hold(org, s, α,
o, c) means that within organization org, context c holds between subject
s, action α and object o.

– Permission , Prohibition and Obligation are predicates over domains
Org x Rs x Aa x Vo x C, where Rs= R ∪ S, Aa = A ∪ A and Vo= V ∪ O. More
precisely, if org is an organization, g is a role or a subject, t is a view or
an object and p is an activity or an action, then Permission(org, g, p, t, c)
(resp. Prohibition(org, g, p, t, c) or Obligation(org, g, p, t, c)) means that
in organization org, grantee g is granted permission (resp. prohibition or
obligation) to perform privilege p on target t in context c.

The OrBAC model is associated with a self administrated model called AdOr-
BAC [2,6]. This model is based on an object-oriented approach, thus we do not
manipulate privileges directly (i.e. Permission, Prohibition and Obligation),
but we use objects having a specific semantics and belonging to specific views,
called administrative views. Each object has an identifier that uniquely identi-
fies the object and a set of attributes to describe the object. A view is used to
structure the policy specification.

The management of delegation is based on the AdOrBAC model. Delegation
is modelled just like the administration mechanism, using specific views called
delegation views [1]. For the sake of simplicity, we assume that the policy applies
to a single organization and thus we omit the Org entity in the following.

Fig.1 is an outline of OrBAC views. The view Licence is used to specify
and manage users privileges: permissions, prohibitions and obligations. In the
following we only consider licences interpreted as permissions. Objects belonging
to this view have the following attributes: grantee: subject to which the licence
is granted, privilege: action permitted by the licence, target : object to which the
licence grants access and context : specific conditions that must be satisfied to
use the licence. The existence of a valid licence is interpreted as a permission by
the following rule:

Permission(Sub, Act, Obj, Context):-
Use(L, licence), Grantee(L,Sub), P rivilege(L,Act),

T arget(L,Obj), Context(L,Context).

The view Role assignment is used to manage the assignment of subject to
roles. Objects belonging to this view are associated with the following attributes:
assignee: subject to which the role is assigned and assignment : role assigned by
the role assignment. There is the following rule to interpret the objects of the
role assignment view:

Revocation Schemes for Delegation Licences 193

O_Entity-
Assignment

O_Entity-
Hierarchy

Object

O_Entities

O_Licence
Activity
Hierarchy

Context
Hierarchy

Role
Hierarchy

View
Hierarchy

Role
Assignment

Activity
Assignment

Subject

Action

Context Activity

View

Role

User Organization User
Role

Organization
Role

Licence
Delegation

Licence
Transfer

Grant
Option

Role
Delegation

Role
Transfer

Fig. 1. OrBAC views

Empower(Subject, Role):-

Use(RA, role assignment),Assignee(RA,Subject), Assignment(RA,Role).

The views boldfaced in Fig. 1 are delegation views. Role delegation and
Role transfer are two sub-views of Role assignment defined to manage role
delegation and transfer. Licence delegation, Licence transfer and Grant
option are three sub-views of Licence defined to manage licence delegation and
transfer. Licence delegation concerns only Permission and Obligation. Thus, the
delegation of negative privileges in not supported, although the administration
model supports the granting of prohibitions. In fact, defining prohibitions is con-
sidered an administration task and it is not meaningful to delegate a prohibition.

Due to space limitation, we only consider in this paper Licence delegation
and Grant option views. Objects belonging to these have the same attributes
and semantics as objects belonging to the Licence view (i.e. an assignment of a
permission to a role or to a user). These objects also have an additional attribute
called grantor : subject who delegates the licence. This attribute is important to
revoke the delegation and to recover the grantor privileges when the transfer is
revoked.

Note that there is a distinction between the delegation of a right R and the
delegation of the right to delegate R, and for that purpose two delegation views
are used. Objects belonging to the view Licence delegation are interpreted as
a delegation of simple rights, and objects belonging to the Grant option view
are interpreted as a delegation of delegation rights. This means that the privilege

194 M. Ben-Ghorbel-Talbi et al.

and the target of these objects concern delegation activities and delegation views,
respectively.

Objects belonging to Grant option have another additional attribute called
step: the depth of the delegation chain. This attribute is used to control the
propagation of the right to delegate. When the step is greater than 1 the grantee
is allowed to propagate the delegation right (i.e. the right to delegate a licence
or a role) to another user. Thus, a new permission is derived to the grantee as
follows:

Permission(GR, delegate, grant option, C & valid redelegation(LG)):-
Use(LG, grant option), Grantee(LG, GR),

Context(LG, C), Step(LG, N), N > 1.

Note that, the context valid redelegation is used to control the scope of the
redelegation. Thus the grantee is allowed to delegate only the right (or a sub-
right of the right) he was received and with a lower step. So, we can be sure that
the redelegated right will never be higher than the original right delegated by
the first grantor. This context is defined as follows:

Hold(U, delegate,LG′, valid redelegation(LG)):-
Use(LG′, grant option), Sub Licence(LG′, LG),

Step(LG′, N ′), Step(LG, N), N ′ < N.

where the predicate Sub Licence is defined as follows:

Sub Licence(L, L′):-
Target(L,T), T arget(L′, T ′), Sub Target(T,T ′),

P rivilege(L, P), P rivilege(L′, P ′), Sub Privilege(P,P ′),

Context(L, C), Context(L′, C′), Sub Context(C,C′).

O is considered a Sub Target of O′ if they are two views and O is a Sub V iew
of O′, or if O is an object used in view O′, or if they are equal (see [7] for more
details about the OrBAC hierarchy):

Sub Target(O,O′):-

Sub V iew(O, O′); Use(O, O′); O = O′.

Predicates Sub Privilege and Sub Context are defined in a similar way.

2.1 Notation and Definitions

As we mentioned in the previous section, there is a distinction between the dele-
gation of simple rights and the delegation of delegation rights. For this purpose,
we denote L a simple delegated licence, i.e. objects belonging to the view Li-
cence delegation, and we denote LG a delegation licence, i.e. objects belonging
to the view Grant option.

Let OL be the set of simple licences, OLG the set of delegation licences and
OLd

= OL ∪OLG the set of all delegated licences Ld.
We give now some definitions to deal with revocation in our model.

Revocation Schemes for Delegation Licences 195

Definition 1. Derivation relation.
We distinguish between two derivation relations according to whether the type

of derived licence is a simple or a delegation licence.

1. ∀Ld, Ld′ ∈ OLG, Ld is derived from Ld′, if:
- the grantor of the licence Ld is the grantee of the licence Ld′,
- the licence Ld is a sub-licence of Ld′,
- the delegation step of Ld is lower than the delegation step of Ld′.

2. ∀Ld ∈ OL, Ld′ ∈ OLG, Ld is derived from Ld′, if:
- the grantor of the licence Ld is the grantee of the licence Ld′,
- the licence Ld corresponds to the target definition of Ld′ (i.e. Use(Ld,

Target(Ld’))).

Definition 2. Delegation chain.

1. For each delegation licence LG ∈ OLG we can generate a delegation chain,
which we call DC(LG). A delegation chain is represented by a directed graph
(see Fig 2.a). The nodes contain licences Ld ∈ OLd, and we denote N(Ld)
the node containing licence Ld. There is an arc from node N(Ld1) to node
N(Ld2), if Ld2 is derived from Ld1. A node containing a simple licence
L ∈ OL is always a leaf of the graph.

2. A node is rooted if it contains a licence that cannot be derived from any other
licences. A delegation chain of a licence Ld is rooted if Ld is rooted.

3. When a node Ni is deleted (i.e. the licence contained in this node is revoked),
a special arc labelled with a * is used to connect nodes Ni−1 to Ni+1 (see
Fig2.b). In addition, we denote DC*(Ld) the delegation chain DC(Ld) that
includes labelled arcs.

Note that the delegation chain DC* is used to ensure that every delegated licence
has a path that links it to the licences from which it is indirectly derived, even
if some licences belonging to the delegation chain are removed. For instance, if
we consider the delegation chain given in Fig. 2.b, then DC(LG1)= {LG2, L3}
and DC*(LG1) ={LG2, L3, L5}.

Definition 3. Dependency.
A licence Ld depends exclusively on a user U if there is no rooted delegation

chain DC such that Ld ∈ DC and ∀Ld′ ∈ DC, Grantor(Ld′) �= U .
We assume that Dependent(Ld, U) is a predicate meaning that licence Ld

depends exclusively on user U .

Theorem 1. The delegation chains are computable in polynomial time.

Proof. The delegation chain is based on the OrBAC model and its self-admi-
nistration model. Policies associated with both of them can be expressed as
recursive rules corresponding to a stratified Datalog program; the delegation
chains are then obtained by computing a fixed point which is tractable in poly-
nomial time. ��

196 M. Ben-Ghorbel-Talbi et al.

LG1

LG2

LG4

L5

L3

LG1

LG2

LG4

L5

L3

a. Delegation chain DC(LG1) b. Delegation chain DC*(LG1)

*

Fig. 2. Delegation Chain

3 Revocation

We focus in this section on two aspects of delegated right revocation. The first
aspect is how to perform revocation. In our model revocation can be performed
automatically when the delegation context does not hold, or manually by an
authorized user. Following the classification defined in [4], user revocation can be
categorized into three main dimensions: propagation, dominance and resilience.
Propagation concerns the management of the revocation in the case of multi-
step delegation, dominance concerns the revocation impact on other delegations
associated with the same grantee, and resilience concerns the persistence of the
revocation in time, i.e. the revocation by removal of the permission (non-resilient)
or by adding a negative permission that has higher priority (resilient). In our
delegation model we do not consider resilient revocation. Indeed, we consider
that delegation concerns only positive permissions and granting prohibitions is
an administrative task only.

Obviously, to perform a revocation the user must have the permission to
revoke the delegation. This is the second issue of revocation: how to manage
the right of revocation. For this purpose, we consider the grant dependency
characteristic. Grant Dependent (GD) revocation means that the user can only
revoke his/her delegations. Grant Independent (GI) means that the delegation
can be revoked by any authorized user. For instance, a user empowered in a role
R can revoke any grantee empowered to this role by delegation.

3.1 User Revocation

As mentioned in the previous section, delegation is performed by adding objects
into delegation views. The existence of these objects is then interpreted as a
permission. The revocation of the delegation is performed by removing these

Revocation Schemes for Delegation Licences 197

objects from the delegation views. Each object is associated with a grantor at-
tribute that indicates the subject that is performing the delegation. By default,
each object can be removed by his/her grantor. This can be specified implic-
itly or explicitly in our model (see section 3.3). Thus, we can ensure that each
delegation can be revoked.

The effect of the licence revocation on the other delegations depends on the
revoker needs. He/she can choose, for instance, to revoke the whole delegation
chain (cascade revocation) or to revoke all other delegations associated with the
same grantee (strong revocation).

Propagation. In the case of multi-step delegation, the delegation of each dele-
gation licence (i.e. using the view Grant option) can generate a delegation chain.
Hence, the revoker can choose to revoke only the licence he/she has delegated
or also all licences derived from it.

Definition 4. Simple revocation.
This is the simplest revocation scheme. The revocation involves deleting the

licence from the delegation view and does not affect the other delegated licences.
We formally define the request to revoke a delegation as follows:

Request(U, revoke, L) then
forall Li ∈ Derived licences(L) and Lj ∈ Parent licences(L) do
Add a labeled arc from N(Lj) to N(Li),
Remove(L).

end

We assume that, Derived licences(L) is the set of all licences L′ such that there
is an arc (labelled or not labelled) from node N(L) to node N(L′) and Par-
ent licences(L) is the set of licences L′′ such that there is an arc (labelled or not
labelled) from node N(L′′) to node N(L).

Definition 5. Cascade revocation.
This involves the revocation of all the licences belonging to the delegation

chain. But, this revocation should not affect the licences belonging to the delega-
tion chain (DC) of other licences. The reason is that if the grantor of a licence
L has received the permission to delegate this licence from two or more different
delegation licences, then if one of these delegations is revoked, the grantor still
has the right to delegate L (an illustrative example is given below). In our model,
cascade revocation is defined as follows:

Request(U, Cascade revoke, L) then
Request(U, revoke, L),
forall Li ∈ Derived licences(L) do

if Li /∈ DC(L′), L′ ∈ OLG then
Request(U, Cascade revoke, Li).

end
end

Example 1. We consider the example shown in Fig.3, and we assume that LG1

is revoked with the cascade option. On the first pass, licence LG1 is removed. On

198 M. Ben-Ghorbel-Talbi et al.

the second pass, LG2 and LG3 are revoked and a labelled arc is added to connect
node LG0 to LG4. Note that LG3 is revoked because it belongs to DC*(LG0)
and not to DC(LG0). Finally, the cascade revocation process is stopped because
LG4 belongs to DC(LG5).

LG1

LG3

LG4

L6

LG5

b. The Cascade revocation of LG1

LG0

*

a. The delegation chain of LG1

*

LG2

LG1

LG3

LG4

L6

LG5

LG0

*

LG2

Fig. 3. Cascade revocation

Dominance. The revocation described so far is a weak revocation. This means
that the revocation of a licence L will only affect this licence (in the case of
simple revocation) or the licences belonging to its delegation chain (in the case
of cascade revocation). However, a strong revocation will affect the other licences
associated with the same grantee.

Definition 6. Strong revocation.
The strong revocation of licence L means that all the licences equal to L (or

are a sub-licences of L) that depend on the revoker and associated with the same
grantee must be revoked. This is defined as follows:

Request(U, Strong revoke, L) then
Request(U, revoke, L),
forall Ldi ∈ OLd do

if Grantee(Ldi) = Grantee(L) and Sub licence(Ldi,L) and
Dependent(Ldi,U) then

Request(U, revoke, Ldi).
end

end

As mentioned in Definition 3, Dependent(Ld, U) is a predicate meaning that
licence Ld depends exclusively on user U .

Revocation Schemes for Delegation Licences 199

Definition 7. Strong-Cascade revocation.
We consider the strong-cascade revocation of a licence L as a strong revocation

of all licences belonging to the delegation chain of L. This is defined as follows:

Request(U, Strong Cascade revoke, L) then
Request(U, Strong revoke, L)
forall Li ∈ derived licences(L) do

if Li /∈ DC(L’), L′ ∈ OLG then
Request(U, Strong Cascade revoke, Li)

end
end

Example 2. We consider the example shown in Fig.4, where we represent in each
node the delegated licence, the grantor and the grantee of this licence. We assume
that licence LG5 is a sub-licence of LG3 and LG7 is a sub-licence of LG4.

LG1
(A,B)

LG1
(A,B)

LG3
(B,C)

LG4
(C,D)

L6
(D,E)

LG5
(A,C)

LG0
(X,Y)

*

LG3
(B,C)

LG4
(C,D)

L6
(D,E)

LG5
(A,C)

LG0
(X,Y)

LG7
(G,D)

LG7
(G,D)

*

Fig. 4. Strong-Cascade Revocation

If A the grantor of licence LG1 revokes this licence with the strong-cascade
option, then the whole delegation chain of LG1 will be revoked with the strong
cascade option as well. On the first pass, licence LG1 is revoked by A. On the
second pass licence LG3 is revoked and also licence LG5 since it is a sub licence
of LG3 and it depends on A. On the third pass, LG4 is revoked but not LG7

because it is independent of A. L6 is not revoked because it belongs to DC(LG7).

Theorem 2. The revocation requests are computable in polynomial time.

Proof. A request to revoke a licence requires a recursive search in the delegation
chain of this licence, therefore using theorem 1, it is computable in polynomial
time. ��

Other revocation schemes. The revocation discussed in this section only
concerns delegated licences, however the delegation model supports both role

200 M. Ben-Ghorbel-Talbi et al.

and licence delegation. Role revocation is omitted for the sake of simplicity, but
we can deal with this aspect similarly as described above. We have simply to
consider the set of delegated roles, OR (the set of objects belonging to the view
Role delegation) and we replace the set OL (the set of delegated licences) by
OD = OL ∪OR (the set of delegations). The remainder is unchanged, except for
strong revocation where sub licence is replaced by sub role in the case of role
revocation.

Additionally, the delegation model supports role and licence transfer. But
there is no need to use specific functions to deal with the transfer revocation.
In fact, the grantor automatically recovers his/her rights when the transfer is
revoked (see [1] for more details). As we have mentioned earlier, when the licence
is removed the permission delegated to the grantee is no longer derived, but in
the case of transfer, the prohibition associated with the grantor is no longer
derived either.

3.2 Automatic Licence Revocation

In our model, the licence revocation can also be performed automatically using
the notion of context. In fact and contrary to other existing models (see section
4), Licences are associated with an attribute called Context used to specify con-
ditions (see [8] for more details). Concrete permissions are derived from Licences
only if the context is active. Hence, the delegation is revoked automatically if
the context does not hold. Note that in this case the licence is not removed as
in user revocation, but the permission is not derived.

For instance, we consider the case when the user U1 delegates licence L to
user U2 with the following attributes: Grantor: u1, Grantee: u2, Privilege: read,
Target: file1, Context: weekend. This means that the following permission is
derived for user U2: Permission(u2, read, file1, weekend).

This permission is derived only if the context weekend holds, thus the user
U2 is allowed to read the file file1 only during the weekend. We can say that
the delegation is revoked automatically during the other days of the week.

Note that in the case of multi-step delegation, when a delegation licence LG is
revoked automatically (i.e. the delegation context of LG does not hold), then all
the delegation licences derived from it are revoked automatically as well (i.e. the
delegation context of these licences does not hold as well). This is due to the fact
that when we derive a licence LG′ from LG, then LG′ must be a sub-licence of
LG. Therefore, the delegation context of LG′ must be equal to or a sub-context
of the delegation context of LG.

Moreover, in the case of licence transfer, the grantor revocation is done auto-
matically using contextual prohibition. In fact, when a transfer is performed, a
prohibition associated with the highest priority level is automatically assigned
to the grantor while the delegation is active (see [1]). Therefore, the grantor will
lose the permission he/she has delegated. The context of the prohibition and
of the delegated permission are the same. So, when the delegation context does
not hold, the prohibition is no longer derived and the grantor will automatically
retrieve his/her permission.

Revocation Schemes for Delegation Licences 201

3.3 Managing Revocation

A revocation policy defines who is permitted to revoke delegations (roles or
licences). In the literature some models [9,10,11,12] consider that the right to re-
voke his/her delegations is implicitly defined, i.e. the grantor of the right R is au-
tomatically allowed to revoke it. Other models [13,14,15] use specific functions to
manage the revocation policy, such as can revoke, can revokeDG, can revokeGI,
can u2u revokeGD. This approach is more general since it dissociates the right
to revoke from the right to delegate a privilege. Therefore, it supports more
revocation schemes such as Grant Independent.

In our model, we follow the second approach, but we do not use specific func-
tions to define the right to revoke. In fact, we manage delegation and revocation
by the assignment of subjects (users or roles) to permissions just like in the
AdOrBAC model. These permissions apply to the activities delegate and revoke,
and are associated with a delegation target (the delegation views). So, they allow
users to add and remove objects from the delegation views.

Note that using the derivation rules, we can implicitly specify that grantors
who are permitted to delegate a right are also permitted to revoke this right.
But in addition, we can specify explicitly who is permitted to revoke delegations
and, thanks to the use of contexts, we can specify different conditions to restrict
the revocation rights. In the following we give some context examples dealing
with Grant Dependent and Independent revocation.

Example 3. Grant Dependent revocation.
In the case of Grant Dependent revocation only the grantor is allowed to

revoke the delegated licence. To deal with this aspect we define the prerequisite
contexts gdL as follows1:

Hold(U, revoke,L, gdL):-

Use(L, licence delegation);Use(L, grant option), Grantor(L, U).

Using this context, the administrator can specify that all users are authorized
to revoke their delegated licences. This is defined by the following:

Permission(default Role, revoke, licence delegation, gdL).

P ermission(default Role, revoke, grant option, gdL).

where default Role is a role to which all authorized users are empowered.
We can also consider the case of role revocation as follows:

Hold(U, revoke,RD, gdR):-

Use(RD, role delegation),Grantor(RD,U).

Similarly, the administrator can specify that all users are authorized to revoke
their delegated roles as follows:

Permission(default role, revoke, role delegation, gdR).

Example 4. Grant Independent revocation.
1 The operator ’;’ corresponds to a disjunction.

202 M. Ben-Ghorbel-Talbi et al.

We can specify many contexts to deal with this aspect according to the ad-
ministrator’s needs. Contexts provide our model with high flexibility and expres-
siveness.

For instance, we may consider that a user can revoke a licence (respectively a
role) if this licence (or this role) is derived from this user but depends exclusively
on him/her. Hence, he/she cannot revoke a licence that also depends on other
users. We define for this purpose the contexts Ancestor Dependent adL and adR

to revoke a licence and a role, respectively:

Hold(U, revoke,L, adL):-

Use(L, licence delegation);Use(L, grant option), Dependent(L, U).

Hold(U, revoke,RD, adR):-

Use(RD, role delegation),Dependent(RD,U).

We can also define the context Role Dependent (rd) to say that any user
empowered in role R can revoke this role:

Hold(U, revoke,RD, rd):-

Use(RD, role delegation),Assignment(RD,R), Empower(U,R).

Note that to manage the revocation policy, the administrator only specifies
who is permitted to perform a simple revocation. We assume that the right
to perform the other revocation schemes, namely cascade, strong and strong-
cascade revocation, is automatically derived from the simple revocation. For
instance, the request (U, cascade-revoke, L) is considered as a set of simple
requests to revoke the licences that belong to the delegation chain of L. Hence,
if the user is allowed to revoke these licences then he is allowed to revoke L
with the cascade option. A straightforward refinement of our model involves
specifying that the revocation request is atomic or not, i.e. if the user is not
allowed to revoke all the related licences, then we have to specify if the request
to revoke with the cascade, strong or strong-cascade option, can be partially
accepted or must be totally rejected.

Moreover, using the contextual licences, we can specify complex security rules
to manage revocation. Indeed, we can define several conditions using the taxon-
omy of contexts (e.g. temporal, prerequisite, provisional [8]). These conditions
may concern the grantor or the grantee attributes, previous actions, the dele-
gated right (i.e. the role, the target, the privilege), the time, circumstances (e.g.
urgency). For instance, we can specify that a given user U1 is allowed to revoke
the role R transferred by the grantor U3 to the grantee U2, only if U3 is not on
vacation. We can also define that U1 can revoke U2 if this user has performed a
given action A in a given object O. We may also specify that U1 is authorized
to revoke U2, if U2 is the assistant of U1, or is associated with the same depart-
ment as U1. These kind of conditions are not supported by the existing models
since they only specify constraints on the role membership of the grantor or the
grantee.

Revocation Schemes for Delegation Licences 203

4 Related Work

In [4] authors classify the revocation into three dimensions: resilience, propaga-
tion and dominance. These dimensions are combined to provide eight different
revocation schemes. This paper proposes to study permission revocation in a
generic access control framework with a grant for both positive and negative
permissions, where negative permissions dominate positive ones. The concept of
inactive permissions is used to deal with resilient revocation, namely, positive
permissions are inactivate when a negative permission is granted.

[9] addresses the revocation of certificates. The proposed framework sup-
ports revocation schemes such as propagation, dominance and grant dependency.
Strong revocation means that the user is permitted to revoke any certificate that
belongs to the delegation chain of a certificate issued by him/her. This corre-
sponds to ancestor-dependent revocation in our paper.

Work [3,10,11,12,13,14,15] deals with revocation in role-based access control
models. RBDM0 [3] is the first delegation model of Barka and Sandhu. It ad-
dresses role revocation and supports automatic revocation using a time out, and
grant independent revocation (which corresponds to role-dependent revocation
in our paper). RBDM1 [13] is an extension of this model, which supports cascade
revocation, strong revocation, grant-dependent and role-dependent revocation.
The strong revocation of a role is considered as a revocation of both explicit
and implicit memberships (i.e. all roles junior to that role are revoked), this is
a specific case of strong revocation presented in our paper. Role-role revocation
is defined using the relation: Can-Revoke ⊆ R x R. Can-Revoke(x, y) ∈ Can-
Revoke means that the user empowered in role x can revoke the membership of
the delegate member y in role x. RDM2000 [15] is based on RBDM0. It sup-
ports cascade and strong revocation (strong option has the same definition as in
RBDM0). Revocation is managed using the following relations: Can-RevokeGD
⊆ R to manage the grant-dependent revocation and Can-RevokeGI ⊆ R to
manage the role-dependent one.

The two models [11,12] address the revocation of permissions in workflow sys-
tems. The first model supports automatic revocation using the notion of case
(an instance of a workflow process) and grant-dependent revocation (the right
to revoke his/her own delegations is implicitly defined). It also supports cas-
cade revocation and uses a delegation graph similar to our model, namely nodes
represent accepted delegations. The second model deals with automatic revoca-
tion using lifetime, cascade revocation and dependency. Users are automatically
allowed to revoke their own delegations, and the grant-independent option is
considered as revocation by the security administrator.

Compared to these works, our model is more expressive since it supports
various revocation schemes such as automatic/manual, simple/cascade, weak
/strong, grant dependent/independent (e.g. role dependent, ancestor depen-
dent). Only resilient revocation is not considered because we assume that grant-
ing negative permissions is an administration task only. These different schemes
apply to the revocation of delegation/transfer of roles/permissions. Moreover,
thanks to the use of contexts, our model is more flexible and simpler to manage.

204 M. Ben-Ghorbel-Talbi et al.

Namely, there are no specific permissions or actions for each revocation task
like in related work. Hence, we have simply to define contexts to specify the
different revocation schemes. On the other hand, using contextual permissions,
we can specify several constraints to manage revocation that are not supported
by other work. Indeed, they only support constraints on the role membership of
the grantor or the grantee, whereas in our model we can specify several kinds
of conditions concerning grantor/grantee attributes, previous actions, delegated
rights, the time.

5 Conclusion

In this paper we have proposed to deal with revocation in role-based access
control models. Our work is based on the delegation model presented in [1]. This
model is flexible and various delegation schemes are defined.

Our revocation study has focused on two issues: how to perform revocation
and how to manage the revocation policy. Revocation can be performed auto-
matically when the delegation context does not hold, or manually by an au-
thorized user. The effect of revocation on other delegations varies according to
the revoker’s needs. The revocation can be with a cascade so all the delegation
chains are revoked, or with a strong option so all the delegations assigned to the
grantee are revoked. We can also combine these two features to revoke with a
strong-cascade option.

To manage the revocation policy, we have to specify who is permitted to delete
objects from the delegation views. Thanks to the use of contexts we can specify
various conditions to restrict the revocation rights. We have given some context
examples to specify that all grantors are permitted to revoke their delegations,
or all users empowered in a role R are permitted to revoke R, or finally, all users
are permitted to revoke licences (or roles) that belong to their delegation chain.

Although many revocation schemes are supported, such as propagation, dom-
inance, automatic revocation, grant dependency, transfer revocation, we have
dealt with these different revocations in a simple manner and there is no need to
deal with each level separately. Thanks to the facilities provided by the OrBAC
model (i.e. contextual licences, the use of views), we do not use specific functions
to manage revocation like in other related work. Therefore, it is easier to extend
our study to deal with other revocation schemes and constraints, since we have
simply to define new contexts.

In this paper we have focused on the delegation and revocation of licences
that are interpreted as permissions. Future work will be to enrich our model to
study the delegation and revocation of obligations.

References

1. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: Man-
aging Delegation in Access Control Models. In: Proceedings of the 15th Interna-
tional Conference on Advanced Computing and Communications (ADCOM 2007),
Guwahati, Inde, pp. 744–751. IEEE Computer Society Press, Los Alamitos (2007)

Revocation Schemes for Delegation Licences 205

2. Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Multi-Granular Licences to Decen-
tralize Security Administration. In: Proceedings of the First international workshop
on reliability, availability and security (SSS/WRAS 2007), Paris, France (Novem-
ber 2007)

3. Barka, E., Sandhu, R.: A Role-based Delegation Model and Some Extensions. In:
Proceedings of the 23rd National Information Systems Security Conference (NISSC
2000), Baltimore, MD (October 2000)

4. Hagström, Å, Jajodia, S., Parisi-Persicce, F., Wijesekera, D.: Revocation - a Clas-
sification. In: Proceedings of the 14th Computer Security Foundation Workshop
(CSFW 2001), Cape Breton, Nova Scotia, Canada, IEEE Computer Society, Los
Alamitos (2001)

5. Abou-El-Kalam, A., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization Based Access Control. In:
Proceedings of the 4th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003). IEEE Computer Society, Los Alamitos
(2003)

6. Cuppens, F., Miège, A.: Administration Model for Or-BAC. International Journal
of Computer Systems Science and Engineering (CSSE) 19(3) (May 2004)

7. Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance Hierarchies in the Or-
BAC Model and Application in a Network Environment. In: Proceedings of the
3rd Workshop on Foundations of Computer Security (FCS 2004), Turku, Finland
(July 2004)

8. Cuppens, F., Cuppens-Boulahia, N.: Modeling Contextual Security Policies. Inter-
national Journal of Information Security (November 2007)

9. Firozabadi, B.S., Sergot, M.: Revocation Schemes for Delegated Authorities. In:
Proceedings of the Third International Workshop on Policies for Distributed Sys-
tems and Networks (2002)

10. Nguyen, T.A., Su, L., Inman, G., Chadwick, D.: Flexible and Manageable Delega-
tion of Authority in RBAC. In: Proceedings of the 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW 2007).
IEEE Computer Society, Los Alamitos (2007)

11. Wainer, J., Kumar, A., Barthelmess, P.: DW-RBAC: A Formal Security Model
of Delegation and Revocation in Workflow Systems. Information Systems 32(3),
365–384 (2007)

12. Wei, Y., Shu, Q.: A Delegation-Based Workflow Access Control Model. In: Pro-
ceedings of the First International Symposium on Data, Privacy, and E-Commerce
(ISDPE 2007). IEEE Computer Society, Los Alamitos (2007)

13. Barka, E., Sandhu, R.: Role-Based Delegation Model/ Hierarchical Roles
(RBDM1). In: Proceedings of the 20th Annual Computer Security Applications
Conference (ACSAC 2004), Tucson, Arizona (December 2004)

14. Lee, Y., Park, J., Lee, H., Noh, B.: A Rule-Based Delegation Model for Restricted
Permission Inheritance RBAC. In: Proceedings of the 2nd International Conference
(ACNS 2004), Yellow Mountain (June 2004)

15. Zhang, L., Ahn, G.-J., Chu, B.-T.: A Rule-Based Framework for Role-Based Del-
egation and Revocation. ACM Transactions on Information and System Security
(TISSEC) 6, 404–441 (2003)

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 206–221, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reusability of Functionality-Based Application
Confinement Policy Abstractions

Z. Cliffe Schreuders and Christian Payne

School of IT, Murdoch University, South Street Murdoch WA 6150, Australia
{c.schreuders,c.payne}@murdoch.edu.au

Abstract. Traditional access control models and mechanisms struggle to con-
tain the threats posed by malware and software vulnerabilities as these cannot
differentiate between processes acting on behalf of users and those posing
threats to users’ security as every process executes with the full set of the user's
privileges. Existing application confinement schemes attempt to address this by
limiting the actions of particular processes. However, the management of these
mechanisms requires security-specific expertise which users and administrators
often do not possess. Further, these models do not scale well to confine the
large number of applications found on functionality-rich contemporary systems.
This paper describes how the principles of role-based access control (RBAC)
can be applied to the problem of restricting an application's behaviour. This ap-
proach provides a more flexible, scalable and easier to manage confinement
paradigm that requires far less in terms of user expertise than existing schemes.
Known as functionality-based application confinement (FBAC), this model sig-
nificantly mitigates the usability limitations of existing approaches. We present
a case study of a Linux-based implementation of FBAC known as FBAC-LSM
and demonstrate the flexibility and scalability of the FBAC model by analysing
policies for the confinement of four different web browsers.

Keywords: Functionality-Based Application Confinement (FBAC), Role-
Based Access Control (RBAC), Application-Oriented Access Control, Applica-
tion Confinement, Sandbox, Usable Security, Reusable Policy.

1 Introduction

Existing widely used access control models reflect the traditional paradigm of protect-
ing users from one another. Although user-oriented access control models such as tra-
ditional mandatory access control (MAC), discretionary access control (DAC) and
role-based access control (RBAC) restrict the actions of users, these are generally not
able to distinguish between an application performing legitimate actions on behalf of
a user and code that is using these privileges nefariously. As a result, programs are es-
sentially fully trusted: once executed malicious code typically has complete access to
the user's privileges.

Application confinement models have been developed to restrict the privileges
of processes, thereby limiting the ability of these programs to act maliciously. How-
ever, established application confinement models that allow finely-grained control

 Reusability of Functionality-Based Application Confinement Policy Abstractions 207

over access to resources require the construction of extremely complex policies [1, 2].
These require significant technical expertise to develop and have limited scalability as
confining each application involves the construction of a new detailed policy. Unfor-
tunately, to date this has limited their practical usefulness and acceptance.

By recognizing that the goal of restricting users is essentially analogous to that of
restricting applications, it follows that the principles from existing user-oriented ac-
cess control models may be applied to the problem of process confinement. Specifi-
cally, applying the principles of role-based access control to application confinement
leverages the flexibility and efficient management of RBAC to provide hierarchical
policy abstractions for restricting applications, which eases policy development and
association. These constructs can be parameterised to provide flexible and reusable
application-oriented policy abstractions for improved usability, manageability, scal-
ability and security.

2 Background

2.1 Application Confinement

A number of application confinement models have been developed to provide re-
stricted environments for applications, thereby limiting their ability to behave mali-
ciously. Some simply isolate programs to a limited namespace using a traditional
sandbox [3] or virtual machine [4], examples include chroot(), FreeBSD jails [5]
Solaris Zones [6], and Danali [7]. Others allow restricted access to selected shared re-
sources, such as the Java [8] and .NET [9] sandboxes where applications are restricted
by complex administrator-specified policies based on the properties of the code. Some
models exist based on the paradigm of label-based integrity preservation where sub-
jects are labelled high or low in integrity and the flow of information between levels
serves as the basis for policy [10, 11]. Other restricted environments require the speci-
fication of a detailed policy detailing each application’s access to specific resources.
This applies to confinement mechanisms including Janus [12], Systrace [13], Novel
AppArmour [14] (previously known as SubDomain), TRON [15], POSIX capabilities
[16], Bitfrost [17], CapDesk [18], and Polaris [19]. Methods of mediating this type of
access control include using capabilities [20] or system call interposition [2]. Other
schemes, such as domain and type enforcement (DTE) [21] and the Role Compatibil-
ity model [22] allow the definition of multiple restricted environments, and propagat-
ing processes transition between them.

Unfortunately all of these mechanisms have limitations and problems. Isolation-
based approaches typically involve significant redundancy as shared resources must
be duplicated and they also severely limit the ability of applications to exchange data
with one another [23]. On the other hand, more finely-grained restricted access con-
trol policies are difficult and time-consuming to define and manage. The task of trans-
lating high level security goals into finely grained policies is problematic, making
these policies difficult to both construct and verify for completeness and correctness
[1, 24]. Furthermore, once constructed an individual policy will apply primarily to
only a single application, meaning that the work involved in constructing suitable
policies for all necessary applications is considerable. For example, specifying DTE

208 Z.C. Schreuders and C. Payne

domain policies is complex and although multiple processes can be confined by a sin-
gle domain, domains must be specified separately [25]. There is significant overlap of
privileges granted to compiled domain policies, and typically any non-trivial applica-
tion is assigned a separate domain. Finally, specifying file and domain transitions can
also be a complex task as programs need specific authorisation to label files as being
accessible to programs in different domains, and users and programs both need per-
mission in order to execute programs belonging in another domain [26].

These application confinement schemes lack flexible policy abstractions which can
allow application access policies to be meaningfully reused while providing fine
grained restrictions. With isolation sandboxes the container itself acts as the only pol-
icy abstraction – a simple collection of subjects and resources. Existing schemes
which mediate finely-grained privileges to applications are generally either devoid of
policy abstraction (a list of privileges are directly associated with a program) or con-
tain large monolithic self-contained abstractions (such as DTE domains or RC roles)
which cannot be flexibly reused for different applications unless they share the exact
same privilege requirements. As a result, these application confinement architectures
do not provide a practical or scaleable solution for conveniently confining multiple
applications.

While a few implementations of these models allow policy abstractions to be com-
prised of smaller components they are reduced to a single monolithic policy abstrac-
tion before use, which limits their usefulness at run-time and their reusability. For
example, SELinux’s DTE Domain specification can include macros in the m4 lan-
guage. Before policy is applied, these are expanded into many lines of rules granting
all the required privileges. The result is a single domain with a fixed set of privileges,
typically those required by a single program. Likewise, at system start-up abstractions
in AppArmor application profiles are translated into a raw list of privileges associated
with the program. This monolithic approach to policy abstraction also means that any
finer grained abstractions which may have been used to construct policy are not avail-
able when managing the privileges of a process.

2.2 Role-Based Access Control (RBAC)

Role-based access control (RBAC) is a user-oriented access control model which as-
sociates users with privileges via organizational abstractions known as roles [27].
When a user joins an organisation they are assigned the roles representing the privi-
leges required by their responsibilities and duties and this eliminates the task of manu-
ally assigning permissions to each new user [28]. Access decisions are then made
based on the permissions associated with the roles the user is assigned. Policy reus-
ability is enhanced through role hierarchies which allow roles to be defined in terms
of other roles. Also, role constraints such as separation of duty can restrict certain
conflicting permissions from being associated with the same user (static separation of
duty) or accessed concurrently (dynamic separation of duty) [29].

Many similarities can be observed between the motivation for the development of
RBAC in relation to traditional access controls and the current problems faced in the
domain of application confinement. RBAC provides a conceptually-straightforward,
scalable and abstract association between users and the privileges they require in
order to perform their designated duties within an organisation. This highlights the

 Reusability of Functionality-Based Application Confinement Policy Abstractions 209

advantages a model which provides similar abstract associations between applications
and the privileges they require can provide to application-oriented access control.

3 Functionality-Based Application Confinement

3.1 Policy Abstraction

The notional similarities previously noted between user confinement via access con-
trols and application confinement models suggest the applicability of traditional ac-
cess control principles to the problem of restricting applications. In particular, many
of the design principles of RBAC can be applied to manage the privileges of execut-
ing programs. Based on this, a model known as functionality-based application
confinement (FBAC) has been developed [30]. Designed to be analogous to the speci-
fications contained in the NIST/ANSI INCITS RBAC model [31, 32], FBAC acts as
an additional layer above traditional access control models and treats all software that
the user executes as untrusted by limiting its access to only the resources deemed nec-
essary for the application to operate as required.

Application confinement policies can be defined in terms of their behavioural
classes [33] which are conceptually analogous to RBAC roles. FBAC uses abstrac-
tions similar to RBAC roles and role hierarchies which are used to define complex,
finely-grained application confinement policies in terms of high level abstractions.
Consequently applications are confined to those resources deemed necessary by its
assigned functionalities.

Functionalities are hierarchical policy abstractions which form the basis of FBAC
policy. Functionalities can represent high-level behavioural classes of applications (for
example, “Web_Browser” or “Web_Server”) and these can inherit lower level func-
tionalities that represent application functionality such as “http_client”, “ftp_ client”
and “read_files_in_directory”. These functionalities are associated with privileges that
are made up of operations on objects.

The RBAC model and an FBAC confinement are structurally analogous but very
different in purpose. While RBAC is a user confinement model for system administra-
tors to restrict what permissions users hold according to their duties within an organi-
sation, FBAC is a framework for users to restrict the privileges of each application
based on the functionality it provides.

Related to the concept of discretionary role-based access control (DRBAC) [34,
35] where users have the ability to define and activate their own RBAC roles, FBAC
also applies RBAC concepts to allow users to confine themselves; however, FBAC is
focused on restricting applications rather than users.

3.2 Parameterisation

While RBAC roles are self-contained with each user receiving the same set of privi-
leges [36], in an application confinement context behavioural classes are better de-
fined in terms of parameterised categories [33]. Unlike RBAC role associations,
FBAC functionality associations are parameterised to allow functionalities to adjust to
the needs of different applications. For example, although an application may be clas-
sified by a general grouping such as “Web_Server”, in order to create an effective

210 Z.C. Schreuders and C. Payne

confinement policy certain application-specific details (such as the location of files
and directories it uses) must still be defined.

FBAC provides parameterised functionalities to allow policies to be more precisely
defined in terms of application-specific details. FBAC functionalities are passed ar-
guments in a way similar to how subroutines are in programming languages. This al-
lows the policy abstraction to be adapted to the specifics of individual applications
providing related features. Functionality definitions can also contain default argu-
ments which allow further ease of use in common cases without sacrificing flexibility.
This means applications are defined in terms of functionalities plus any information
required by those functionalities. Functionalities may use this information to inherit
from other functionalities or define the resources associated with operations.

3.3 Mandatory and Discretionary Controls

Unlike existing application confinement schemes which are either applied as a discre-
tionary control (such as Janus or TRON) or as a mandatory control (such as with DTE
or AppArmor), FBAC supports both mandatory and discretionary access controls si-
multaneously. Administrators can specify policies which govern the behaviour of ap-
plications to enforce system-wide security goals, restrict users to particular programs,
and manage user protection. Users may then further confine these applications to pro-
tect their own resources from malicious code.

This is achieved by layering FBAC confinements. A confinement may apply to
multiple users and may reuse the functionalities from other confinements. The result-
ing authority granted to an application is the intersection of the confinements for that
application which apply to the executing user. This layered approach to application
confinement is unique and provides defence in depth while requiring the maintenance
of only one mechanism. Because confinements can share the same functionalities this
greatly reduces the overhead of managing multiple layers of application-oriented ac-
cess controls, while enforcing the security goals of both users and administrators.

4 Defining and Managing Policy

The FBAC model greatly simplifies the management of application confinement poli-
cies compared with existing models. Functionalities are established representing the
various functional requirements of applications. Privileges can be assigned to these
functionalities directly and may also be inherited by other contained functionalities.
The applications have these functionalities associated with them as required by their
expected behaviour and when the program is executed, this will activate the function-
alities that apply to it and thus define its privileges at runtime.

Initial policy definition in FBAC involves the creation of new functionalities in
terms of low level privileges and existing functionalities, assigning the rights neces-
sary for applications to function according to the behaviour described by functional-
ities. This is influenced by security goals and application behaviour and resource
requirements. Although the design of FBAC significantly reduces the complexity of
privilege assignment compared with other finely-grained confinement models, this

 Reusability of Functionality-Based Application Confinement Policy Abstractions 211

initial process does require greater expertise than other aspects of the framework and
may be completed by a trusted third party rather than by end users.

Once defined these functionalities may be reused by multiple users to restrict as
many applications as appropriate. End users require little expertise to identify the
functionalities relevant to their applications based upon the program's expected be-
haviour. These are then associated with the application and parameters are provided
where necessary. This process is far simpler than with alternative confinement tech-
niques where complex policies must be defined for each individual application.

5 Web Browser Case Study

A language for expressing FBAC policies has been developed and a prototype im-
plementation of the model as a Linux Security Module (LSM) [37] called FBAC-LSM
is near completion. The policy requirements for a number of applications were ana-
lysed and a hierarchal FBAC policy for FBAC-LSM has been created. We now pre-
sent a case study of the application of FBAC policies to four common web browsers
— Firefox, Opera, Epiphany and Lynx — for the purposes of demonstrating policy
flexibility and reusability.

5.1 Restricting Applications

To confine a web browser such as Firefox using the graphical policy manager tool the
user simply chooses the high level functionalities relating to that application's func-
tionality. The user assigns a base functionality such as “Standard_ Graphical_ Applica-
tion_Base” and any high level functionalities which describe what the application is
expected to do (such as the “Web_Browser” functionality as defined in Figure 2 and
provides application specific parameters such as where the program is installed, the lo-
cation of its configuration files, where the program downloads files to, and potentially
a list of hosts it can connect to. If confining a browser such as Opera that supports ad-
ditional functionality, other corresponding high level functionalities are also assigned
such as “Email_Client”, “Irc_Chat_Client”, “News_ Reader_ Client” and “BitTor-
rent_Client”.

Unlike some operating systems where each application's files are typically found
in a very small number of directories, Linux organises application files based upon
the filesystem hierarchy standard (FHS). This can lead to an application's files
being spread throughout the filesystem tree and in some cases parameter value
specification may necessitate a degree of familiarity with this arrangement. Any
complexity due to this can be mitigated by the use of parameter descriptions sug-
gesting the location of files according to the FHS and the provision of a list of path-
names used by a program (for example, as in the case of Opera which provides this
information to the user). Furthermore, techniques are currently being developed to
automatically derive parameter values based on associated functionalities, and
package management and filesystem analysis. A graphical policy management tool
has been created which removes the need for end-users to be familiar with the
FBAC-LSM policy language and policy association becomes a matter of pointing

212 Z.C. Schreuders and C. Payne

and clicking. However, even so, the FBAC-LSM policy language is simpler and
provides greater abstraction than existing alternatives.

A FBAC policy for the Firefox browser created with the graphical policy manager
tool is given in Figure 1. For comparison purposes, additional policies for the three
other browsers considered in the case study are contained in Appendix A.

The Firefox policy from Figure 1 begins by specifying the executables which are
used to run the application (binarypaths). Next it identifies the two functionalities that
this application encompasses: “Standard_Graphical_Application_Base” and “Web_
Browser”. These functionalities are parameterised to address the specifics of the appli-
cation, for example to specify where the various files it uses are located and the hosts to
which it is permitted to connect. These parameters can easily be changed to grant the
application access to different resources. For example, to restrict the web browser to
only connect to particular servers (such as on an intranet) the allowed_ hosts_ to_ con-
nect_to parameter value can be changed.

application firefox
{
 binarypaths /usr/bin/firefox:/usr/bin/X11/firefox:
 /usr/lib/firefox/firefox:/usr/lib/firefox/firefox.sh;
 functionality Standard_Graphical_Application
 (peruser_directory="/home/*/.mozilla/firefox/",
 peruser_files="/home/*/.mozilla/appreg",
 application_libraries_directory="/usr/lib/firefox/",
 libraries_fileextension="*.so",
 config_directory={"/home/*/.mozilla/":"/home/*/.gnome2_private/"},
 config_files="",
 read_only_directory="");
 functionality Web_Browser
 (plugins_and_extensions_directory={"/home/*/.mozilla/plugins/":
 "/usr/lib/firefox/extensions/":
 "/usr/lib/browser-plugins/firefox/"},
 download_directory={"/home/*/Desktop/":"/home/*/downloads/"},
 allowed_hosts_to_connect_to="*",
 view_web_files_in_directory="/home/**/");
}

Fig. 1. Entire FBAC-LSM policy for Mozilla Firefox

5.2 Defining Functionalities

Each high level functionality is made up of lower level functionalities and privileges.
For example, the “Web_Browser” functionality incorporates many inherited function-
alities including “http_client”, “Ftp_Client” and “Web_Files_Viewer” which are in
turn made up of other functionalities and direct privileges.

The “Web_Browser” functionality policy shown in Figure 2 is syntactically the
same as the application policy in the previous figure, with additional concepts such as
the definition of parameters (followed by their default values), and information for the
graphical tool. Descriptions of functionalities and parameters assist the user, while the
granularity of the functionality (high or low level) and a category (in the “Web_
Browser” case “network_client”) allow the graphical tool to flexibly present the policy
to the user. Note the scalability of the abstractions provided by the functionalities con-
struct is demonstrated by the fact that the four web browsers considered in the case
study use the same underlying functionality definition.

 Reusability of Functionality-Based Application Confinement Policy Abstractions 213

functionality Web_Browser
{
 functionality_description "a web browser, and ftp client";
 highlevel;
 category network_client;
 parameter plugins_and_extensions_directory
 "/home/*/.[APPLICATION_NAME]/plugins/";

 param_description "the directory the application keeps any app-specific
 plugins or extensions";

 parameter download_directory "/home/*/downloads";
 param_description "the directories downloads are stored to";

parameter allowed_hosts_to_connect_to "*";
 param_description "hosts the browser can connect to";
 parameter view_web_files_in_directory "/home/**/";
 param_description "view web files in this dir (.htm, .jpg...)";
 functionality general_network_connectivity_and_file_access ();
 functionality http_client (allowed_hosts_to_connect_to, <default>);
 functionality save_downloads (download_directory);
 functionality extensions_plugins (plugins_and_extensions_directory, "*");
 functionality mime_aware ();
 functionality web_plugins_and_helpers ();
 functionality Ftp_Client (allowed_hosts_to_connect_to);
 functionality Web_Files_Viewer (view_web_files_in_directory, <default>);
}

Fig. 2. FBAC-LSM web browser functionality definition

Privileges are low level rights defined as operations on objects, which represent the
security-related kernel actions which allow access to the resources that are necessary
for that functionality. Low level functionalities, such as “files_r” in Figure 3, provide
abstractions to group together related low level privileges. In this functionality the pa-
rameter “files” is used to grant both read and “get attribute” access to these files.

functionality files_r
{
 functionality_description "read access to these files";
 lowlevel;
 parameter files "";
 param_description "allows these files to be accessed as described";
 privilege file_read files;
 privilege file_getattr files;
}

Fig. 3. Low level FBAC-LSM functionality and privileges

The results are policies for these web browsers which enforce the principle of least
privilege by confining the application to a restricted set of privileges required for the
application to complete its required duties. Consequently the actions of any malware
or the effects of any exploited security vulnerability are confined to the behaviour al-
lowed by its functionality-oriented policy.

5.3 Comparison with Other Mechanisms

The FBAC model has significant advantages over existing systems. A policy to con-
fine a complex application such Firefox using standard system call interposition
mechanisms such as Systrace or Janus results in a complex series of low level rules

214 Z.C. Schreuders and C. Payne

specifying which system calls are allowed and under what circumstances. This is il-
lustrated by the excerpt from a Systrace policy given in Figure 4 which only repre-
sents a tiny portion of the complete policy. The resulting policy is generally extremely
complex and it is difficult to verify that this policy is in fact correct [38].

native-fsread: filename eq "/usr/libexec/ld.so" then permit
native-fsread: filename eq "/usr/sbin/suexec" then permit
native-fsread: filename eq "/var/run/ld.so.hints" then permit
native-fsread: filename eq "/var/www" then permit
native-fsread: filename eq "<non-existent filename>" then deny[enoent]

Fig. 4. Excerpt from a Systrace policy

Similarly, managing NSA’s SELinux policy requires expertise beyond that of typi-
cal users or system administrators. Under SELinux the policy which applies is the net
result of the configuration of multiple access control models (including RBAC, DTE,
Multi-level Security and User Identity) and can be hard to verify for correctness or
completeness [1, 39]. For example, Figure 5 demonstrates the complexity and inscru-
tability of a SELinux policy by providing a brief excerpt from an SELinux reference
policy for Mozilla [40]. Although domains serve as policy abstractions, each applica-
tion is usually assigned a unique domain consisting of complex rules specifying
allowed file and domain transitions and interactions with types (similarly labelled ob-
jects). While SELinux is capable of meeting strong confidentiality requirements, it is
not well suited to end users confining potentially malicious applications [41].

manage_dirs_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
manage_files_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
manage_lnk_files_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
relabel_dirs_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
relabel_files_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
relabel_lnk_files_pattern($2,$1_mozilla_home_t,$1_mozilla_home_t)
manage_files_pattern($1_mozilla_t,$1_mozilla_tmpfs_t,$1_mozilla_tmpfs_t)
manage_lnk_files_pattern($1_mozilla_t,$1_mozilla_tmpfs_t,$1_mozilla_tmpfs_t)
manage_fifo_files_pattern($1_mozilla_t,$1_mozilla_tmpfs_t,$1_mozilla_tmpfs_t)
manage_sock_files_pattern($1_mozilla_t,$1_mozilla_tmpfs_t,$1_mozilla_tmpfs_t)
fs_tmpfs_filetrans($1_mozilla_t,$1_mozilla_tmpfs_t,{ file lnk_file sock_file

fifo_file })
allow $1_mozilla_t $2:process signull;
domain_auto_trans($2, mozilla_exec_t, $1_mozilla_t)
Unrestricted inheritance from the caller.
allow $2 $1_mozilla_t:process { noatsecure siginh rlimitinh };

Fig. 5. Excerpt from Mozilla interface rules in the Tresys SELinux reference policy [42]

Novell’s AppArmor policy specification format lists the resources an application
may access along with the type of access required [14]. This is illustrated in Figure 6.
Although this simplifies policy readability, it exposes the underlying complexity of the
system. As a result an in-depth knowledge of both the application being confined and
low-level details of the operating system's shared resources and services are required in
order to properly review the automatically generated policy. Construction of AppAr-
mor policies typically relies on recording process activity, while FBAC policies are
constructed based on high level security goals. Further, while AppArmour allows col-
lections of access rules to be grouped into abstractions, these are comparatively in-
flexible. For example, unlike AppArmour, FBAC has the ability to disable parts

 Reusability of Functionality-Based Application Confinement Policy Abstractions 215

/etc/mailcap r,
/etc/mime.types r,
/etc/mozpluggerrc r,
/etc/opt/gnome/gnome-vfs-*/modules r,
/etc/opt/gnome/gnome-vfs-*/modules/*.conf r,
/etc/opt/gnome/pango/* r,
/etc/opt/kde3/share/applications/mimeinfo.cache r,
/etc/rpc r,
/etc/sysconfig/clock r,
/opt/gnome/lib/GConf/2/gconfd-2 Px,
/opt/gnome/lib/gnome-vfs-*/modules/*.so mr,
/opt/gnome/lib/gtk-*/**.so* mr,
/opt/gnome/lib/lib*so* mr,
/opt/gnome/lib/pango/**.so mr,
/opt/gnome/lib64/lib*so* mr,

Fig. 6. Excerpt from AppArmor's Firefox profile

of policy on the fly and specify separation of duty, while the parameterised nature
of FBAC functionalities allows these to be easily adapted to differing application
requirements.

MAPbox provides behaviour based application confinement by allowing software
authors to specify a program's behaviour class which describes generally what the pro-
gram does along with some application-specific parameters [33, 43]. MAPbox’s de-
signers identified 14 program classes and corresponding restricted environments are
associated with applications based on these author-assigned classes. These restricted
environments are defined by complex finely-grained rules specified by the user. While
the use of behavioural classes to create an association between policies and programs is
an important contribution, policy management in MAPbox remains complex for users.
Furthermore applications may only be associated with a single behavioural class which
is problematic given many contemporary applications provide a variety of functional-
ity; for example, the Opera web browser. Like MAPbox, FBAC also restricts applica-
tions based upon parameterised classes. However, FBAC allows applications to be
associated with multiple functionalities and its hierarchical approach to policy man-
agement supports multiple levels of abstraction, bringing numerous advantages. For
example, FBAC functionalities may be defined hierarchically whereas MAPbox’s
sandboxes are defined individually. Unlike MAPbox, FBAC allows users to easily re-
strict arbitrary applications to protect themselves from programs they do not trust. Fur-
thermore FBAC-LSM’s use of the LSM interface avoids the problems inherent in
MAPbox's use of the system call interface as a security layer [38].

Generally therefore, in contrast to these mechanisms, FBAC-LSM separates and
abstracts the task of developing low level policy rules from the task of defining the
expected behaviour of a specific program. This allows users, administrators and soft-
ware authors — in fact uniquely any combination of authorised policy sources — to
restrict what an application can do using high level abstractions which can then be
easily fine-tuned via parameterisation to suit different applications. Compared to al-
ternative finely-grained application confinement models, FBAC may be used to con-
fine very complex software packages such web browsers using a hierarchical policy
that is far easier to manage. While the above confinement methods are either system
wide and mandatory (SELinux/DTE, AppArmor) or per-user and discretionary
(Janus/Systrace, MAPbox), FBAC-LSM simultaneously enforces mandatory and dis-
cretionary FBAC policies. Under FBAC users can configure their own security policy
to protect themselves while administrators are able to define system-wide policies to

216 Z.C. Schreuders and C. Payne

protect system security, enforce organisation level security goals and, when neces-
sary, administer policy to protect specific users. These restrictions on applications se-
verely limit the impact from malware or exploitation of any software vulnerabilities.

6 Discussion

6.1 Manageability and Usability

The policies for the four web browsers presented here (in Figure 1 and Appendix A)
are defined in terms of high level security goals. In contrast with other application con-
finement schemes such as those previously discussed, FBAC allows succinct high level
policies to be defined using flexible abstractions. This both reduces and simplifies the
management task involved in creating policies to confine individual applications. The
programs are simply identified as web browsers and application specific information is
supplied. In the case of Opera other high level functionalities are also specified. The
finely grained privileges inherited by functionalities are separated from the specifica-
tion of application policies, thus making policy specification easier than with other
schemes. The flexibility to restrict applications based on abstract descriptions of what
the application can do provides a significant improvement in usability, making it easier
to translate high level security requirements into finely grained policies.

Furthermore, the “Web_Browser” functionality (in Figure 2) demonstrates that the
hierarchical structure of policies allows functionalities themselves to also be defined
in terms of abstractions, such as “http_client”. Policies can be reviewed from their
high level functionalities (such as “Web_Browser” in Figure 2) to lower level detail
and right down to the privileges specifying permissible operations on designated ob-
jects (such as “file_r” in Figure 3). This makes finely grained policies easier to man-
age and comprehend as the policy is made up of levels of abstractions which can
encapsulate low-level details.

6.2 Scalability

Once functionalities such as “Web_Browser” have been defined, policies for each ap-
plication which provides the described functionality can be defined in terms of these
constructs. All four web browsers studied reuse the “Web_Browser” policy abstrac-
tion. This leverages the fact that many applications may be categorised into the same
behavioural classes and can be confined to easily identified sets of privileges required
for the applications to carry out their intended functions [33]. Rather than confining
an application by specifying each distinct privilege required, they can be simply de-
fined in terms of the behavioural classes to which they belong. Thus the model scales
well to confine the numerous applications typically found on contemporary systems.

The use of functionality hierarchies also increases the scalability of policy man-
agement by facilitating greater reuse of existing defined policy. For example the
“Web_Browser” functionality includes the functionality “Ftp_Client” which itself can
be used to describe applications which may not be web browsers. The use of hierar-
chies increases abstraction while reducing redundancy.

 Reusability of Functionality-Based Application Confinement Policy Abstractions 217

6.3 Security

Using application confinement schemes such as FBAC to limit program privilege pro-
vides significant security improvements over simply relying on user-oriented access
control mechanisms. FBAC enforces the principle of least privilege by confining ap-
plications to the set of privileges required for them to do their job. Although the ab-
stract nature of functionalities may potentially grant an application more privileges
than they actually use, in general these additional privileges simply allow the applica-
tion to carry out its authorised tasks in varied ways.

If an application attempts to exercise privileges it does not hold the request is de-
nied. For example, if due to the introduction of malicious code a restricted web
browser attempts to act outside of the behaviour defined by its associated functional-
ities the action would be prevented. This limits the ability of applications to behave
maliciously whether deliberately or otherwise.

The underlying FBAC-LSM policy granularity is finely grained and is determined
by the LSM interface. This design provides scope for the future inclusion of addi-
tional features such as stateful network packet inspection.

Compared with other confinement models the FBAC framework provides equiva-
lent security benefits. However, the superior convenience, simplicity, flexibility and
scalability of the FBAC model makes it far better suited to ubiquitous deployment.

However, beyond this FBAC has other security advantages. For example, the sepa-
ration of duty feature is unique in the area of application confinement and allows high
level security policies to specify privileges or functionalities that cannot be exercised
simultaneously. Static separation of duty prevents conflicting privileges from being
assigned to the same application while dynamic separation of duty stops applications
from exercising certain privileges concurrently. This limits the ability of high level
security goals to be accidentally subverted by low-level security policies.

Also, as FBAC’s policy abstractions are natively hierarchical, parts of the policy
can be easily activated or deactivated at run time. This is not possible using the exist-
ing application-oriented access control models such as DTE, RC or AppArmor as
privileges are contained in a monolithic abstraction associated with the security con-
text. FBAC’s hierarchy of functionalities allows run-time intervention to dynami-
cally deactivate or activate branches of functionalities. This could be requested by a
user, administrator or the software itself. For example using a multi-purpose applica-
tion (such as Opera web browser, email, irc, new reader and bittorrent client) the
user or the application itself may wish to only enable the functionality corresponding
to the feature the program is performing. This is equivalent to the concept of an
RBAC user activating only those roles corresponding to the job he or she is currently
performing.

FBAC also restricts applications based on a combination of policies representing
the security goals of users and administrators. While existing controls provide either
mandatory or discretionary application confinement, FBAC provides both through
layers of confinements. Policy can be reused across confinements and only one
mechanism needs to be maintained.

218 Z.C. Schreuders and C. Payne

7 Conclusion

The case study and corresponding analysis of the FBAC model presented here dem-
onstrates that applying parameterised RBAC constructs to the problem of application
confinement can provide clear advantages over alternative approaches. FBAC sepa-
rates the task of policy construction from the association of these policies with spe-
cific applications. This simplifies the process as users or administrators can assign
pre-specified generic policies based upon an application's anticipated functionality
rather than needing to construct individual policies for each program. FBAC utilises
functionalities as an abstract policy construct and by allowing the definition of new
functionalities in terms of existing ones, a hierarchy is created which improves usabil-
ity, manageability and scalability. While end users can simply assign policies based
upon high-level functionalities, security administrators and analysts can study policy
construction at multiple levels. The separation of duty mechanism also ensures that
high level policy goals are maintained during the construction of low-level policies.
Finally, the use of parameterisation allows confinement policies to be easily adapted
to deal with subtle differences between similar applications and this further improves
policy reusability. As demonstrated by the four web browser policies presented, the
usability and management improvements provided by FBAC make deploying applica-
tion confinement significantly easier and could therefore have the potential to encour-
age broader adoption of such security mechanisms in the future.

References

1. Zanin, G., Mancini, L.V.: Towards a Formal Model for Security Policies Specification and
Validation in the SElinux System. In: Proceedings of the Ninth ACM Symposium on Ac-
cess Control Models and Technologies, pp. 136–145. ACM Press, Yorktown Heights
(2004)

2. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A Secure Environment for Untrusted
Helper Applications: Confining the Wily Hacker. In: Proceedings of the 6th USENIX Se-
curity Symposium. University of California, San Jose (1996)

3. Kamp, P.-H., Watson, R.: Building Systems to be Shared Securely. ACM Queue 2, 42–51
(2004)

4. Madnick, S.E., Donovan, J.J.: Application and Analysis of the Virtual Machine Approach
to Information Security. In: Proceedings of the ACM Workshop on Virtual Computer Sys-
tems, Cambridge, MA, USA, March 1973, pp. 210–224 (1973)

5. Kamp, P.-H., Watson, R.: Jails: Confining the Omnipotent Root. In: Sane 2000 - 2nd In-
ternational SANE Conference (2000)

6. Tucker, A., Comay, D.: Solaris Zones: Operating System Support for Server Consolida-
tion. In: 3rd Virtual Machine Research and Technology Symposium Works-in-Progress

7. Whitaker, A., Shaw, M., Gribble, S.D.: Lightweight virtual machines for distributed and
networked applications. In: Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation, pp. 195–209 (2002)

8. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java Development Kit 1.2. In: USENIX
Symposium on Internet Technologies and Systems. Prentice Hall PTR, Monterey (1997)

 Reusability of Functionality-Based Application Confinement Policy Abstractions 219

9. Thorsteinson, P., Ganesh, G.G.A.: Net Security and Cryptography, p. 229. Prentice Hall
PTR, Englewood Cliffs (2003)

10. Li, N., Mao, Z., Chen, H.: Usable Mandatory Integrity Protection for Operating Systems.
In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 164–178 (2007)

11. Sun, W., Sekar, R., Poothia, G., Karandikar, T.: Practical Proactive Integrity Preservation:
A Basis for Malware Defense. Security and Privacy. In: IEEE Symposium on SP 2008, pp.
248–262 (2008)

12. Wagner, D.A.: Janus: An Approach for Confinement of Untrusted Applications. Technical
Report: CSD-99-1056. Electrical Engineering and Computer Sciences. University of Cali-
fornia, Berkeley, USA (1999)

13. Provos, N.: Improving Host Security with System Call Policies. In: 12th USENIX Security
Symposium, vol. 10. USENIX, Washington (2002)

14. Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle, P., Gligor, V.: SubDomain:
Parsimonious Server Security. In: USENIX 14th Systems Administration Conference
(LISA) (2000)

15. Berman, A., Bourassa, V., Selberg, E.: TRON: Process-Specific File Protection for the
UNIX Operating System. In: Proceedings of the 1995 Winter USENIX Conference (1995)

16. Bacarella, M.: Taking advantage of Linux capabilities. Linux Journal (2002)
17. Krsti, I., Garfinkel, S.L.: Bitfrost: the one laptop per child security model. In: ACM Inter-

national Conference Proceeding Series, vol. 229, pp. 132–142 (2007)
18. Miller, M.S., Tulloh, B., Shapiro, J.S.: The structure of authority: Why security is not a

separable concern. In: Multiparadigm Programming in Mozart/Oz: Proceedings of MOZ
3389 (2004)

19. Stiegler, M., Karp, A.H., Yee, K.P., Close, T., Miller, M.S.: Polaris: virus-safe computing
for Windows XP. Communications of the ACM 49, 83–88 (2006)

20. Wagner, D.: Object capabilities for security. In: Conference on Programming Language
Design and Implementation: Proceedings of the 2006 workshop on Programming lan-
guages and analysis for security, vol. 10, pp. 1–2 (2006)

21. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical Domain
and Type Enforcement for UNIX. In: Proceedings of the 1995 IEEE Symposium on Secu-
rity and Privacy, p. 66. IEEE Computer Society, Los Alamitos (1995)

22. Ott, A.: The Role Compatibility Security Model. In: 7th Nordic Workshop on Secure IT
Systems (2002)

23. Krohn, M., Efstathopoulos, P., Frey, C., Kaashoek, F., Kohler, E., Mazieres, D., Morris,
R., Osborne, M., VanDeBogart, S., Ziegler, D.: Make least privilege a right (not a privi-
lege). In: Procedings of 10th Hot Topics in Operating Systems Symposium (HotOS-X),
Santa Fe, NM, USA, pp. 1–11 (2005)

24. Marceau, C., Joyce, R.: Empirical Privilege Profiling. In: Proceedings of the 2005 Work-
shop on New Security Paradigms, pp. 111–118 (2005)

25. Jaeger, T., Sailer, R., Zhang, X.: Analyzing Integrity Protection in the SELinux Example
Policy. In: Proceedings of the 12th USENIX Security Symposium, pp. 59–74 (2003)

26. Hinrichs, S., Naldurg, P.: Attack-based Domain Transition Analysis. In: 2nd Annual Secu-
rity Enhanced Linux Symposium, Baltimore, Md., USA (2006)

27. Ferraiolo, D., Kuhn, R.: Role-Based Access Control. In: 15th National Computer Security
Conference, Baltimore, MD, USA, pp. 554–563 (1992)

28. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Control
Models. IEEE Computer 29, 38–47 (1995)

29. Simon, R.T., Zurko, M.E.: Separation of Duty in Role-Based Environments. In: Proceed-
ings of 10th IEEE Computer Security Foundations Workshop, Rockport, MD, pp. 183–194
(1997)

220 Z.C. Schreuders and C. Payne

30. Schreuders, Z.C., Payne, C.: Functionality-Based Application Confinement: Parameterised
Hierarchical Application Restrictions. In: Proceedings of SECRYPT 2008: International
Conference on Security and Cryptography, pp. 72–77. INSTICC Press, Porto (2008)

31. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and System
Security 4, 224–274 (2001)

32. ANSI INCITS 359-2004. American National Standards Institute / International Committee
for Information Technology Standards (ANSI/INCITS)

33. Acharya, A., Raje, M.: MAPbox: Using Parameterized Behavior Classes to Confine Appli-
cations. In: Proceedings of the 2000 USENIX Security Symposium, Denver, CO, USA
(2000)

34. Jaeger, T., Prakash, A.: Requirements of role-based access control for collaborative sys-
tems. In: Proceedings of the first ACM Workshop on Role-based access control, p. 16.
ACM Press, Gaithersburg (1996)

35. Friberg, C., Held, A.: Support for discretionary role based access control in ACL-oriented
operating systems. In: Proceedings of the second ACM workshop on Role-based access
control, pp. 83–94. ACM Press, Fairfax (1997)

36. Jansen, W.A.: Inheritance Properties of Role Hierarchies. In: Proceedings of the 21st Na-
tional Information Systems Security Conference, pp. 476–485. National Institute of Stan-
dards and Technology, Gaithersburg (1998)

37. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux Security Mod-
ule Framework. In: Ottawa Linux Symposium, Ottawa, Canada (2002)

38. Garfinkel, T.: Traps and Pitfalls: Practical Problems in System Call Interposition Based
Security Tools. In: Proceedings of the 10th Network and Distributed System Security
Symposium, pp. 163–176. Stanford University, San Diego (2003)

39. Bratus, S., Ferguson, A., McIlroy, D., Smith, S.: Pastures: Towards Usable Security Policy
Engineering. In: Proceedings of the Second International Conference on Availability, Reli-
ability and Security, pp. 1052–1059 (2007)

40. Tresys: SELinux Reference Policy (2008)
41. Harada, T., Horie, T., Tanaka, K.: Towards a manageable Linux security. In: Linux Con-

ference 2005 (Japanese) (2005), http://lc.linux.or.jp/lc2005/02.html
42. Tresys: SELinux Reference Policy (2008), http://oss.tresys.com/projects/refpolicy
43. Raje, M.: Behavior-based Confinement of Untrusted Applications. TRCS 99-12. Depart-

ment of Computer Science. University of Calfornia, Santa Barbara (1999)

Appendix A: FBAC-LSM Policies for Popular Web Browsers

application lynx
{
 binarypaths /usr/bin/lynx:/usr/bin/X11/lynx;
 functionality Standard_Commandline_Application
 (peruser_directory="",
 peruser_files="",
 application_so_libraries_directory="",
 libraries_fileextension="",
 config_directory="",
 config_files={"/etc/lynx.cfg":"/etc/lynx.lss"},
 read_only_config_directory="");
 functionality Web_Browser
 (plugins_and_extensions_directory="",
 download_directory="/home/*/downloads/",
 allowed_hosts_to_connect_to="*",
 view_web_files_in_directory="/home/**/");
 functionality user_login_awareness ();
 functionality requires_tmp_access ();
}

 Reusability of Functionality-Based Application Confinement Policy Abstractions 221

application epiphany
{
 binarypaths /usr/bin/epiphany:/usr/bin/X11/epiphany;
 functionality Standard_Graphical_Application
 (peruser_directory="/home/*/.gnome2/epiphany/",
 peruser_files="/home/*/.gnome2/accels/epiphany",
 application_libraries_directory="/usr/lib/epiphany/",
 libraries_fileextension="*",
 config_directory="/home/*/.gnome2_private/",
 config_files={"/home/*/.mozilla/firefox/profiles.ini":
 "/home/*/.mozilla/firefox/*/prefs.js"},
 read_only_directory="/usr/share/epiphany/");
 functionality Web_Browser
 (plugins_and_extensions_directory="/usr/share/epiphany-extensions/",
 download_directory="/home/*/downloads/",
 allowed_hosts_to_connect_to="*",
 view_web_files_in_directory="/home/**/");
 functionality register_as_mozplugger_plugin ();
}

application opera
{
 binarypaths /usr/bin/opera:/usr/bin/X11/opera;
 functionality Standard_Graphical_Application
 (peruser_directory="/home/*/.opera/",
 peruser_files="",
 application_libraries_directory="/usr/lib/opera/",
 libraries_fileextension="*",
 config_directory="/home/*/.kde/share/config/",
 config_files={"/etc/opera6rc":"/etc/opera6rc.fixed"},
 read_only_directory="/usr/share/opera/");
 functionality Web_Browser
 (plugins_and_extensions_directory={"/usr/lib/opera/plugins/":
 "/usr/lib/browser-plugins/":"/usr/lib/firefox/plugins/"},
 download_directory={"/home/*/OperaDownloads/":
 "/home/*/downloads/"},
 allowed_hosts_to_connect_to="*",
 view_web_files_in_directory="/home/**/");
 functionality Email_Client
 (mail_out_SMTP_servers="my.mail.server.com",
 SMTP_remote_port=<default>,
 mail_in_POP3_servers="*",
 POP3_remote_port=<default>,
 mail_in_IMAP_servers="*",
 IMAP_remote_port=<default>);
 functionality Irc_Chat_Client
 (chat_IRC_servers=<default>,
 IRC_remote_port=<default>);
 functionality News_Reader_Client (news_NNTP_servers=<default>);
 functionality BitTorrent_Client
 (bittorrent_peers_and_trackers="*",
 bittorrent_remote_port="18768");
}

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 222–237, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Role Based Trust Management without
Distributed Searching of Credentials

Gang Yin1, Huaimin Wang1, Jianquan Ouyang2, Ning Zhou3, and Dianxi Shi1

1 School of Computer, National University of Defense Technology, Changsha, China
jack.nudt@gmail.com, whm_w@163.com, dxshi@nudt.edu.cn

2 College of Information Engineering, Xiangtan University, Xiangtan, China
oyjq@ict.ac.cn

3 Institute of Electronic System Engineering of China, Beijing, China
humimi74@yahoo.cn

Abstract. Trust management systems enable decentralized authorization by
searching distributed credentials from network. We argue that such distributed
searching processes may encounter many technical or non-technical problems,
and can be avoided by storing delegation credentials redundantly with acceptable
costs. We propose a scoped-role based trust management system ScoRT, using a
novel credential affiliation model to compute the credentials necessary for role
membership decisions, which can be used to guide the storage, retrieval and
revocation of credentials. The algorithm for distributed credential storage and
retrieval is designed based on the model and its sound and complete properties
are formally analyzed with respect to ScoRT semantics. Complexity analysis and
estimation show that, by redundantly storing acceptable amount of delegation
credentials, ScoRT enables more practical and automatic authorization without
searching credentials from remote entities, and thus helps to overcome the defi-
ciencies of existing approaches.

1 Introduction

Trust management (TM) systems use delegation credentials to realize flexible and
scalable authorization across security domains. A number of TM systems have been
proposed to enable various delegation mechanisms, such as [2, 4, 5, 7, 10, 14, 15, 16].
The primary idea of delegation is that one entity gives some of its authority to others to
make authorizations on behalf of the former. Multi-steps of delegation among different
entities may result in chains of credentials, which are prerequisite for making au-
thorization decisions in TM systems. Some TM systems study the distributed storage
and retrieval problems of credential chains, which can be mainly classified into
logic-based approach [1, 12, 14] and graph-based approach [13, 16, 18].

The logic-based approach requires that each credential is defined with a specified
location, and servers pull credentials from remote entities (usually one credential at a
time) during the process of logic-based compliance-checking, such as QCM [12], SD3
[14] and Cassandra [2]. The graph-based approach retrieves the whole credential chains
that delegate the privileges from authorizers to requesters, such as the discovery
methods of certificate paths or credential chains [8, 9, 13, 16]. These two approaches

 Towards Role Based Trust Management without Distributed Searching of Credentials 223

are mainly used to search credentials in dynamic and decentralized environments,
which may face a lot of technical and non-technical problems. (1) They use the
depth-first or breadth-first search process to find credential chains, which will retrieve a
lot of useless credentials during back-tracking processes, and if the authorization que-
ries have negative results, the credentials may become tremendous. (2) The issuers of
the target credentials may not always trust or be trusted by the credential requesters,
and thus the privacy of credentials may be breached by uncontrolled credential re-
trieval. (3) Entities holding the target credentials may not on-line all the time and thus
the requests will be rejected if any credential in the chain can not be retrieved in time.
These problems may breach the security and availability of systems.

The primary task of credential searching is to retrieve delegation credentials from
remote entities. Above observations motivate us to revisit the problem of distributed
management of credentials. Due to the balance of scalability and controllability of
delegation mechanisms, we believe that delegation credentials should be used and
configured as the backbone of collaboration networks. For example, M. Becker gives a
comprehensive analysis of policies in EHR systems [3], the delegation credentials
across security domains are only 8% of the total 375 credentials.

In this paper, we propose a novel credential distribution approach to store delegation
credentials redundantly such that every entity can hold all necessary delegation cre-
dentials for making access decisions. To ensure the generality of our approach, we
propose ScoRT, a role-based TM system which combines the primary capabilities of
both RT [16] and SPKI [10]. The credential affiliation model is proposed to computes
the affiliation graphs for roles, and each affiliation graph contains all the delegation
chains starting from these roles. A credential distribution algorithm is designed based
on the model to publish and retrieve the credentials among the entities in the network.

The rest of this paper is organized as follows. Section 2 defines ScoRT and the
credential affiliation model. Section 3 introduces the credential management frame-
work of ScoRT and proves the sound and complete properties of credential distribution
algorithm. Section 4 estimates the complexity of our approach based on Aura’s dele-
gation network model. Section 5 analyzes the related works and section 6 concludes the
paper.

2 Credential Affiliation in Trust Management

ScoRT is a role-based TM system combing the primary advantages of both role-based
trust management [17] and SPKI [10]. ScoRT uses scoped roles to enable and control
the delegation of role-based privileges.

2.1 ScoRT: Trust Management with Scoped-Roles

ScoRT introduces the notion of scoped roles, and a scoped role is a role appended with
a trust scope tag, which is either ■ or □. Given an entity A and a role name r, the A.r has
two scoped roles A.r.■ and A.r.□. The scoped roles can be regarded as a kind of refined
abstraction of principals. Intuitively, A.r.■ denotes the entities directly assigned with
A.r by A, while A.r.□ denotes the entities directly or indirectly assigned with A.r. ScoRT
has three kinds of credentials:

224 G. Yin et al.

 type-1: A.r←B

 Entity B is a member of the role A.r.

 type-2: A.r←B.r1.s

 Members of the scoped role B.r1.s are members of the role A.r.

 type-3: A.r←B1.r1.s1∧B2.r2.s2

 Members of both B1.r1.s1 and B2.r2.s2 are members of the role A.r. We call
B1.r1.s1∧B2.r2.s2 a scoped role intersection or an intersection for short.

The type-1 credentials are authorization credentials, while the type-2 and type-3
credentials are delegation credentials. Given a credential c, the entity at left-side is
called the issuer of c, and the entity at right-side is called subject of c. ScoRT only
supports the intersections of two scoped roles, but the intersections of more scoped
roles can be defined by introducing new intermediate credentials. For example, the
intersection of B1.r1.s1 and B2.r2.s2 can be replaced by C.r.□ by introducing the cre-
dential C.r←B1.r1.s1∧B2.r2.s2.

Example 1. The following ScoRT credentials have similar meanings to the sample
credentials in [16], but these credentials can provide more refined delegation control.

(1) EPub.discount ← EOrg.preferred.□ ∧ ACM.member.■
(2) EOrg.preferred ← StateU.student.□ (3) StateU.student ← RegB.student.■
(4) ACM.member ← Alice (5) RegB.student← Alice

The credential (3) means that all students directly assigned by RegB can be the students
of StateU, which implicitly defines the delegation from StateU to RegB of Sta-
teU.student within the depth 2. The credential (2) defines delegation from EOrg to
StateU of EOrg.preferred without depth control. The semantics of ScoRT is defined by
Datalog [19], which decides whether an entity is a member of a given role.

Definition 1 (Semantics of ScoRT). Given a credential set Σ, a role A.r and an entity B,
we use Σ↪mem(B, A.r) to denote that B is a member of A.r, and:

Σ↪mem(B, A.r) iff PΣ ⊢ m(B, A.r, □)

where PΣ is the set of definite Datalog rules derived from Σ, ⊢ is the logical conse-
quence relation. PΣ contains a rule:

m(x, y.r, □) ← m(x, y.r, ■). (R1)

PΣ also contains the rules obtained by a transform process. For each A.r←b∈Σ, do the
transform according to three rules:
(T1) if b is an entity, then m(b, A.r, ■)∈PΣ;
(T2) if b is B.r1.s then m(x, A.r, □) ← m(x, B.r1, s)∈PΣ;
(T3) if b is B1.r1.s1∧B2.r2.s2 then m(x, A.r, □) ← m(x, B1.r1, s1), m(x, B2.r2, s2)∈PΣ.

2.2 Credential Affiliation

The credential affiliation model is built upon ScoRT. Given a set Σ of ScoRT creden-
tials, the authorization structures of Σ can be modeled by a partial weighed directed
graph, in which the type-1 credentials are mapped to simple directed edges, while the
type-2 and type-3 are mapped to weighed directed edges.

 Towards Role Based Trust Management without Distributed Searching of Credentials 225

Given a set Σ of credentials, we use Σ.entities , Σ. roles and Σ.scoints to denote the
set of all entities appeared in the right side of type-1 credentials in Σ, the set of all roles
in the credentials in Σ, and all the intersections appeared in Σ.

Definition 2 (Credential Graph). Given a set Σ of credentials, the credential graph for
Σ is denoted by a weighed directed graph GΣ which has a node set NΣ and an edge
set EΣ, defined as follows:

NΣ = Σ.entities ∪ Σ.roles ∪ Σ.scoints
EΣ ⊆ EΣ. AE ∪ EΣ. TE ∪ EΣ. IE

where EΣ. AE , EΣ. TE and EΣ. IE are the set of authorization edges, trust edges and
intersection edges in EΣ, which are further defined as follows:

EΣ. AE ⊆ Σ.roles × Σ.entities

EΣ. TE ⊆ (Σ.roles ∪ Σ.scoints)× Σ.roles × TS
EΣ. IE ⊆ Σ.roles × Σ.scoints ×℘(Σ.entities)

where TS={■, □} and ℘(Σ. entities) is the power set of Σ. entities . GΣ uses a long
arrow ←⎯⎯ to denote a directed edge and a weighed long arrow w

←⎯⎯ to denote a
weighed directed edge with the weight w. If there is an edge from n to n', then n' is a
successor of n. Given a path ξ from node n to n' in GΣ, n ≠ n' and n'' is the successor of
n in ξ, then ξ is a legal path denoted by n'↞n if one of the following is satisfied:

 if n is a role, then the weight of each trust edge between n'' and n' in ξ is □.

 if n is an entity, then the sub-path from n'' to n' in ξ is a legal path and the weight of
each intersection edge in the sub-path contains n.

 if ξ is a sub-path of a legal path, then ξ is a legal path.

We use n'↞n∈GΣ to denote that n'↞n is a legal path in GΣ. Given n'' w
←⎯⎯ n' and n'↞n in

GΣ, if the path formed by linking n'' w
←⎯⎯ n' and n'↞n is a legal path then

n'' w
←⎯⎯ n'↞n∈GΣ. Similarly, n''↞n' w

←⎯⎯ n∈GΣ if the path formed by linking n''↞n' and
n' w

←⎯⎯ n is a legal path. The subsets of EΣ can be constructed by the closure properties:

Closure Property 1: Given B∈Σ. entities , A.r←B∈Σ, then A.r ←⎯⎯ B∈EΣ. AE .

Closure Property 2: Given A.r←b∈Σ and b is not an entity, then for each scoped role
n.s in b, A.r s

←⎯⎯ n∈EΣ. TE .

Closure Property 3: Given A.r←b∈Σ and b∈Σ. scoints , if there is no edge from b to
A.r then A.r ∅

←⎯⎯ b∈EΣ. IE .

Closure Property 4: Given B∈Σ. entities , A.r←b∈Σ and b∈Σ. scoints , if A.r w
←⎯⎯ b∈

EΣ. IE and b w
←⎯⎯ n↞B∈GΣ for each role n in b then A.r { }w B∪

←⎯⎯⎯⎯⎯ b∈EΣ. IE .

The credential graph for the credentials in example 1 is shown in Figure 1. The directed
edge ACM.member ←⎯⎯ Alice is an authorization edge of the credential (4). The
weighed directed edges EOrg.perferred ←⎯⎯

□ StateU.student is a trust edge of the cre-
dential (2). Let α be the intersection EOrg.preferred.□∧ACM.member.■, the trust edges

226 G. Yin et al.

EOrg.preferred ACM.member

EOrg.preferred.

EPub.discount

{Alice}

ACM.member.

StateU.student

RegB.student

Alice

Fig. 1. Weighed Credential Graphs of ScoRT

α ←⎯⎯
□ EOrg.preferred and α ←⎯⎯

■ ACM.member are derived from credential (1). By

definition 2, EOrg.perferred↞Alice and ACM.member↞Alice, and thus the edge

EPub.discount {Alice}
←⎯⎯⎯⎯⎯ α is the intersection edge of the credential (1).

Given a credential A.r←b, we use Edges(A.r←b) to denote the edge set S, where S is
{A.r ←⎯⎯ b} if b is an entity, and S is {A.r s

←⎯⎯ B.r1} if b is a scoped role B.r1.s, and S is
{A.r ∅

←⎯⎯ b, b 1s←⎯⎯ B1.r1, b
2s

←⎯⎯⎯ B2.r2} if b is an intersection B1.r1.s1∧B2.r2.s2. We use the
concept of affiliation graph to model the credentials which influence the decision on
whether an entity is a member of a specified role.

Definition 3 (Affiliation Graph). Given a set Σ of credentials, a role or intersection n,
the affiliation graph of n is denoted by Gn

Σ , and n is called the root of Gn
Σ . Nn

Σ and En
Σ

are sets of nodes and edges in Gn
Σ , constructed by AffG (n, Nn

Σ = ∅, En
Σ =∅):

AffG (n /*input node*/, ns /*node set*/, es /*edge set*/)

1. if n is marked then return;
2. add n into ns; mark n to be processed;
3. for each edge e of the form n w←⎯⎯ n' in GΣ do
4. add e into es;
5. if w=□ then AffG (n', ns, es);
6. if w=∅ then for each scoped role n''.s in n' do
7. add n' s

←⎯⎯ n'' into es;
8. if s=□ then AffG (n'', ns, es);
9. return;

Both space and time complexities of affiliation graphs are liner to the size of given
credentials. By definition 3, type-1 credentials are not used when constructing affilia-
tion graphs. Given a set Σ of non-type-1 credentials, N is the number of credentials in Σ,
by definition 2, GΣ has at most 4N nodes (3N role nodes and N intersection nodes) and
4N edges (3N trust edges and N intersection edges). Given a role A.r, .GA r

Σ is a
sub-graph of GΣ by definition 3. Therefore the space complexity of .GA r

Σ is O(N).
By definition 2, constructing GΣ only need one iteration step and time complexity of

constructing GΣ is O(N). By definition 3, every processed node is marked and there are

 Towards Role Based Trust Management without Distributed Searching of Credentials 227

at most 4N nodes in GΣ, and thus lines 2, 4, 7 of AffG will be executed at most 4N
times when constructing .GA r

Σ . Therefore the time complexity of AffG is O(N).

Lemma 1. Given a credential set Σ, a role A.r and an entity D, then Σ↪mem(D, A.r) if
and only if A.r↞D∈GΣ.

Given a set Σ of credentials, we use . : GA r B
Σ to denote an extension of .GA r

Σ which is
called the specified affiliation graph of A.r for B. The node set and edge set of . : GA r B

Σ
are . : N A r B

Σ = .N A r
Σ ∪{B} and . : EA r B

Σ = .EA r
Σ ∪∆B, where ∆B is {e⎪e is n ←⎯⎯ B and e∈ EΣ .}

containing all the authorization edges from B. The intuitionistic meaning of . : GA r B
Σ is

that it contains all the credentials that maybe used to decide whether B is a member of
A.r. The following lemmas show some basic properties of affiliation graphs.

Lemma 2. Given a set Σ of credentials, let A.r be a role in Σ.roles and n be an node in
GΣ , if A.r↞n∈ GΣ then A.r↞n∈ .GA r

Σ .

Lemma 3. Given a set Σ of credentials, a role A.r and an entity D, then A.r↞D∈GΣ if
and only if A.r↞D∈ . : GA r D

Σ .

From lemma 1 and lemma 3, the affiliation graph is sound and complete with respect to
the semantics of ScoRT.

Theorem 1 (Soundness and Completeness of Affiliation Graph). Given a set of Σ of
credentials, a role A.r and an entity D, then Σ↪mem(D, A.r) if and only if
A.r↞D∈ . : GA r D

Σ .

3 Credential Management Framework

ScoRT provides a framework for distributed storage, retrieval and revocation, which is
mainly guided by the affiliation graph model. The framework uses different policies to
handle authorization credentials and delegation credentials.

ScoRT uses credential distribution algorithm (CDA) to exchange credentials among
collaborating entities. When a CDA algorithm is invoked, a CDA instance will be
created by its local entity. Given a CDA instance α, if α is invoked by its local entity,
then α is a root instance, otherwise α is called a derived instance ScoRT manages
credentials based on the following policies.

Definition 4 (Credential Management Policies). ScoRT manages the credentials
according to four general and intuitionistic policies:

Policy CMP1: Authorization credentials are stored at its issuers and subjects, and
should be pushed to authorizers if required by authorization checking.

Policy CMP2: Delegation credentials are stored at their issuers and subjects; the af-
filiation graphs of each role should be stored at its defining entity.

Policy CMP3: Credentials can only be revoked by their issuers by sending revoking
messages to related entities, or by setting expiration time for each credentials.

Policy CMP4: Root CDA instances run one by one serially in order to ensure the
consistency of credential distribution.

228 G. Yin et al.

Given a time τ and a credential set Σ, we use Σ τ| and GΣ τ| to denote the snapshots
of Σ and GΣ at τ respectively. Given an entity A, we use ΣA to denote the credentials
stored at A, and use GA to briefly denote GΣA. Given a CDA instance α, we use α− and
α+ to denote the moments when α just begins and ends.

3.1 Credential Distribution Algorithm

CDA exchanges the credentials among entities based on CMP1 and CMP2. When an
entity A issues a credential A.r←b, it creatse a root CDA instance by calling
CDA(A.r←b, nil, nil). A root CDA instance may retrieve credentials from remote
entities (lines 7 and 11), push credentials to remote entities (lines 4, 8 and 12), and
invoke derived instances by calling CDA on remote entities (lines 16 and 17).

The statement “n contains v” in line 14 means that v is a role appearing in n. Given an
entity B, we use B.cda to denote the invocation of CDA on entity B, and thus a chain of
CDA instances may be created with cascaded invocations. Given an entity B and a
credential c, the statement “send c to B” means that after receiving c, B will store c at its
local repository and add Edges(c) into GB.

Pseudo-codes of Credential Distribution Algorithm
CDA (A.r←b /*input credential*/, g /*affiliation graph*/, v /*tracing role*/)
1. let c be A.r←b; let es be Edges(c);
2. add es and g into Gld; /*ld is the identity of local entity*/
3. if A = ld then
4. if b is an entity D and b = ld then
5. send c to D;
6. if b is a scoped role B.r1.□ and B = ld then
7. pull 1.GB r

B from B;

8. send c to B;
9. if b is a scoped role intersection B1.r1.s1∧B2.r2.s2 then
10. for each i in {1, 2} do if si = □ and Bi = ld then
11. pull .G i i

i

B r
B from Bi;

12. send c to Bi;
13. for each edge A'.r' w

←⎯⎯ n in Gld do
14. if n contains v and A' = ld then
15. if (w = □) or (w = ∅ and n ←⎯⎯

□ v∈Gld) then
16. if A = ld then call B.cda(c, Gn

ld , A'.r'); /*calls remote CDA*/

17. else call B.cda(c, g, A'.r'); /*calls remote CDA*/
18. return;

CDA stores each credential at its issuers and subjects, because subjects must know
their privileges being assigned, and issuers must know the security policies being
configured. Technically, the credentials stored at subjects will enable the local back-
ward tracking in delegation network.

Lemma 4. Let e be the edge A.r ←⎯⎯
□ B.rb and e∈GA τ| , if B.rb↞C.rc∈GB τ| then

B.r↞C.rc∈GA τ| , where no CDA instances are running on A and B at τ.

 Towards Role Based Trust Management without Distributed Searching of Credentials 229

Lemma 5. Let v be an intersection contains B.rb.□ and there is an edge from v to A.r in
GA τ| , if B.rb↞C.rc∈GB τ| then B.rb↞C.rc∈GA τ| , where no CDA instances are running
on A and B at τ.

Given entities A and B, we use ΣA : B to denote the union of ΣA and ∆B, and GA : B to
denote the credential graph of ΣA : B. Lemma 4 and 5 can be used to prove the soundness
and completeness of CDA, with respect to the semantics of ScoRT.

Theorem 2 (Soundness and Completeness of CDA). Given an entity D and a role
A.r, then : A DΣ τ| ↪mem(D, A.r) if and only if Σ τ| ↪mem(D, A.r), where Σ is the set
of all credentials and no CDA instances are running on A and D at τ.

Given entities A and B, if B requests the resources controlled by A. By theorem 2, A
need not search any delegation credentials to make sound and complete authorization
decisions. But the theorem assumes that ∆B (all type-1 credentials issued to B) should
be available to A, and retrieval of ∆B is beyond CDA.

3.2 Credential Revocation

Two kinds of revocation can be provided in ScoRT: revocation on expiration and
revocation on demands. Expiration time is the most efficient method for credential
revocation, especially for short-term credentials. ScoRT can use revocation messages
to enable revocation on demands. Given a credential c of the form A.r←b, its revoca-
tion message can be denoted as A.r↚b, which is also signed by A. The entity who
receives the message A.r↚b will delete the credential A.r←b from its local credential
repository. Revocation of the credential c involves the following four operations:

1. ScoRT stores each authorization credential at its issuer and subject, so if b is an
entity, A sends the message A.r↚b to A and b.

2. ScoRT stores each delegation credential at its issuer and subject, so if b is not an
entity, A sends the message A.r↚b to A and the subject entities in b.

3. ScoRT stores the affiliation graphs of each role at its defining entity, so if b is not
an entity, A sends the message A.r↚b to entities that uses A.r to define credentials.

4. The affiliation graph should be deleted from the local credential repositories if its
root is isolated from all roles defined by the local entity.

4 Complexity Estimation

Affiliation graphs will be transferred among entities in credential distribution proc-
esses. We have shown that the worst space complexity of affiliation graphs is liner to
the number of delegation credentials. This section gives more practical analysis on
complexities of affiliation graphs and CRA algorithm based on the branching matrix
model of layered delegation networks [1], which can be formally defined as follows:

DN = (F, B, R)

where F is an n-dimensional forward branching matrix, B is an n-dimensional back-
ward branching matrix, R is an n-dimensional vector and ()iR ⋅ (,)j iF = ()jR ⋅ (,)i jB .
Let DNG be a credential graph which complies with DN:

230 G. Yin et al.

 ()iR is the number of entity nodes and role nodes at layer i in GF ;

 (,)
1

i j
nF − is the average of trust edges from a node in layer i to layer j, and (,)i nF is the

average of authorization edges from a node in layer i to layer n;
 (,)

1
i j

nB − is the average of trust edges to a node in layer i from layer j, (,)n jB is the av-

erage of authorization edges to a node in layer n from layer j;

where Fn-1 is a matrix with n-1 dimensions and (,)
1

i j
nF − = (,)i jF , i, j∈[1, n-1]. Let A.r be

the role node at layer 1 in DNG , we use .
DNG A r to denote the credential graph for A.r and

sizeof(.
DNG A r) to denote the number of credentials in .

DNG A r . By definition 3, sizeof(.
DNG A r)

= | .
DNEA r . TE | - | .

DNEA r . IE |, where .
DNG A r is the edge set of .

DNG A r . Apparently sizeof(.
DNG A r) is

bounded by | .
DNEA r . TE | which can be computed by the following equation:

 | .
DNEA r . TE | = Vn ⋅ (In + 1

1
n k
k F−

=Σ)⋅ T
nU (1)

where Vn is an n-dimensional unit row vector, In is an n-dimensional identity matrix, Un
is an n-dimensional row vector and (1)

nU =1 and ()i
nU =0 for i∈[2, n]. The equation shows

that the worst complexity of affiliation graphs may increase exponentially on the scale
of delegation networks. However, delegation networks in practical systems usually
have specific structure models [1] with acceptable costs.

Now we analyze the space and communication costs based on two sample delegation
networks derived from existing researches [1, 16]. Compared with the delegation
structures in the EHR system [3], these sample networks seem quite complex. Given a
delegation network DN and a role A.r at layer one in DNG , then .

DNG A r only contains the
nodes at first n-1 layers. According to equation (1), we can compute the trust edges
in .

DNG A r which can be reached within specified delegation steps: AGN(Fn-1, d) is the
number of trust edges in .

DNG A r which can be reached by a legal path from A.r within d
steps. Similarly, we use CGN(F, d) to denote the number of both trust and authoriza-
tion edges in DNG which can be reached by a legal path from A.r within d steps.

 AGN(Fx, d) = Vx × (Ix + 1
d k
k xF=Σ) × T

xU - 1 (2)

 CGN(F, d) = Vn × (In + 1
d k
k F=Σ) × T

nU (3)

where x∈[0, n-1], d∈[0, n-1], and because credentials issued to layer 5 are authoriza-
tion credentials, we have AGN(Fn-1, n-1) = AGN(Fn-2, n-2). Usually, practical appli-
cations only permit delegation paths with small depths, such as 2 and 3, and the depths
of more than 4 are rarely considered [15]. Let u be the upper bound of depths, the length
of legal paths in affiliation graphs is u-1 at most. By line 17 in CDA, each affiliation
graph being transferred contains at most AGN(Fn-1, u-2) trust edges. Given a root CDA
instance α, by lines 14~16 of CDA, α transfers the affiliation graphs over the edges
covered by the backward searching processes in [1], which is BGN(Bn-1, u-1). There-
fore the worst communication cost between [α−, α+] is CDN(F, B):

CDN(F, B) =AGN(Fn-1, u-2) × BGN(Bn-1, u-1) (4)

BGN(Bx, d) =Vd × (Id + 1
d k
k xB=Σ) × T

dZ - 1 (5)

 Towards Role Based Trust Management without Distributed Searching of Credentials 231

where Zd is an d-dimensional row vector, ()d
dZ =1 and ()i

dZ =0 for i∈[1, d-1]. Now we
estimate the complexities of affiliation graphs and CDA communication costs based on
two sample delegation networks where the upper bound of delegation depth is 4.

CASE1: Consider the sample delegation network defined in [1], as shown in the first
three columns of Table 1. The nodes at layer 1 ~ 4 are roles, while the nodes at layer 5
are entities. The credentials from layer i to layer j (1 ≤ i ≤ j ≤ 4) are delegation creden-
tials. The credentials issued to the entities at layer 5 are authorization credentials.

Table 1. Cost Estimation based on the Delegation Network in [1]

From layer Amt. of credentials
per role (F) 1 2 3 4 5

Amt. of
roles(R)

AGN, CGN, % CDN(F, B)

 1 0 0 0 0 0 10 0, 0, -
2 1 2 0 0 0 5 4, 14, 29%
3 1 2 2 0 0 2 21, 86, 24% To layer

4 2 2 5 2 0 20 83, 418, 20%
 5 10 5 10 20 0 2000 83, 1678, 4.9%

1722
(21×82)

By definition of delegation network, the backward branching matrix B is [0, 2, 5, 1,
0.05; 0, 2, 5, 0.5, 0.0125; 0, 0, 2, 0.5, 0.01; 0, 0, 0, 2, 0.2; 0, 0, 0, 0, 0]. Therefore
CDN(F, B) = AGN(F4, 2)×BGN(B4, 3)=1722. According to the 4th column in table 1,
AGN(Fi, i) is relatively small compared with CGN(F, i), i∈[0, 4]. The largest affilia-
tion graph in credential repositories is AGN(F3, 3) with only 83 credentials. The largest
affiliation graph to be transferred on network contains only 21 credentials and the upper
bound of total credentials to be transferred in one root CDA instance is 1722.

CASE2: Consider the credentials in Example 1. The estimated delegation network is
given in Table 2. The layer model is: EPub.discount is at layer 1; EOrg.preferred and
ACM.member are at layer 2; StateU.student, RegB.student and Alice are at layer 3, 4, 5
respectively. Similar to the computation process in case 1, CDN(F, B) = 2772. But in

case 2, AGN(Fi, i) is a much small portion of CGN(F, i), i∈[0, 4]. This is because that

the number of authorization credentials in case 2 is practically increased. The worst
complexity of affiliation graphs does not exceed 466.

Table 2. Cost Estimation based on the Delegation Network for Example 1

From layer Amt. of credentials
per role (F) 1 2 3 4 5

Amt. of
roles (R)

AGN / CGN / % CDN(F, B)

 1 0 0 0 0 0 10 0, 0, -
2 5 0 0 0 0 5 46, 146, 3.2%
3 20 10 0 0 0 50 231, 22831, 1.0% To layer

4 20 15 2 1 0 500 466, 163066, 0.29%
 5 100 100 100 1000 0 20000 466, 398301, 0.12%

2772
(231×12)

232 G. Yin et al.

In practical systems, a credential mainly contains two keys (1024 bits each) and at
most three role names (256 bits each). Together with accessories such as time and tags,
the size of one credential can be around 1K bytes. Therefore, the worst communication
costs in above two cases are about 1,722K bytes and 2,772K bytes respectively.

5 Related Work

Delegation-based authorization complicates the distribution and retrieval of credentials
in decentralized TM systems. This section gives more detailed analysis and comparison
of related works in this area.

RT [16, 17] is an influential role-based TM system and deeply studies the credential
discovery problem. Li et al designs a graph-based distributed discovery algorithm and a
type system to define storage policies. However, the credentials storage policies are
difficult to configure which can only be tackled by experts, and the linked roles in RT
make the algorithm log-space P-complete. The graph model in [16] does not define
edges between intersections and roles, and can not be used to define affiliation graphs
in ScoRT. The derived intersection edges in [16] are denoted by the weights of inter-
sections edges in our graph model, which provides more intuitionistic graphical inter-
faces for security administrators. Furthermore, ScoRT provides delegation control with
depth 1, 2 and ∞, where the depth 2 is enabled by the trust scope tag ■, which covers a
wide range of practical delegation scenarios.

Aura firstly studies the graph-based methods for credential searching in SPKI cer-
tificate databases [1] and suggests that backward searching usually perform much faster
than forward searching. Aura proposes the branch matrices model for practical dele-
gation structures, which are used in this paper to evaluate the complexity of our ap-
proach. Based on Aura’ work, a DNS-based storage scheme for SPKI certificates and
certificate retrieval algorithms are proposed [13]. They distinguish four kinds of SPKI
certificates and the certificates are stored by issuer sites or subject sites according to
their types.

QCM [12] was the first TM system to consider automated credential retrieval: if
QCM engine is not given the required credential, the system will retrieve it from the
specified server. It provides a language-based framework for automatic retrieval of
certificates and distribution of revocation information. SD3 [14] is a successor of QCM
based on distributed Datalog which supports certified evaluation and recursive policies.
Cassandra [2] borrows the credential retrieval mechanism in SD3 and provides various
trust negotiation and credential retrieval strategies.

Table 3 shows an overall comparison with existing approaches. Here clients are
resource requesters, and servers are authorizers that provide resources. We distinguish
four kinds of credential retrieval models. The client-push and server-pull models are
similar to the traditional push and pull models in PMI [11]. ScoRT introduces the
server-push model in which servers push credentials to other servers according to
credential storage policies. Some TM systems support client-pull model where clients
retrieve credential chains from network before push them to servers.

 Towards Role Based Trust Management without Distributed Searching of Credentials 233

Table 3. Credential Retrieval Models for Distributed Authorization

Retrieval Models SPKI-DNS QCM RT Cassandra ScoRT

client-pull Yes/AC Yes/AC

client-push Yes/AC Yes/AC Yes/AC

server-pull Yes/AC Yes/AC Yes/AC Yes/AC Yes/SA

server-push Yes/AC Yes/SA

We argue that the authorization tasks can be divided into two stages: access control

(AC) stages and security administration (SA) stages. AC stages are usually perform-
ance sensitive because AC decisions are used to reply login requests. While at SA
stages, the reasonable delay caused by security configuration are commonly accepted.
ScoRT moves the credential retrieval tasks from AC stages to SA stages and helps to
lift the overall system performance. Furthermore, ScoRT can be extended to enforce
various credential privacy policies in CDA at SA stages.

6 Conclusion

This paper initiates the research on decentralized authorization that eliminates the
process of searching credentials from networks when making access control decisions.
The main contributions of our work include: (1) a scoped-role based TM system named
ScoRT with more refined delegation control is proposed, which can be regarded as a
generalized extension of both role-based and capability-based TM systems; (2) a novel
weighed graph-based credential affiliation model is proposed to guide the distributed
storage, retrieval and revocation of credentials, which can provide more friendly
graphical UIs; (3) a distributed credential management framework is proposed to en-
able decentralized authorization without searching credentials from network when
making access decisions, and thus greatly increases the system performance; (4) first
attempt to use Aura’s delegation network model to analyze the space complexities of
distributed credential management processes, and the preliminary analysis results show
that the costs of our approach are mainly acceptable. Further research on ScoRT are
necessary, such as fault tolerance, retrieval of authorization credentials, privacy in
credential retrieval, and more effective revocation mechanism that can work consis-
tently with CDA.

Acknowledgement

This research is supported by the National 863 Grand project 2007AA010301 and the
National 973 Basic Research program 2005CB321800.

References

1. Aura, T.: Fast access control decisions from delegation certificate databases. In: Boyd, C.,
Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 284–295. Springer, Heidelberg
(1998)

234 G. Yin et al.

2. Becker, M.Y., Sewell, P.: Cassandra: Flexible Trust Management, Applied to Electronic
Health Records. In: Proceedings of the 17th IEEE Computer Security Foundations Work-
shop (2004)

3. Becker, M.Y.: A formal security policy for an NHS electronic health record service.
UCAM-CL-TR 628, University of Cambridge, Computer Laboratory, p. 81 (March 2005)

4. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and Semantics of a Decentralized Au-
thorization Language. In: 20th IEEE Computer Security Foundations Symposium, pp. 3–15
(2007)

5. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy, pp. 164–173. IEEE Computer Society
Press, Los Alamitos (1996)

6. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance-checking in the PolicyMaker trust
management system. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 254–274.
Springer, Heidelberg (1998)

7. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote trust-management
system, version 2. IETF RFC 2704 (September 1999)

8. Clarke, D., Elien, J.E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.L.: Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security 9(4), 285–322 (2001)

9. Elley, Y., Anderson, A., Hanna, S., Mullan, S., Perlman, R., Proctor, S.: Building certifica-
tion paths: Forward vs. reverse. In: Proceedings of the 2001 Network and Distributed Sys-
tem Security Symposium (NDSS 2001), pp. 153–160. Internet Society (February 2001)

10. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI certificate
theory. IETF RFC 2693 (September 1999)

11. Farrell, S., Housley, R.: An Internet Attribute Certificate Profile for Authorization,
RFC3281 (April 2002)

12. Gunter, C., Jim, T.: Policy-directed certificate retrieval. Software: Practice & Experi-
ence 30(15), 1609–1640 (2000)

13. Hasu, T., Kortesniemi, Y.: Implementing an SPKI Certificate Repository within the DNS.
In: International Workshop on Public-Key Cryptography, PKC (2000)

14. Jim, T.: SD3: A trust management system with certified evaluation. In: Proceedings of the
2001 IEEE Symposium on Security and Privacy, pp. 106–115. IEEE Computer Society
Press, Los Alamitos (2001)

15. Li, N.: Delegation Logic: A Logic-based Approach to Distributed Authorization. PhD the-
sis, New York University, New York (2000)

16. Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery in trust
management (extended abstract). In: Proceedings of the Eighth ACM Conference on
Computer and Communications Security (CCS-8), pp. 156–165. ACM Press, New York
(2001)

17. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management
framework. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp.
114–130. IEEE Computer Society Press, Los Alamitos (2002)

18. Mao, Z., Li, N., Winsborough, W.H.: Distributed Credential Chain Discovery in Trust
Management with Parameterized Roles and Constraints. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 159–173. Springer, Heidelberg (2006)

19. Nilsson, U., Małuszyński, J.: Logic, Programming and Prolog, 2nd edn. John Wiley & Sons
Ltd., Chichester (1995)

 Towards Role Based Trust Management without Distributed Searching of Credentials 235

Appendix A

A. 1 Proof of Lemma 1

Proof. We first prove the if part. Do induction on the length k of A.r↞D. If k is one,
then A.r ←⎯⎯ D∈GΣ and A.r←D∈Σ. By ScoRT semantics, Σ↪mem(D, A.r) is true. If k
is greater than one, suppose n is the node in A.r↞D, then there is an edge A.r w

←⎯⎯ n in
A.r↞D and the length of n↞D is k-1. By definition of credential graph, n is either a role
or a intersection. If n is a role, by induction assumption, Σ↪mem(D, n) and thus
PΣ⊢m(D, n, □). Because there is an edge A.r w

←⎯⎯ n in GΣ, the credential A.r←n.s must
be in Σ and thus PΣ contains the rule m(x, A.r, □)←m(x, n, w). If w is □ then PΣ⊢m(D,
A.r, □) and Σ↪mem(D, A.r); otherwise if w is ■, because A.r↞D is a path in GΣ, then k
must equal to 2, therefore Σ↪mem(D, A.r) follows too. If n is a intersection n1∧n2, then
GΣ contains the edge A.r w

←⎯⎯ n and the paths n1↞D and n2↞D where D∈w, and thus PΣ
contains the rule m(x, A.r, □)←m(x, n1, s1), m(x, n2, s2). By the induction assumption,
Σ↪mem(D, n1) and Σ↪mem(D, n2). Similar to the case when n is a role, Σ↪mem(D,
A.r) can be proved.

Now we consider the only if part. By Σ↪mem(D, A.r), PΣ⊢m(D, A.r, □) follows. There
is a sequence of proof steps for m(D, A.r, □). Do induction on the length s of the proof
steps. If s equals one, then the rule R1 is used in the proof and the edge A.r ←⎯⎯ D is in
GΣ. A.r↞D∈GΣ follows. If s is greater than one, suppose α is the rule used at the last
proof step which is generated by T2 or T3. If α is a T2 rule, i.e. α is m(x, A.r, □)←m(x,
B.r1, s), then PΣ⊢m(x, B.r1, s) and by induction assumption B.r1↞D∈GΣ. If s is □, then
A.r ←⎯⎯

□ B.r1 is in GΣ and A.r↞D∈GΣ. Otherwise, if s is ■ then A.r ←⎯⎯
■ B.r1 is in GΣ.

Because PΣ⊢m(D, A.r, □), then there must be a rule m(D, B.r1, ■) in PΣ and the edge
B.r1 ←⎯⎯

■ D is in GΣ. Therefore A.r↞D∈GΣ. If α is a T3 rule, i.e. α is m(x, A.r, □)←m(x,
B1.r1, s1), m(x, B2.r2, s2), then PΣ⊢m(x, B1.r1, s1) and PΣ⊢m(x, B2.r2, s2). By induction
assumption, B1.r1↞D∈ GΣ and B2.r2↞D∈GΣ are true. Similar to the case of T2 rule,
A.r↞D∈GΣ follows.

A. 2 Proof of Lemma 2

Proof. Let ξ be the legal path A.r↞n in GΣ . Do induction on the length s of ξ. When s is
one, ξ is an edge. By line 3 and 4 of AffG, ξ will be added into .GA r

Σ . When s is greater
than one, then there is a node n' in ξ. Let e be the edge n' w

←⎯⎯ n in ξ. Consider the path
A.r↞n' which is a sub-path of ξ. By induction assupmtion, all edges in A.r↞n' are in

.GA r
Σ . Now we prove e is also in .GA r

Σ . Let e' be n'' w′
←⎯⎯⎯ n' which is the last edge in

A.r↞n'. Because ξ∈ GΣ , w' is either □ or ∅. By definition of AffG, e' can only be added
by line 4 or line 7. In the first case, if w' is □, then AffG(n', ns, es) will add e into .GA r

Σ ;
if w' is ∅, then e will also be added by line 7. In the second case, w' must be □ and
AffG(n', ns, es) will add e into .GA r

Σ .

236 G. Yin et al.

A. 3 Proof of Lemma 3

Proof. The if part is obvious because . : GA r D
Σ is a sub-graph of GΣ. We now prove the

only if part. For each edge e in A.r↞D where e is n w
←⎯⎯ n', if n is a role, by definition of

legal paths, A.r↞n∈GΣ. By lemma 2, e is in .GA r
Σ . If n is a intersection n1∧n2, there

must be a role n'' that n'' 'w
←⎯⎯⎯ n is in A.r↞D and A.r↞n''∈GΣ. By definition of legal

paths, A.r↞n1∈GΣ and A.r↞n1∈GΣ are true. By lemma 2, the edges n'' 'w
←⎯⎯⎯ n, n 1s←⎯⎯ n1

and n 2s
←⎯⎯⎯ n2 are in .GA r

Σ , and e is in .GA r
Σ because e is either n 1s←⎯⎯ n1 or n 2s

←⎯⎯⎯ n2.
Therefore A.r↞D∈ . : GA r D

Σ is true.

A. 4 Proof of Lemma 4

Proof. Let ξ be the path B.rb↞C.rc and n1, …, ns are nodes appearing in ξ along the
reverse direction of the path where n1 is B.rb, ns is C.rc and s is greater than one. Con-
sider two CDA instances α and β: α is a root instance where e∉GA α −| and e∈GA t| ,
α+≤t≤τ; β is a root instance where ξ∉GB β−| and ξ∈GB t| , β+≤t≤τ. By definition of β,
there exits a path n1↞ni in GB β−| and there is no edge from ni+1 to ni, 0<i<s. Therefore β
stores ni

w
←⎯⎯ ni+1 into GB β

+| and ni is a role1. If α is the same instance as β, α will retrieve
ni

w
←⎯⎯ ni+1 from B by line 6. which is in contradiction to ni

w
←⎯⎯ ni+1∈GB β+| , therefore α is

not β. Now we need to prove that B.r↞C.rc∈GA τ| is true in both cases: α runs before β
and α runs after β.

Let c be the credential A.r←B.rb.□. Do induction on s and consider the base case
when s is 2, then ξ is a trust edge and let c' be the credential B.rb←C.rc.sc. In the first
case, α stores c at A and send it to B by line 8. And then β stores c' at B and uses line 16
to send c' to A, and thus Edges(c') is at A at time τ. In the second case, β firstly stores
Edges(c') at B, then α stores Edges(c) at A and use line 7 to pull .G bB r

B from B. By
lemma 2, Edges(c')∈ .G bB r

B . Therefore, B.r↞C.rc∈GA τ| in both cases.
Consider the induction step where s is greater than 2. In the first case, α+<β−≤τ, α

stores c at A and send it to B by line 8, i.e., e∈GA α +| . By n1↞ni∈GB β
−| and e∈GA β

−| ,
B.r↞ni∈GA β

−| is true by induction assumption. Because β stores ni↞ns into GB β
−| ,

there must be a instance β' running on B that uses line 1 to add ni↞ns into GB β
+| . Be-

cause e∈GA α +| , β' will use line 16 or 17 to send .G bB r
B to A. By lemma 2, ni↞ns∈ .G bB r

B .
In the second case, β+<α−≤τ, β firstly stores n1↞ns at B, then α uses line 7 to pull .G bB r

B
from B. By lemma 2, n1↞ns∈ .G bB r

A α
+| . Therefore B.r↞C.rc∈GA τ| is true in both cases.

A. 5 Proof of Lemma 5

Proof. Let e be the intersection edge from v to A.r. Let ξ be the path B.rb↞C.rc and n1,
…, ns are nodes appearing in ξ along the reverse direction of the path where n1 is B.rb, ns

1 Otherwise ni is an intersection ei1.si1∧ei2.si2, and ni+1 is either ei1 or ei2; by lines 1 and 2 of CDA,

there are two edges from ei1 and ei2 to ni in GBB

which is paradoxical because there is no edges
from ni+1 to ni.

 Towards Role Based Trust Management without Distributed Searching of Credentials 237

is C.rc and s is greater than one. Consider two CDA instances α and β: α is a root in-
stance where e∉GA α −| and e∈GA t| , α+≤t≤τ; β is a root instance where ξ∉GB β−| and
ξ∈GB t| , β+≤t≤τ. By definition of β, there exits a path n1↞ni in GB β−| and there is no
edge from ni+1 to ni, 0<i<s. Therefore ni

w
←⎯⎯ ni+1∈GB β

+| . By similar analysis in lemma 4,
ni must be a role and α is the different instance from β. Now we need to prove that
B.r↞C.rc∈GA τ| is true in both cases: α runs before β and α runs after β.

Let c be the credential for e. Do induction on s and consider the base case when s is
2, then ξ is a trust edge and let c' be the credential B.rb←C.rc.sc. In the first case, α
stores c at A and send it to B by line 12. And then β stores Edges(c) at B and uses line 16
to send c to A, and thus Edges(c') is at A at time τ. In the second case, β firstly stores
Edges(c') at B, then α stores c' at A and use line 11 to pull .G bB r

B from B. By lemma 2,
Edges(c')∈ .G bB r

B . Therefore, B.r↞C.rc∈GA τ| in both cases.
Consider the induction step where s is greater than 2. In the first case, α stores

Edges(c) at A and send c to B by line 12. By n1↞ni∈GB β
−| and e∈GA β

−| ,
B.r↞ni∈GA β

−| is true by induction assumption. Because β stores ni↞ns into GB β
−| ,

there must be a instance β' running on B that uses line 1 to add ni↞ns into GB β
+| . Be-

cause e∈GA α +| , β' will use line 16 or 17 to send .G bB r
B to A. By lemma 2, ni↞ns∈ .G bB r

B .
In the second case, β+<α−≤τ, β firstly stores n1↞ns at B, then α uses line 7 to
pull .G bB r

B from B. By lemma 2, n1↞ns∈ .G bB r
A α

+| . Therefore B.r↞C.rc∈GA τ| is true in
both cases.

A. 6 Proof of Theorem 2

Proof. Σ τ| ↪mem(D, A.r) follows from ΣA τ| ↪mem(D, A.r) since ΣA ⊆ Σ. We only
need to prove the if part. By lemma 1 we need to prove A.r↞D∈ : G A D τ| if

A.r↞D∈GΣ τ| .
Do induction on the length k of A.r↞D. If k equals one, then A.r↞D is A.r ←⎯⎯ D.

A.r↞D∈ : GA D τ| follows. If k equals two, A.r↞D can be denoted as A.r w
←⎯⎯ B.rb ←⎯⎯ D.

By A.r↞D∈GΣ τ| , there must be a root CDA instance that adds A.r w
←⎯⎯ B.rb into GA

before τ. Therefore A.r↞D∈ : GA D τ| is true.
Consider the induction step when k is greater than two. Suppose n and n' are nodes in

A.r↞D, where A.r w
←⎯⎯ n and n' ←⎯⎯ D are two edges in GA τ| , then the length of n↞D is

k-1. By definition of legal paths, w must be □. There must be a root CDA instance that
uses line 2 to add Edges(A.r←n) into GA τ| and thus A.r w

←⎯⎯ n is in GA τ| . By definition
of credential graph, n can be a role or an intersection. If n is a role B.rb, by induction
assumption we have B.rb↞D∈ : GB D τ| . By lemma 3, B.r↞n'∈GA τ| is true and there-
fore A.r↞D∈ : G A D τ| . If n is an intersection B.rb∧B'.rb', then there are two edges
n 1w

←⎯⎯⎯ B.rb and n 2w
←⎯⎯⎯ B'.rb' in GΣ τ| . Consider paths B.rb↞n' and B'.rb'↞n' in GΣ τ| , by

induction assumption, B.rb↞D∈ : GB D τ| and B'.rb'↞D∈ ' : GB D τ| . By lemma 4, we
can easily prove that both B.rb↞D and B'.rb'↞D are in : GA D τ| . Therefore
A.r↞D∈ : GA D τ| follows.

BinHunt: Automatically Finding

Semantic Differences in Binary Programs

Debin Gao1, Michael K. Reiter2, and Dawn Song3

1 Singapore Management University
dbgao@smu.edu.sg

2 University of North Carolina at Chapel Hill
reiter@cs.unc.edu

3 University of California, Berkeley
dawnsong@cs.berkeley.edu

Abstract. We introduce BinHunt, a novel technique for finding seman-
tic differences in binary programs. Semantic differences between two bi-
nary files contrast with syntactic differences in that semantic differences
correspond to changes in the program functionality. Semantic differences
are difficult to find because of the noise from syntactic differences caused
by, e.g., different register allocation and basic block re-ordering. BinHunt
bases its analysis on the control flow of the programs using a new graph
isomorphism technique, symbolic execution, and theorem proving. We
implement a system based on BinHunt and demonstrate the applica-
tion of the system with three case studies in which BinHunt manages to
identify the semantic differences between an executable and its patched
version, revealing the vulnerability that the patch eliminates.

1 Introduction

Many software vendors make the source code of their programs unavailable.
When a program needs to be updated (for patching vulnerabilities and errors),
they release a new version in binary format but refuse to disclose details of the
changes made. However, it is of great interest for consumers of the software
to understand the differences in two versions of the program. Binary difference
analysis is one of the most useful techniques in finding these differences.

There are many reasons why consumers want to know the differences between
the two binary files. For example, when an update of a program is available, the
consumers need to make a decision whether to apply the update. Such a decision
may require security analysis of the updated version, which is usually an expen-
sive and time-consuming process. Binary difference analysis can simplify and
speed up this process because one can reuse the security properties of the earlier
version and focus the analysis on the difference between the two versions. A
similar application of binary difference analysis is profile reuse in application de-
velopment [15]. A large program, with millions of lines of code, may be used in a
large variety of ways by different users on different machines. To characterize the
program behavior, extensive collection of profile data is required. For example,

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 238–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BinHunt: Automatically Finding Semantic Differences in Binary Programs 239

BMAT is a tool that matches two versions of a binary program to propagate
profile information from an older, extensively profiled build to a newer build.
Another reason why binary difference analysis is useful is that in many cases
the differences in two versions of a program correspond to vulnerabilities in the
earlier version that the later version patches. One may be able to find vulnera-
bilities in a program using binary difference analysis, and subsequently exploit
those vulnerabilities and attack consumers who have not applied the update.

Although such binary difference analysis is very useful, it is different from
the binary difference tools that we use to produce and apply patches (bsdiff,
bspatch, xdelta, jdiff, jpatch, and etc.), because many syntactic differences may
not correspond to semantic changes in the program. In the next section, we
will carefully define what syntactic and semantic differences are, but intuitively
semantic differences correspond to changes in the program functionality, and are
what we seek to identify in this paper.

Finding the semantic differences between two binary files is challenging for
many reasons. For example, a small change in the source code may cause the
compiler to use a different register allocation in other parts of the program in
which the corresponding source code remains the same. Similarly, a small change
in the source code may change the size of a small number of basic blocks, which
further triggers the compiler to re-order many other basic blocks in the binary
file. For these and other reasons, a small change in source code may lead to
many changes throughout the binary file. For example, in one of the case studies
we report, the patch of the gzip program consists of only 5 additional lines
of code in one function, but all the 75 non-empty functions in the resulting
binary file are changed (see Sect. 6). To find semantic differences between such
binaries, we must match semantically identical basic blocks that are nevertheless
syntactically different and located differently, and similarly match semantically
identical functions. In this paper, we use “match” and “matched pair” to denote
a pair of basic blocks (or a pair of functions), one from each binary file, and use
“matching” to refer to a set of matched pairs of basic blocks (or functions) in
which any basic block (respectively, function) from the first file is matched to at
most one from the second file, and vice versa.

We propose a novel technique, called BinHunt, to find the semantic differ-
ences between two binary files by analyzing the control flow of the program.
The control flow reflects the functionality and seldom changes because of, e.g.,
different register allocations or basic block re-ordering, making it an attractive
feature for finding the semantic differences. BinHunt first constructs a control
flow graph (CFG) for each function and a callgraph (CG) for the entire binary
file. After that, a customized graph isomorphism algorithm is used to find the
best (partial) matchings between functions and between basic blocks. Our graph
isomorphism algorithm is more accurate than previous techniques used in bi-
nary difference analysis, because its backtracking will replace erroneous matches
by better ones, whereas previous approaches are greedy and erroneous matches
will propagate through the isomorphism process. The output of this algorithm
is a (partial) matching between functions in the two binary files, and a (partial)

240 D. Gao, M.K. Reiter, and D. Song

matching between basic blocks in two matched functions. It also outputs a match-
ing strength for each match of functions or basic blocks, which tells how similar
the two functions or basic blocks are. The matchings together with the matching
strengths tell us where the semantic differences are.

A component of BinHunt is a method to accurately compare two basic blocks
using symbolic execution and theorem proving. This novel technique helps de-
termine if two basic blocks are functionally equivalent. It provides a guarantee
that if two basic blocks are found to be different by BinHunt, then they must
not be functionally equivalent. To the best of our knowledge, this is the first
paper introducing such a technique for binary difference analysis. Being able to
accurately compare two basic blocks not only improves the accuracy of the graph
isomorphism computation, but helps in finding its solution faster.

We have implemented a system based on BinHunt and report on three case
studies where we have used it to locate the semantic differences between bina-
ries, which in these cases correspond to vulnerabilities in one version of a binary
that was patched in the subsequent version. Note that when used to find soft-
ware vulnerabilities, BinHunt is not meant to replace existing tools to generate
exploits from syntactic binary differences [2], but instead to augment such tools.
For example, in one of our case studies, all of the 75 non-empty functions in the
binary change syntactically as the result of a very small change to one of the
functions in the source code. Rather than applying an exploit-generation tool
of Brumley et al. [2] to each of such a large number of syntactic differences to
find the one that can be exploited, BinHunt can help identify the one semantic
difference so that subsequent analysis can focus on that.

2 Problem Definition and Overview of Our Approach

Given are two binary files, which are usually two versions of the same program,
possibly compiled with optimizations for increased performance. We assume that
source code of these binary files is not available. We also assume that function
names extracted from these binary files are unreliable for the purpose of binary
difference analysis, since they can be changed easily.1

The outputs of the system are a (partial) matching between functions from
the two binary files, a (partial) matching between basic blocks from two matched
functions, and a matching strength for each pair of matched functions or basic
blocks. The matching strength tells how similar the matched functions or basic
blocks are. Unmatched functions and unmatched basic blocks, as well as matched
functions and matched basic blocks with low matching strengths, constitute the
semantic differences found between the two binary files.

The difference between two functions or between two basic blocks could be
syntactic and semantic. Syntactic differences refer to differences in the instruc-
tions, whereas semantic differences refer to differences in functionality (i.e.,
input-output behavior). It is possible that a syntactic difference is not semantic.
1 This is especially important when BinHunt is used to analyze malware, where at-

tackers intentionally make static analysis of the software difficult.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 241

As mentioned in Sect. 1, basic blocks could use different register allocations to
perform the same task, which means that the two basic blocks with different
instructions may have the same functionality. Similarly, basic block re-ordering
may make two functions look very different, but the two functions could provide
exactly the same functionality. Here we are concerned with finding semantic dif-
ferences, and so the output matchings and matching strengths from BinHunt
should eliminate functionally identical functions and identical blocks from con-
sideration, by matching them to one another with high matching strengths.

BinHunt uses a graph isomorphism technique, applied to the control flow and
call graphs of the two binary files, to find the partial matchings between func-
tions and between basic blocks. In order to compute isomorphisms on graphs,
BinHunt first needs to find the control flow of the programs. This is achieved
by first disassembling the binary files and locating the code segments. The x86
instructions are then converted into an intermediate representation for construct-
ing the control flow graphs and callgraphs. The graph isomorphism computation
in BinHunt uses a novel technique to compare the functionality of basic blocks.
This is achieved by symbolically executing the two basic blocks and using a the-
orem prover to test whether the effects of the basic blocks are always the same.
With this novel technique for comparing the basic blocks, BinHunt is able to
filter out most syntactic differences that do not correspond to semantic changes
in the binary files.

3 System Architecture

Figure 1 shows the overall system architecture. The binary files are first passed
to a front-end disassembler, which outputs a sequence of x86 instructions. Next,
the x86 instructions are converted into an intermediate representation (IR) for
easier and more accurate analysis. The IR is then used for control flow analysis,
where the output is a set of control flow graphs (CFGs), one for each function,
and a callgraph (CG) for the binary. In the last step, the CFGs and CG of the
two binary files are passed to our graph isomorphism engine to find a matching
between functions, a matching between basic blocks in matched functions, and
matching strengths for each pair of matched functions and basic blocks.

Fig. 1. Overall architecture of BinHunt

3.1 Disassembler

The disassembler parses each binary file and locates the code segments, which
are disassembled into a sequence of x86 instructions. We implement a plug-in to

242 D. Gao, M.K. Reiter, and D. Song

IDA Pro [6], a commercial disassembler, to do this, though other disassemblers
could be used as well.

3.2 Intermediate Representation

The x86 computer family has a CISC (Complex Instruction Set Computer) in-
struction set, and is widely regarded as a very complicated set of instructions. For
example, it consists of about 300 instructions; instructions are of variable length;
and arithmetic instructions may set status bits, making them have side effects.
It has undergone numerous changes over time, most of which were to add new
functionality while maintaining backward compatibility. The complex nature of
the x86 instruction set makes its static analysis difficult. In fact, some research
even takes advantage of this complexity to obfuscate binary executables to im-
prove their resistance to static analysis [10]. Because of this, some researchers
choose to perform the analysis on an intermediate representation (IR), instead
(e.g., [1]). In this project, we will take a similar approach, converting the x86
instructions into IR first, and then analyzing the IR.

The IR language we use is far simpler. It consists of roughly a dozen differ-
ent statements, which are type-checked and free of side effects. In some cases,
this simplicity does result in a loss of precision, and so our subsequent analysis
might conclude that two basic blocks are functionally identical when they are
not. However, we have not found examples where this loss of precision hides a
semantic change in which we are interested. There are two major benefits of this
simplicity. First, it makes the basic block comparison easier and more reliable.
It is easier because our symbolic execution and theorem proving are applied on
a much simpler set of instructions (see Sect. 4). It is also more reliable because
the instruction simplification reduces the language variation in performing the
same functionality. For example, two functionally equivalent basic blocks that
are syntactically very different in their x86 instructions may look quite similar in
their IR, because of the instruction simplification. Second, it makes our control
flow analysis much simpler and more scalable (see Sect. 3.3).

3.3 Constructing Control Flow Graphs and Callgraphs

There are many ways of analyzing the IR of two binary files to find their differ-
ences. The IR of a program is just a sequence of instructions. Many traditional
sequence comparison techniques can be used to find the differences between the
two sequences, e.g., dynamic programming [14,12]. However, these techniques
are not suitable in this paper, because our objective is not to find all syntactic
differences in the instruction level, but to find semantic ones that correspond to
changes in the program functionality.

What makes this problem unique is that there could be many changes in the
instructions that do not correspond to changes in functionality, as described in
Sect. 1. As a result, we propose analyzing the control flow of the programs to
find the differences. The control flow of a program is much more resistant to “su-
perficial” changes like different register allocations and basic block re-ordering,
and therefore is a more attractive feature for finding semantic differences.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 243

We represent the control flow of a program by a set of control flow graphs
and a callgraph. A control flow graph (CFG) consists of a set of nodes each
representing a basic block and a set of directed edges representing the control
flow among the basic blocks. We construct a CFG for each function found in the
binary file. We also construct a callgraph (CG) for each binary file, with the set
of nodes corresponding to the functions in the file and the set of directed edges
representing calls among the functions.

Note that although we base our binary difference analysis on the control flow
of the program, the CFGs and the CG may not contain all necessary information
for identifying the differences. For example, two programs may have isomorphic
CFGs and CGs, but the nodes in them may be functionally different. Therefore,
we still need to compare two corresponding basic blocks to find out if they provide
the same functionality. Basic block comparison also helps in graph isomorphism
(see Sect. 3.4), and we will detail our novel technique for basic block comparison
in Sect. 4.

3.4 Comparing the CGs and the CFGs

A critical part of BinHunt is to compare the CFGs and CGs to find the matchings
between corresponding functions and basic blocks. We do this by introducing a
new graph isomorphism algorithm based on the backtracking technique.

Suppose we have obtained the CFGs of two functions by disassembling the
code segments, converting x86 instructions into IR and analyzing the control
flow. The next step is to compare the two CFGs to find nodes that match to
each other. This can be conceptualized as the maximum common subgraph iso-
morphism problem.2 Intuitively, the maximum common subgraph isomorphism
problem is to find the largest common subgraph of two given graphs. Once the
maximum common subgraph is found, nodes in the subgraph will correspond
to matched basic blocks, and nodes outside of the subgraph will correspond to
unmatched ones. Similarly, when given two CGs, we try to find the maximum
common subgraph in which the nodes correspond to matched functions, and
nodes outside of the subgraph correspond to unmatched functions.

We will detail our algorithm for finding the maximum common subgraph and
how to interpret the output of the algorithm in Sect. 5. Note that two matched
functions may not be exactly the same. There could be differences within the two
functions and therefore we need to find the maximum common subgraph for the
two matched functions as well in order to identify the binary differences. Since
maximum common subgraph isomorphism is NP-complete, we need to propose
an efficient algorithm which works practically for real problems. The efficiency of
such an algorithm highly depends on the sequence in which nodes are examined
for possible matches. In order to try the most likely matches first, we need to be
able to tell whether the basic blocks represented by the nodes are similar. To do

2 More precisely, we solve the maximum common induced subgraph isomorphism prob-
lem, which is defined in Sect. 5.1. However, we typically refer to this as simply the
“subgraph isomorphism” problem or a similar variant, for simplicity.

244 D. Gao, M.K. Reiter, and D. Song

this, we propose a novel technique using symbolic execution of the basic blocks
and theorem proving. This technique is detailed in Sect. 4.

4 Basic Block Comparison

Basic block comparison is important for two reasons. First, it improves the ef-
ficiency of graph isomorphism. As mentioned in Sect. 3.4, the algorithm has
better efficiency if the best matches are tried first, which is possible only if there
is a way to measure the similarity of two basic blocks accurately. Second, ba-
sic block comparison helps identify any semantic differences between matched
functions. As noted in Sect. 3.4, two matched functions or basic blocks may not
be the same. Accurate basic block comparison can help identify the semantic
differences with low false-positive and false-negative rates.

4.1 Symbolic Execution and Theorem Proving

Symbolic execution [7] is a well-known program analysis technique to represent
values of program variables with symbolic values instead of concrete (initialized)
data and to manipulate expressions involving symbolic values. For each basic
block, we first find all the input and output registers and variables. We then
use symbolic execution to represent the final values of the output registers and
variables. That is, the output values computed by the basic blocks are expressed
using the program input symbols. This process is fast since we are dealing with
basic blocks, in which instructions are executed sequentially.

To test if two basic blocks are functionally equivalent, we apply a theorem
prover to test if the output registers and variables of the basic blocks are the
same. The theorem prover we employ is STP [5]. STP is a decision procedure for
the satisfiability of quantifier-free formulas in the theory of bit-vectors and arrays
that has been optimized for large problems encountered in software analysis
applications. We pick the symbolic representation of one register/variable from
each basic block and use STP to test if they are equivalent, assuming that the
inputs to the basic blocks share the same values.

Symbolic execution with theorem proving helps us determine whether two
registers or variables contain the same value after the executions of two basic
blocks. However, in general we do not know which registers or variables to pick
for testing because the two basic blocks could use different registers or variables
to provide the same functionality. We try all pair-wise comparisons and check if
there exists a permutation of the registers and variables between the two basic
block such that all matched registers and variables contain the same value. If
such a permutation exists, we conclude that the two basic blocks are functionally
equivalent. With this, our technique ensures that if two basic blocks are found to
be different by our technique of symbolic execution and theorem proving, then
they must not be functionally equivalent.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 245

Note that this property holds even if the two binary files are compiled using
different compilers or compiler options. However, it only holds for basic block
comparison and not for function comparison. That is, even if our symbolic ex-
ecution and theorem proving show that the basic blocks in two functions are
different, the two functions may, in fact, be functionally equivalent.

We could perform the same analysis for functions, i.e., we could use symbolic
execution to represent outputs of two functions and test if these outputs are
equivalent. However, performance becomes an issue as both symbolic execution
and theorem proving take a long time to process functions of even moderate size.

4.2 Matching Strength

We define matching strength of two basic blocks to denote how similar they are
in their functionality. Matching strength is a function of the two basic blocks
only, and does not depend on the context in which they execute. Matching
strength of two basic blocks that are deemed functionally equivalent (Sect. 4.1)
is assigned 1.0 if they use the same registers or 0.9 if they use different ones.
If two basic blocks are deemed not functionally equivalent, smaller matching
strengths are assigned. The reason why we assign a matching strength of 0.9 for
basic blocks using different registers is that our technique evaluates the basic
blocks independently. Even if the two basic blocks are functionally equivalent,
they may be used in different contexts. This is slightly more likely when the
basic blocks use different registers, and therefore we assign a slightly smaller
matching strength.

5 Maximum Common Induced Subgraph Isomorphism

Graphs are sets of nodes with edges connecting pairs of nodes. Similarity mea-
surement between graphs can be achieved by graph matching, which is a proce-
dure to identify common subgraphs. The measure of similarity is then given by
the size of the maximum common subgraph. This technique has its application
to many problems.

Graph matching is known to be a computationally expensive procedure. A
number of graph-matching algorithms, both optimal and approximate, have been
proposed over the last three decades [11]. Most optimal algorithms for common
subgraph isomorphism are based on maximal clique detection in the association
graph [9]. However, it is widely accepted that the problem of exact subgraph
isomorphism, which is a special case of common subgraph isomorphism with the
requirement that the resulting common subgraph coincides with one of the input
graphs, is much more efficiently solved by the backtracking algorithm [8,13].

In our problem of binary difference analysis, especially in applications in which
the two binary files under analysis are two versions of the same program, the
maximum common subgraph is very likely the same or very close to one of the
two input graphs. Therefore, we choose an algorithm based on the backtracking
technique [8]. Below, we first define the common subgraph problem we are trying

246 D. Gao, M.K. Reiter, and D. Song

to solve. We then describe the basic idea of the backtracking algorithm, and
our customizations to it to make it efficient and suitable for binary difference
analysis.

5.1 Definitions

Given a graph G = [V, E], graph H = [W, F] is an induced subgraph of G if and
only if W ⊆ V and F = E∩(W ×W). Given two graphs G and H , we define the
maximum common induced subgraph isomorphism problem as finding the largest
induced subgraph of G that is isomorphic to an induced subgraph of H . We call
this largest induced subgraph the maximum common induced subgraph of G and
H . Here “largest” means that the subgraph is largest according to some subgraph
measurement, which is not necessarily as simple as counting the number of nodes
in the subgraph. We define this subgraph measurement in Sect. 5.3.

5.2 Backtracking Algorithm

The backtracking algorithm offers a simple solution to the maximum common
induced subgraph isomorphism problem. The algorithm essentially enumerates
all possible matches of the nodes from the two input graphs. A property of this
algorithm is that an erroneous match added to the result will be replaced by a
better match subsequently.

Isomorphism (D, M)
1: if Extendable(D, M) then
2: v ← PickAny(D)
3: Z ← GetPossibleMatching(v, D)
4: for all w ∈ Z do
5: M ′ ←M + [v, w]
6: D′ ← Refine(v, w, D)
7: Isomorphism(D′, M ′)
8: end for
9: D′ ← Refine(v, null, D)

10: Isomorphism(D′, M)
11: end if

Fig. 2. Isomorphism function

Figure 2 shows the pseudo-code of
a recursive version of the backtrack-
ing algorithm. If G = (V, E) and H =
(W, F) are the input graphs, then D
contains all possible pairs of nodes
that might still be matched (initially
V × W), and M contains matched
node pairs (initially empty). We as-
sume that G and H are global vari-
ables in Figure 2; all other variables
are local and are passed by value.
On each entry to Isomorphism(), M
records the matched node pairs of
the partial common induced subgraph
found. It first checks whether the so-
lution is extendable. If it is extendable
(Line 1), it picks an unmatched node

v (Line 2) and assigns Z all possible matches for v (Line 3). For each node w in
Z (Line 4), the algorithm extends the solution by adding the match [v, w] to M
(Line 5), refining D (Line 6), and recursively calling Isomorphism() (Line 7). In
the end, the search is complemented by exploring extensions of M that do not
include the chosen node v (Line 9 and 10). This last step is necessary because a
subgraph not containing v (considered in the last step) may be larger than any
subgraphs containing v (considered in earlier steps). With this, Isomorphism()
completes trying all possible matches of the nodes.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 247

5.3 Customizations to the Backtracking Algorithm

Matching strength and subgraph measurement. In traditional backtrack-
ing algorithms [13,8], nodes are labeled (colored) and a possible match is one
that consists of nodes with the same label (color). We do not introduce such
labels for nodes in our CFGs and CGs, because any nodes in a graph may
be matched with any nodes in the other graph in our problem. Instead, we
utilize matching strength to guide us which two nodes are more likely to be
matched.

The matching strength for two basic blocks was detailed in Sect. 4.2. This
is the matching strength used when computing the maximum common induced
subgraph of the CFGs of two functions. We define the matching strength of
two functions—which is used when computing the maximum common induced
subgraph of the CGs of two binaries—to be 1.0 if the instructions (x86 or IR)
of the two functions are the same. Otherwise, their matching strength is the
subgraph measurement divided by the number of nodes in the CFG that has fewer
nodes, where subgraph measurement is defined as the summation of matching
strengths of matched nodes (basic blocks). Subgraph measurement is used not
only in defining the matching strength of two functions, but in the definition of
maximum common induced subgraph (see Sect. 5.1).

Customizations to improve efficiency. As the backtracking algorithm enu-
merates all possible matches, it could be very inefficient for large graphs. The
functions Extendable(), PickAny() and Refine() in Figure 2 are important in
making the algorithm efficient for practical problems.

Function Extendable() first makes a prediction on the maximum common in-
duced subgraph assuming all unmatched nodes can be matched perfectly, which
is the best possible output given the current matching. If this best possible
output is not better than the best subgraph found previously, then further enu-
meration is not necessary and Extendable() simply returns false.

Extendable() can improve the efficiency only if good matches are tried first.
The earlier the good matches are tried, the more times when Extendable()
returns false, and therefore the more efficient the algorithm is. So we want
to make function PickAny() return the best matching candidate first. In Bin-
Hunt, PickAny() returns the node that has the largest matching strength with
nodes in the other graph. PickAny() also considers the connectivity (number
of predecessors and successors) of the node; i.e., nodes with larger connectivity
will be returned if there are multiple nodes with the same maximum matching
strength.

Refine() updates the set of possible future matches by removing 1) [v, w]
(the new match); and 2) other matches that would not conform to the defi-
nition of common induced subgraph were they added to M in the future. For
example, assume that v has a predecessor v′ in G ((v′, v) ∈ E), and w′ is not a
predecessor of w in H ((w′, w) /∈ F). [v′, w′] has to be removed from D because if

248 D. Gao, M.K. Reiter, and D. Song

[v′, w′] is added to M , then the subgraph of G will contain edge (v′, v) while
the subgraph of H will not contain edge (w′, w), making the two subgraphs not
isomorphic.

Timeout and output of the backtracking algorithm. With the help of
the three functions Extendable(), PickAny() and Refine(), the backtracking
algorithm is able to try the best match early and therefore becomes more efficient
by quickly terminating the processing of other possible matches that will not
result in large subgraphs. However, in some cases where the CFGs are very big,
the algorithm may still take too much time to converge.

To have a good balance between efficiency and accuracy, we introduce a time-
out on some invocations to Isomorphism(). Specifically, when BinHunt tries to
find the matching strength for every pair of functions from the two binary files
for the input to CG isomorphism, timeouts are enabled. If a timeout is reached,
we simply assign a default value to the matching strength. In CG isomorphism,
however, the timeout is disabled. Lastly, after the function matching is found,
the maximum common induced subgraph is recalculated (with timeout disabled)
for matched function pairs that resulted in a timeout in the first step.

The output of BinHunt consists of the (partial) matching between func-
tions from the two binary files, the (partial) matching between basic blocks for
matched functions, and the matching strengths for the matched functions and
basic blocks. Note that semantic differences correspond to unmatched functions
and basic blocks, as well as matched ones with low matching strengths.

6 Case Studies

We implemented a system for binary difference analysis with the above compo-
nents and techniques. In this section, we will show the results of using this system
in three case studies to discover vulnerabilities in gzip, tar and ASP.NET. We
specifically choose these three cases to show how BinHunt performs in complex
cases where a small change in one function in the source code leads to substantial
syntactic changes in many other functions (the case of gzip), when the semantic
changes result in change of control flow in the program (the case of tar), and
when only the binary files are available (the case of ASP.NET). For the first two
case studies, we obtained the source code of the patched and unpatched versions
and compiled them independently to obtain the binary executables for analysis.
Once the binary executables were obtained, we made no further use of the source
code. For ASP.NET, we downloaded the patched and unpatched binaries directly
from the software vendor.

Note that in all of our case studies, the only differences between the two
versions correspond to patching vulnerabilities. In other cases, the differences
may correspond to new features added to the program, which would complicate
the discovery of vulnerabilities.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 249

6.1 Buffer Overflow in gzip

A release of gzip has a vulnerability that causes a buffer overflow with a file name
of 1028 bytes or greater. (See http://www.securityfocus.com/bid/3712 for
more details.) This overflow could overwrite stack variables and return addresses,
possibly resulting in arbitrary code execution. A patch exists for fixing the prob-
lem, and is shown in Fig. 3.

#ifdef NO_MULTIPLE_DOTS
char *dot; /* pointer to ifname extension, or NULL */

#endif
+ int max_suffix_len = (z_len > 3 ? z_len : 3);
+ /* Leave enough room in ifname or ofname for suffix: */
+ if (strlen(iname) >= sizeof(ifname) - max_suffix_len) {
+ strncpy(ifname, iname, sizeof(ifname) - 1);
+ /* last byte of ifname is already zero and never overwritten */
+ error("file name too long");
+ }

strcpy(ifname, iname);
/* If input file exists, return OK. */

Fig. 3. The patch for gzip

Without going
into too much de-
tail, we can see
that the patch
checks the length
of the variable
iname and out-
puts an error mes-
sage when it is
too long. The
patch adds a few
statements in a
small function get_istat(), which corresponds to only 7 additional lines (in-
cluding two comment lines). The original source of gzip.c contains 1,744 lines,
which means that the change accounts for roughly a 0.4% change in the source
code (when not considering other dependencies). Although it is a very small
change in the source code, we find that none of the 75 non-empty functions in
the patched binary (which contains more than 8, 500 instructions) is syntacti-
cally the same as any functions in the unpatched binary. Further analysis shows
that this is mainly due to basic block re-ordering.

0 0.2 0.4 0.6 0.8 1
Matching Strength

0

20

40

60

80

N
um

be
r

of
 f

un
ct

io
ns

Fig. 4. Matching strengths of func-
tions in gzip (CDF)

Although all non-empty functions are
changed syntactically, BinHunt was able to
find the correct matching for all non-empty
functions. Figure 4 shows the number of
non-empty functions that had matching
strengths less or equal to the value on the
x-axis. Despite the fact that all non-empty
functions contain syntactic changes, Bin-
Hunt managed to find more than 10 func-
tion matches that have matching strengths
of 1.0, which means that these matched func-
tions contain basic blocks that are func-
tionally equivalent and that use the same
register allocation. There is also a large num-
ber of function matchings that have matching strengths between 0.9 and 1.0,
which means that these matched functions contain basic blocks that are func-
tionally equivalent, although some of these basic blocks use different register
allocations. (See definitions of matching strength in Sect. 4.2 and Sect. 5.3.)

http://www.securityfocus.com/bid/3712

250 D. Gao, M.K. Reiter, and D. Song

Among the matched functions with a matching strength less than 0.8, there
was only one pair that differed substantially (by 26) in the number of unmatched
basic blocks, which was function treat_file(). The rest of the matched func-
tions had zero or a very small number of unmatched basic blocks. However,
treat_file() is not the function get_istat() where changes were made in the
source code, but rather its parent function, because function inlining was applied
during compilation in both patched and unpatched versions. The parent function
is a very large function with more than 900 basic blocks. BinHunt was able to
find common subgraphs of a size almost the same as the unpatched function (all
basic blocks were matched correctly except the two nodes between which new
basic blocks are added), and therefore identified a few additional basic blocks
that exist only in the CFG of the patched binary (see Fig. 5 for the additional
basic blocks in the dotted rectangle).

Fig. 5. Difference found in the parent function of get istat()

mov %esi, %edi
cld
mov $0xfffffff, %ecx
mov $0x0, %eax
repnz scas %es:(%edi), %al

Fig. 6. Assembly code for
differences found in gzip

Looking at the first few basic blocks within the
dotted rectangle in Fig. 5, we found the assembly
code as shown in Fig. 6. The repnz instruction re-
peats doing something as long as a byte is non-zero,
which, in most cases, is used to find the terminating
byte in a string. In this case study, it is used for the
same purpose to find the length of the string at edi.
By tracing the register edi we easily found that the
string is actually the input parameter representing
the file name.

In this case study, BinHunt identified a few basic blocks that correspond to
changes in the source code of gzip. It took about an hour to finish the analy-
sis on a desktop computer with a 2.1GHz CPU. The reason why it takes relatively

BinHunt: Automatically Finding Semantic Differences in Binary Programs 251

long is because all functions in the patched version are syntactically different
from functions in the unpatched version. In this case, we configured BinHunt
to perform graph isomorphism on all permutations of the 75 functions in each
binaries. This also means that the analysis time would not increase substantially
if there were more semantic differences between the two binaries.

6.2 “Dot dot” Vulnerability in tar

The patch for the buffer overflow vulnerability in gzip inserts additional instruc-
tions into a function, which result in a few additional basic blocks in a CFG.
However, these additional basic blocks do not alter the control flow of the original
program. BinHunt is very powerful in identifying this type of change in source
code because our binary difference analysis is based on analysis of the control
flow of the program. Although many patches share the same characteristics of
the one for gzip, there are patches which change the control flow of the program.
In this subsection, we describe an application of BinHunt to a program in which
the patch changes the control flow of the original program.

bool contains_dot_dot (char const *name) {
char const *p = name +

FILE_SYSTEM_PREFIX_LEN (name);
for (;; p++) {

if (p[0]==’.’ && p[1]==’.’ &&
(ISSLASH(p[2]) || !p[2]))
return 1;

do { if (! *p++) return 0; }
while (! ISSLASH (*p));

}
}

bool contains_dot_dot (char const *name) {
char const *p = name +

FILE_SYSTEM_PREFIX_LEN (name);
for (;; p++) {

if (p[0]==’.’ && p[1]==’.’ &&
(ISSLASH(p[2]) || !p[2]))
return 1;

while (! ISSLASH (*p))
{ if (! *p++) return 0; }

}
}

Unpatched Patched

Fig. 7. The unpatched and patched functions in tar

A version of the program tar has an input validation error called the “dot dot”
function vulnerability. (See http://www.securityfocus.com/bid/25417/info
for more information.) Attackers may exploit the vulnerability to overwrite files
on the computer. Figure 7 shows the unpatched and patched versions of the func-
tion in which the vulnerability is found. The difference in the source code is that
the unpatched function uses a do-while loop, whereas the patched function uses
a while loop. This patch changes the control flow of the program. Again, Bin-
Hunt was able to find the correct matching between all non-empty functions from
the two binary files. In this case, more than 95% of the matches had a match-
ing strength of 1.0. This is due to the fact that function contains_dot_dot()
is located towards the end of the binary file, and changes in it do not result in
much basic block re-ordering. Out of the 470 non-empty functions, the match for
function contains_dot_dot() had the smallest matching strength of 0.571622.

The graph isomorphism calculation on the CFGs for function
contains_dot_dot() found a matching for about two-thirds of the basic
blocks (the unpatched version has 36 basic blocks and the patched version has

http://www.securityfocus.com/bid/25417/info

252 D. Gao, M.K. Reiter, and D. Song

(a) Unpatched (b) Patched

Fig. 8. Part of the CFGs of function contains dot dot()

37 basic blocks). Figure 9 shows the number of basic blocks that were matched
with a matching strength less than the value on the x-axis. The analysis of the
unmatched basic blocks to identify the vulnerability required a little more effort
because of the changes in control flow. Figure 8 shows part of the CFGs of the
unpatched and patched function contains_dot_dot().

0 0.2 0.4 0.6 0.8 1
Matching strength

0

5

10

15

20

25

30

N
um

be
r

of
 b

as
ic

 b
lo

ck
s

Fig. 9. Matching strengths of ba-
sic blocks in contains dot dot()
(CDF)

As can be seen from Fig. 8, a loop ex-
ists in both CFGs, i.e., the path between ba-
sic block number 8 and 18 in the unpatched
function and the path between basic block
number 9 and number 8 in the patched func-
tion. There is a special basic block that does
the comparison of a byte with the charac-
ter “/” (ASCII 0x2f); this is basic block 12
in the unpatched function and basic block 10
in the patched version. It can been seen from
the CFGs that the comparison is performed
in the middle of the loop in the unpatched
function, and at the beginning of the loop in
the patched function. With this, the vulner-
ability is found.

In this case study, there are more than 41,000 instructions in each of the
two binaries. It took about 30 minutes for BinHunt to finish the analysis.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 253

(a) Unpatched (b) Patched

Fig. 10. Different register allocation for
function contains dot dot()

One of the reasons why it took only 30
minutes is that some of the functions in
the two binaries are exactly the same,
and so BinHunt did not need to per-
form the graph isomorphism for these
functions.

Another interesting thing to note is
about different register allocation. Fig-
ure 10 shows the first few basic blocks of
function contains_dot_dot() for both
the unpatched and patched versions.
We can see from basic block number 2
that eax is used in the unpatched func-
tion, while edx is used in the patched
function for the same purpose. This is
an example of syntactic differences that BinHunt managed to skip when finding
semantic differences.

6.3 Application Folder Information Disclosure in ASP.NET

0 0.2 0.4 0.6 0.8 1
Matching Strength

0

10

20

30

40

N
um

be
r

of
 f

un
ct

io
ns

Fig. 11. Matching strengths of func-
tions in ASP.NET (CDF)

The last case study we did was on Microsoft
.NET framework 2.0 (ASP.NET). Unlike the
previous two cases in which we compiled the
source to obtain the binary executables in-
dependently, in this case study we down-
loaded the binary files directly from the soft-
ware vendor. ASP.NET in many versions of
Microsoft Windows allows remote attack-
ers to bypass access restrictions via unspec-
ified “URL paths” that can access Appli-
cation Folder objects “explicitly by name”
(CVE-2006-1300). This vulnerability occurs
because ASP.NET only checks for slash (“/”) and does not consider %5c (the
ASCII code for “\”) when checking for accessibility.

BinHunt found that there are 38 non-empty functions in the unpatched ver-
sions of the binary files and 39 non-empty functions in the patched version, and
found the correct matching for 38 functions. Figure 11 shows the number of
functions that were matched with a matching strength less than the value on
the x-axis. We can see that all matched functions had a high matching strength.

In this case study, it was trivial to find the semantic difference as it corre-
sponds to an unmatched function FlipSlashes(), which is called from function
HttpFilterProc() to perform additional checks. BinHunt managed to locate
the unmatched basic block in function HttpFilterProc() which corresponds
to the call of FlipSlashes(). This case study shows that BinHunt works as
expected on binary files downloaded directly from the software vendor.

254 D. Gao, M.K. Reiter, and D. Song

7 Related Work

The structural comparison tools BinDiff [4] (and its extension [3]) and Bind-
View (http://www.bindview.com/Services/Razor/Papers/2004/comparing
binaries.cfm) are most related to our work. These tools construct a maximal
subgraph isomorphism between the sets of functions in two versions of the same
executable file. There are two major distinctions between these systems and
BinHunt.

First, BinHunt contributes a more thorough technique for identifying the
maximum common subgraph isomorphism. BinDiff and BindView use a greedy
method to extend a matching, and thus an erroneous match will propagate,
leading to a failure to find the maximum subgraph isomorphism. In compari-
son, BinHunt uses a backtracking technique to find the maximum isomorphic
subgraphs (see Sect. 5). While in general this would be exceedingly expensive,
we develop optimizations to make it practical. Inaccurate matches added to the
result will be replaced by better ones subsequently in the backtracking process.

Second, BinHunt uses a novel technique for basic block comparison using sym-
bolic execution and theorem proving (see Sect. 4). This method can determine
if two basic blocks are functionally equivalent, which overcomes the difficulty
encountered when, e.g., basic blocks use different register allocations. In con-
trast, BinDiff uses heuristics to test if two graphs or basic blocks are similar.
For example, BinDiff compares two graphs by calculating the number of basic
blocks, edges and callers. BindView matches basic blocks based on instructions
present in them. Due to the reliance on comparing actual instructions, a signifi-
cant number of locations are falsely identified as changes [3].

There are also binary difference analysis tools to produce and apply patches
(bsdiff, bspatch, xdelta, jdiff, jpatch, etc.). They capture all syntactic differences
between binaries; as described previously, such differences may not correspond
to semantic differences, and so they do not suffice for the goals of this paper.

8 Conclusion and Limitations

In this paper, we define the problem of finding semantic differences in binary
executables, and introduce a novel technique BinHunt based on control flow anal-
ysis. When compared with previous techniques, BinHunt uses a more thorough
graph isomorphism technique for identifying the maximum common induced sub-
graph isomorphism. Unlike previous techniques, BinHunt does not rely on many
heuristics when finding the maximum common subgraph. BinHunt also makes
use of a novel technique to compare the functionality of two basic blocks using
symbolic execution and theorem proving. In case studies on different versions of
three common programs, we showed that BinHunt is able to find the semantic
differences with high accuracy.

A limitation of BinHunt is that its analysis efficiency drops when the number
of semantic differences between binary files increases. This is due to the graph
isomorphism technique that BinHunt uses. The backtracking algorithm works

http://www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm
http://www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm

BinHunt: Automatically Finding Semantic Differences in Binary Programs 255

the best when the two graphs are similar to each other. In applications where the
differences between the two binary files are large, a different graph isomorphism
technique should be used. BinHunt does not work on packed code, either. We
leave these topics for future work.

References

1. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: Codesurfer/x86 - a plat-
form for analyzing x86 executables. In: Proceedings of the Conference on Compiler
Construction (2005)

2. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy (May 2008) (to appear)

3. Dullien, T., Rolles, R.: Graph-based comparison of executable objects. In: Pro-
ceedings of SSTIC 2005 (2005)

4. Flake, H.: Structural comparison of executable objects. In: Proceedings of the GI
International Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment 2004 (2004)

5. Ganesh, V., Dill, D.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590. Springer, Heidelberg (2007)

6. DataRescue Inc. IDA Pro, http://www.datarescue.com/idabase/
7. King, J.: Symbolic execution and program testing. Communications of the

ACM 19(7) (1976)
8. Krissinel, E., Henrick, K.: Common subgraph isomorphism detection by backtrack-

ing search. Software — Practice and Experience 34 (2004)
9. Levi, G.: A note on the derivation of maximal common subgraphs of two directed

or undirected graphs. Calcolo 9 (1972)
10. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static

disassembly. In: Proceedings of the 11th ACM Conference on Computer & Com-
munication Security (CCS 2003) (2003)

11. Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of Computer-Aided Molecular
Design 16 (2002)

12. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: the
Theory and Practice of Sequence Comparison. Addison-Wesley Pu. Co., Reading
(1983)

13. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association of
Computers and Machines 23 (1976)

14. Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybernetics and
Systems Analysis 4(1) (1968)

15. Wang, Z., Pierce, K., McFarling, S.: Bmat - a binary matching tool for stale profile
propagation. J. Instruction-Level Parallelism 2 (2000)

http://www.datarescue.com/idabase/

Enhancing Java ME Security Support with

Resource Usage Monitoring

Alessandro Castrucci, Fabio Martinelli, Paolo Mori, and Francesco Roperti

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche
via Moruzzi,1 - 56124 Pisa (Italy)

{alessandro.castrucci,fabio.martinelli,paolo.mori}@iit.cnr.it

Abstract. Both the spreading and the capabilities of mobile devices
have dramatically increased over the last years. Nowadays, many mobile
devices are able to run Java applications, that can create Internet con-
nections, send SMS messages, and perform other expensive or dangerous
operations on the mobile device. Hence, an adequate security support is
required to meet the needs of this new and evolving scenario.

This paper proposes an approach to enhance the security support of
Java Micro Edition, based on the monitoring of the usage of mobile de-
vice resources performed by MIDlets. A process algebra based language
is used to define the security policy and a reference monitor based ar-
chitecture is exploited to monitor the resource usage. The paper also
presents the implementation of a prototype running on a real mobile
device, along with some preliminary performance evaluation.

1 Introduction

In these last years, the market of mobile devices, such as mobile phones or
Personal Digital Assistants (PDAs), has grown significantly. The computational
power and the capabilities of mobile devices have increased too. For example,
modern mobile devices are able to connect to Internet, to read and write e-mails,
and also to run Java applications.

Java Micro Edition (Java ME) is a version of the Java platform for mobile
and embedded devices. Java ME for mobile devices mainly consists of two com-
ponents: the Mobile Information Device Profile (MIDP) and the Connection
Limited Devices Configuration (CLDC). The security model provided by Java
ME is not flexible enough to allow the spreading of Java ME applications, MI-
Dlets, developed by third party companies, because it takes into account the
provider of the MIDlet only, i.e. the principal that signed the MIDlet. If the MI-
Dlet provider is trusted according to the list of trusted principals stored on the
device, the MIDlet is allowed to perform any security relevant action. Instead,
MIDlets that come from unknown providers are not allowed to perform security
relevant actions, and the mobile device user is tediously prompted to explicitly
allow each of them. To avoid to be asked again, the user could choose to allow
any further invocation, thereby disabling any further control on the MIDlet.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 256–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Enhancing Java ME Security Support with Resource Usage Monitoring 257

This paper proposes an approach to enhance the Java ME security support
based on the continuous monitoring of the usage of the mobile device resources.
The usage of the resources of the mobile device is defined in terms of the se-
quences of actions that a MIDlet performs on them, i.e. the behavior of the MI-
Dlet. The resource usage monitoring we define is fine-grained, history-based and
continuous. The monitoring is fine-grained because we define a set of security-
relevant actions, i.e. actions performed on the mobile device resources that could
be critical for the device security, and we monitor all the invocations to such ac-
tions performed by MIDlets. The monitoring is also history-based, because to
decide whether a MIDlet is allowed to perform a given action, we take into ac-
count the sequence of all the actions that have been executed by the MIDlet itself
since it was started. This implies that the existence of the right to perform an
action is not static, because it depends on the actions that have been previously
executed. Furthermore, the monitoring is continuous because our approach al-
lows to define conditions that are continuously (repeatedly) checked, and as soon
as a condition is violated, a system action is executed, such as interrupting the
MIDlet, even if it is not executing a security relevant action. The security policy
describes the allowed resource usage patterns in terms of sequences of actions
that MIDlets are allowed to perform, and the conditions that should be satisfied
before the execution of each action, after, or continuously. The security policy is
stored on the mobile device and is applied to each MIDlet that is executed.

Hence, with respect to Java ME security, the main novelties of the proposed
security support are that: i) the rights granted to a MIDlet to access mobile
device resources do not depend on the MIDlet provider; ii) these rights are not
static; iii) the monitoring of the resource usage is continuous, i.e. the controls
are not executed before the access only, but also while the access is in progress,
and, consequently, a MIDlet could be interrupted while running, even if it is not
performing a security relevant action.

1.1 Paper Structure

The paper is structured as follows. Section 2 describes the standard Java ME
security support, and reports previous attempts to enhance it. Section 3 describes
our approach to improve the security of the Java ME architecture by monitoring
the MIDlet execution. In particular, Section 3.1 describes the security policy we
adopted, and Section 3.2 describes the architecture of our framework. Section 4
describes the implementation of a prototype running on a real mobile device, the
HTC Universal smart-phone, along with a preliminary performance evaluation.
Section 5 draws the conclusion.

2 Related Work

The Java ME security support involves all the basic components of the Java
ME architecture: Mobile Information Device Profile (MIDP), Connected Lim-
ited Device Configuration (CLDC) and Kilobyte Virtual Machine (KVM). The

258 A. Castrucci et al.

security support provided by CLDC [17] concerns the low level and the applica-
tion level security. The low level security regards the KVM, and guarantees that
MIDlets do not harm the device while running. The application level security,
instead, deals with security relevant operations performed by MIDlets, such as
accesses to libraries or resources. To execute MIDlets, CLDC adopts a sandbox
that ensures that: the MIDlet must be pre-verified; the MIDlet cannot bypass
or alter standard class loading mechanisms of the KVM; only a predefined set
of APIs is available to the MIDlet; the MIDlet can only load classes from the
archive it comes from; and, finally, the classes of the system packages cannot be
overridden or modified.

The security support provided by MIDP [7,8] defines four protection domains:
Untrusted, Trusted, Minimum, and Maximum. Each MIDlet is bound to one pro-
tection domain depending on its provider, and this determines the value of its
permissions. Permissions refer to the actions that the MIDlet can perform dur-
ing its execution and their value can be either allowed or user. For example, the
javax.microedition.io.Connector.http permission refers to HTTP connec-
tions. If the value of this permission is allowed, then the permission is granted,
otherwise, if the value is user, a user interaction to explicitly grant the right is re-
quired every time that the MIDlet tries to establish an HTTP connection. When
asked by the MIDP security support, the user can deny the right to execute the
action, or can allow it by choosing among three possible values: oneshot, session,
blanket. If the user chooses oneshot, the right to execute the current action is
granted, but the user will be asked when the MIDlet will try to perform the
same action again. If the user chooses session, the right to execute the current
action is granted to the MIDlet until it terminates. Instead, if the user chooses
blanket, the MIDlet will be allowed to perform the action until it is uninstalled
or the permission is explicitly changed by the user. In other words, this disables
any further control on this action.

A security study of Java ME has been presented by Kolsi and Virtanen in
[9], where they described the possible threats and the security needs in a mobile
environment. In particular, they described how MIDP 2.0 solved some security
issues of MIDP 1.1, but they concluded that some problem are still present. A
security analysis of Java ME has been presented also by Debbabi et al. in [2], [3]
and [4]. In these papers, they detail the MIDP and CLDC security architecture,
and they identify a set of vulnerabilities of this architecture. Moreover, they
also test some attack scenarios on actual mobile phones. However, the previous
papers do not propose any improvement to the Java ME security support to
solve the security issues they described.

An attempt of extending the Java ME architecture with an enhanced security
support is shown in [6]. This paper proposes a runtime monitor architecture
that consists of a Runtime Monitor, a Policy Manager and a History Keeper.
The Runtime Monitor is in charge of making resource access decisions, and
relies on the Policy Manager to identify the relevant application-specific policy.
Once the policy is identified, the Runtime Monitor evaluates its conditions in
conjunction with resource usage history information of the system and MIDlet, as

Enhancing Java ME Security Support with Resource Usage Monitoring 259

obtained from the History Keeper. This architecture enforces policies written in
Security Policy Language (SPL) [16]. SPL is a constraint based security policy
language that allows to express simultaneously several types of authorization
policies, hence allowing the definition of complex access control models (e.g.
RBAC, DAC, TRBAC).

The main difference with the approach proposed in this paper is in the kind of
security controls that are performed. Our approach is focused on the continuous
monitoring of the mobile device resources usage, and the security policy defines
the rights of a MIDlet by describing the resource usage patterns that the MIDlet
is allowed to perform. These patterns could be very complex, and are expressed
through a process algebra based language. Moreover, our approach defines con-
tinuous controls, that consist of conditions that are continuously checked while
the MIDlet execution is in progress. When one of these conditions is violated, the
monitor executes a control action, such as interrupting the MIDlet execution.
This requires a more complex support then the one for enforcing access control
policies.

3 Runtime Monitoring

This paper proposes to enhance the security support of Java ME by monitoring
the usage of the resources of the mobile device. This implies the monitoring of
the execution of MIDlets to intercept the security relevant actions that they
perform on the mobile device resources and the enforcing of a security policy
that defines the admitted patterns of these actions.

The actions that are considered as security relevant are the ones that allow
the MIDlet to interact with the underlying resources, such as establishing a
network connection, sending an SMS message, initiating a phone call, and so
on. Hence, we identified a set of methods of the MIDP and CLDC core classes
that implement the security relevant actions, and we monitor the execution of
these methods. For example, javax.microedition.io.Connector.open(url)
is the method that creates a connection with the entity represented by url,
and the method javax.wireless.messaging.MessageConnection.send(msg)
interacts with the mobile device to send an SMS message to a remote device.

3.1 Security Policy

This section gives a short description of the language for defining security poli-
cies. We adopt an operational policy language because we believe that it is closer
to user’s expertise than denotational ones. Since we deal with sequences of ac-
tions, we use a POlicy Language based on Process Algebra (POLPA) (see also
[1,11,10]). A policy results from the composition of security relevant actions, con-
trol actions, predicates and variable assignments, as described by the following
grammar:

P ::= ⊥ ‖ " ‖ α(x).P ‖ c.P ‖ p(x).P ‖ x := e.P ‖ P1orP2 ‖ P1parα1,..,αnP2 ‖
{P} ‖ Z

260 A. Castrucci et al.

where P is a policy, α(x) is a security relevant action, c is a control action, p(x)
is a predicate, x are variables and Z is a constant process definition Z

.= P . The
difference between security relevant actions and control actions is that security
relevant actions are the ones that the MIDlet tries to perform on the mobile
device resources, while control actions are executed by our monitoring support
to enforce the security policy. Interrupting and suspending the MIDlet execution
are two examples of control actions. The informal semantics is the following:

– ⊥ is the deny-All operator;
– " is the allow-All operator;
– α(x).P is the sequential operator for security relevant actions, and represents

the possibility of performing an action α(x) and then behave as P ;
– c.P is the sequential operator for control actions, and represents the possi-

bility of performing a control action c and then behave as P ;
– p(x).P is the sequential operator for predicates and behaves as P in the case

the predicate p(x) is true;
– x := e.P assigns to variables x the values of the expressions e and then

behaves as P
– P1orP2 is the alternative operator, and represents the non deterministic

choice between P1 and P2;
– P1parα1,...,αnP2 is the synchronous parallel operator. It expresses that both

P1 and P2 policies must be simultaneously satisfied. This is used when the
two policies deal with actions (in α1, . . . , αn);

– {P} is the atomic evaluation, and represents the fact that P is evaluated in
an atomic manner. P here is assumed only to have one action, predicates
and assignments;

– Z is the constant process. We assume that there is a specification for the
process Z

.= P and Z behaves as P .

As usual for (process) description languages, derived operators may be de-
fined. For instance, P1parP2 is the parallel operator, and represents the inter-
leaved execution of P1 and P2. It is used when the policies P1 and P2 deal with
disjoint actions. The policy sequence operator P1; P2 may be implemented using
the policy languages operators (and control variables) (e.g., see [5]). It allows to
put two process behaviors in sequence. By using the constant definition, the se-
quence and the parallel operators, the iteration and replication operators, i(P)
and r(P) resp., can be derived. Informally, i(P) behaves as the iteration of P
zero or more times, while r(P) is the parallel composition of the same process
an unbounded number of times.

Many different execution patterns may be described exploiting POLPA.
Figure 1 shows a simple example of security policy to avoid redirections to
other web sites while accessing a predefined web site, “www.siteA.it“. At the
beginning of the execution, this policy allows the MIDlet to open any network
connection. However, if the MIDlet opens a HTTP or a HTTPS connection with
the predefined site, then it cannot open any other connection with any other
site. On the other hand, if the MIDlet opens a connection with an URL that
is not the predefined one, then in this session it cannot open this site anymore.

Enhancing Java ME Security Support with Resource Usage Monitoring 261

Moreover, the policy does not allow the MIDlet to open any connection to the
predefined site if the protocol is not HTTP or HTTPS. For instance, this policy
could be adopted when executing MIDlets that implement Internet browsers,
such as Opera Mini [14], to avoid redirections to malicious sites when accessing
the predefined site.

r([(address(url)!=“www.siteA.it“)].javax.microedition.io.Connector.open(url))
or
r([((protocol(url)==HTTP) or (protocol(url)==HTTPS)) and

(address(url)==“www.siteA.it“)].javax.microedition.io.Connector.open(url))

Fig. 1. Example of security policy

Figure 2 shows another example of POLPA policy. In this case, the policy
allows the MIDlet to send no more than 10 SMS messages to italian users only
(i.e. if the telephone number begins with “+39“). As a matter of fact, the pol-
icy allows the MIDlet to execute the javax.microedition.io.Connector.open
method only if the protocol is the SMS one and if the telephone number begins
with “+39*“, and it allows the MIDlet to invoke for 10 times only the method
javax.wireless.messaging.MessageConnection.send.

N:=0.
i([((protocol(url)==SMS) and (address(url)==“+39*“)].
javax.microedition.io.Connector.open(url)
or
([(N<10)].javax.wireless.messaging.MessageConnection.send(msg).
N:=N+1)

)

Fig. 2. Example of security policy

Figure 3 shows a further example of POLPA policy where the MIDlet is al-
lowed to open a network connection with the site “http://www.siteA.it“, and
then, either it opens a network connection with the site “http://www.siteB.it“
within 10 seconds, or it is interrupted by the control action revoke execution.
As a matter of fact, the control action revoke execution is executed as soon
as the predicate [(timer > 10)] is satisfied. In this example we suppose that
the variable timer represents a timer.

262 A. Castrucci et al.

[(url == “http://www.siteA.it“)].javax.microedition.io.Connector.open(url).
timer:=0.
([(timer > 10)].revoke execution()
or
[(timer ≤ 10) and (url == “http://www.siteB.it“)].
javax.microedition.io.Connector.open(url)

)

Fig. 3. Example of security policy

3.2 Runtime Monitor Architecture

The architecture for the runtime monitoring follows the reference monitor model,
and consists of two main components: a Policy Decision Point (PDP) and a Policy
Enforcement Point (PEP), as shown in Figure 4.

Policy
Security

PEP

PEP

MIDP
method(params)

grant/deny

grant/deny

method(params)

CLDC

Ja
va

 M
E

MIDlet

KVM

Mobile Device OS

control action

PDP

Fig. 4. Runtime monitoring architecture

The PEP is integrated in the MIDP and CLDC components of the Java
ME architecture, while the PDP is implemented as a distinct component. This
solution requires the modification of the Java ME architecture to embed the
PEP, while does not require any modification of the MIDlets, hence allowing the
execution of standard MIDlets.

The PEP has two main tasks during the execution of a MIDlet: i) intercepting
the security relevant methods invocation, and ii) enforcing the decision resulting

Enhancing Java ME Security Support with Resource Usage Monitoring 263

from the evaluation of the security policy on this method. When a security
relevant method is intercepted, the PEP invokes the PDP, by passing it the
method name and all the invocation parameters. To embed the PEP in the
MIDP and CLDC methods we modified the source code of those methods by
inserting the invocation of the PDP at the beginning and at the end of the
method code. In this way the policy is evaluated and enforced both before and
after the execution of the method. The PEP also enforces the decision of the
PDP. If the PDP decision is positive, the execution of the method is permitted,
then the PEP continues the execution of the original method code. Instead, if the
result is negative, the execution of the method is denied, and the PEP terminates
it by throwing a Java Exception. In this case, if the PDP invocation has been
made before the execution of the method, the method execution is skipped.

The PDP is the component that decides whether a given security relevant
method can be performed in a given state according to the security policy. The
PDP is initiated by the KVM before beginning the execution of the MIDlet byte-
code. The PDP initially gets the security policy from the local storage, and builds
an internal representation of the policy. This internal representation is used to ef-
ficiently evaluate the policy against the security relevant actions that the MIDlet
tries to perform. The PDP consists of two parts: a passive one and an active one.
The passive PDP is invoked by the PEP for each security relevant method that
the MIDlet tries to execute, before and after the execution of the method. When
the policy evaluation process terminates, the passive PDP returns the decision
to the PEP that enforces it. The active PDP, instead, repeatedly tests whether
a control action should be executed, by evaluating the predicates before the ac-
tive control actions. A control action is active when the previous actions in the
sequence defined by the policy have been already executed by the MIDlet. For
example, in the security policy shown in Figure 3, the revoke execution control
action is active only after that the connection to the site “http://www.siteA.it“
has been established. The passive PDP, for each security relevant action executed
by the MIDlet, updates the set of active control actions.

4 Implementation

We developed a prototype of the modified Java ME runtime environment that
runs on a real mobile device, a HTC Universal smart-phone, exploiting the
PhoneME Feature Software MR2 [15]. The PhoneME feature software is an
implementation of the main components of the Java ME architecture, such as
the MIDP v2.0, the CLDC v1.1, the Wireless Message API and many others.
The PhoneME Feature Software MR2 release includes the full source code. In
particular, the KVM code is developed in C++, both for efficiency reasons and
because it interacts with the underlying operating system. The code of the Java
ME core classes is developed partly in Java and partly in C or C++. In this
case too, C functions are used mainly to implement the interactions with the
underlying operating system. Our customized version of PhoneME was built on a
desktop computer exploiting the OpenEmbedded development environment [12]

264 A. Castrucci et al.

and configuring the cross compiler for the specific mobile device architecture.
The PhoneME was installed on a HTC Universal smartphone (also known as
QTEK 9000) running Linux (Openmoko distribution [13]).

The PEP and the PDP have been integrated in the PhoneME source code,
according to the architecture described in Figure 4. From the implementation
point of view, the Policy Decision Point consists of two threads developed in C
language mainly for efficiency reasons. The PDP is started by the KVM before
the execution of the MIDlet bytecode. Once activated, one PDP thread sus-
pends itself waiting for an invocation from the PEP component, while the other
repeatedly check the predicates paired with the active control actions every t
seconds, where t is a system parameter. If one of these predicate is violated,
this thread enforces the corresponding control action through the native AMS
support provided by the phoneME.

The PEP, in contrast, consists of a Java class and a C function. The Java
class includes a method, checkPolicy, to activate the PDP. The invocations to
the checkPolicy method are embedded in the source code of the Java ME methods
that implement the security relevant actions, before and after the original code.
In this way, the security policy is checked before and after the execution of
the security relevant action. The PEP communicates with the PDP exploiting
shared variables and semaphores. The enforcement of the PDP decision, when
the right to execute an action has been forbidden, is implemented by throwing
a SecurityException error in the code of the Java ME method. This error will
be reported to the MIDlet.

4.1 Experimental Results

This section evaluates the impact of our enhanced security support on the per-
formances of the Java ME Virtual Machine. As a matter of fact, the MIDlet
monitoring slows down the execution of the MIDlet because of the time spent
to check the security policy. The overhead on the execution time depends on
the enforced policy. As a matter of fact, in general, complex security policies
take more time to be evaluated than simple ones. Moreover, the performance
degradation also depends on the specific MIDlet, i.e. on the methods it invokes.
In particular, the overhead depends on the number of security relevant methods
invoked by the MIDlet with respect to the invocations to other methods, because
the security relevant methods are the ones that introduce the overhead.

The MIDlet used for our tests performs 10 HTTP connections to a remote
site. This is the worst case from the performance point of view, because most
of the methods invoked by this MIDlet are security relevant ones, and introduce
the monitoring overhead. In a real case MIDlet we expect that the most of the
methods invoked are not security relevant ones and, consequently, the overhead
due to our security support will be less relevant. To perform these tests the
MIDP permissions support has been disabled.

Figure 5 shows the execution times of the chosen benchmark. The three ex-
periments have been executed with the original phoneME software, and with the
phoneME software instrumented with our enhanced security support enforcing

Enhancing Java ME Security Support with Resource Usage Monitoring 265

Fig. 5. Performance evaluation

two policies, one with one rule only and the other with 10 rules. In the policy
with 10 rules, we chose a worst case again, because the policy has been written
in a way such that the PDP must examine all the rules before finding the one
that allows the method invoked by the MIDlet. The execution time of the test
MIDlet executed on the original PhoneME environment is compared against the
one of the same MIDlet executed using PhoneME with our enhanced security
support. The results show that the overhead introduced by our system is small.
In fact, the enforcing of a policy with one rule results in a 0,5% overhead, while
the enforcing of a 10 rules policy results in an overhead of 2,6%. As previously
discussed, this results represent the worst case, and we think that in case of a
real MIDlet the overhead will be even less.

5 Conclusion and Future Work

We proposed an approach to enhance the security support of the Java ME archi-
tecture based on the monitoring of the behavior of the MIDlets. The experiments
we carried out on the prototype we developed showed that the overhead due to
security controls is very low. Hence, we think that this approach can be suc-
cessfully adopted on modern mobile devices to allow the secure execution of
MIDlets.

References

1. Baiardi, F., Martinelli, F., Mori, P., Vaccarelli, A.: Improving grid service security
with fine grain policies. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM-WS
2004. LNCS, vol. 3292, pp. 123–134. Springer, Heidelberg (2004)

266 A. Castrucci et al.

2. Debbabi, M., Saleh, M., Talhi, C., Zhioua, S.: Java for mobile devices: A security
study. In: ACSAC 2005, pp. 235–244. IEEE Computer Society, Los Alamitos (2005)

3. Debbabi, M., Saleh, M., Talhi, C., Zhioua, S.: Security analysis of mobile java.
In: Proceedings of the Sixteenth International Workshop on Database and Expert
Systems Applications, 2005, pp. 231–235. IEEE Computer Society, Los Alamitos
(2005)

4. Debbabi, M., Saleh, M., Talhi, C., Zhioua, S.: Security evaluation of J2ME CLDC
embedded java platform. Journal of Object Technology 2(5), 125–154 (2006)

5. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

6. Ion, I., Dragovic, B., Crispo, B.: Extending the java virtual machine to enforce fine-
grained security policies in mobile devices. In: Choi, L., Paek, Y., Cho, S. (eds.)
ACSAC 2007. LNCS, vol. 4697. Springer, Heidelberg (2007)

7. JSR 118 Expert Group. Mobile information device profile for Java 2 micro edition.
Java Standards Process JSP 118 (November 2002),
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html

8. JSR 118 Expert Group. Security for gsm/umts compliant devices recommended
practice. addendum to the mobile information device profile. Java standards pro-
cess (November 2002),
http://www.jcp.org/aboutJava/communityprocess/maintenance/jsr118/

9. Kolsi, O., Virtanen, T.: Midp 2.0 security enhancements. In: Proceedings of the
37th Annual Hawaii International Conference on System Sciences 2004(2004)

10. Martinelli, F., Mori, P., Vaccarelli, A.: Towards continuous usage control on grid
computational services. In: Proc. of International Conference on Autonomic and
Autonomous Systems and International Conference on Networking and Services
2005, p. 82. IEEE Computer Society, Los Alamitos (2005)

11. Martinelli, F., Mori, P.: A model for usage control in grid systems. In: Proceedings
of GRID-STP. IEEE Press, Los Alamitos (2007)

12. Openembedded project, http://www.openembedded.org
13. OpenMoko project, http://openmoko.org
14. Opera Mini, http://www.operamini.com
15. phoneME project. phoneME Feature Software Milestone Release 2,

http://phoneme.dev.java.net
16. Riberio, C., Guedes, P.: An access control language for security policies with com-

plex contraints. In: Proceedings of Network and Distributed System Security Sym-
phosium (NDSS 2001) (2001)

17. Sun Microsystems Inc. The connectected limited device configuration specification.
Java Standards Process JSR 139 (March 2003),
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html

http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html
http://www.jcp.org/aboutJava/communityprocess/maintenance/jsr118/
http://www.openembedded.org
http://openmoko.org
http://www.operamini.com
http://phoneme.dev.java.net
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html

Pseudo-randomness Inside Web Browsers

Zhi Guan, Long Zhang, Zhong Chen, and Xianghao Nan

Institute of Software, School of EECS, Peking University.
Key Lab of High Confidence Software Technologies (Peking Univ.),

Ministry of Education
{guanzhi,zhanglong,chen,nanxh}@infosec.pku.edu.cn

Abstract. With the increasing concerns over the security and privacy
of Web based applications, many solutions based on strong cryptogra-
phy have been proposed to protect client side Web applications against
attacks such as phishing, pharming and even server side attacks. While
strong cryptography is used, one critical building block in cryptosystem,
the random number generator, is often neglected. Considering this situ-
ation, in this paper we design and implement a pseudo-random number
generator only rely on ubiquitous Web browser abilities - JavaScript,
HTML and AJAX. We also provide a mechanism called Pseudo-cookie
for JavaScript programs to access operating system services for retrieving
random or entropy values without changing Web browser security poli-
cies. The security model, analysis and performance evaluation demon-
strate that our method is secure and efficient.

1 Introduction

With the increasing popularity of the Web 2.0 applications such as Google Gmail,
Google Docs and Flickr, current Web browsers, not only act as the interface for
static web page browsing, but also change into a platform for data outsourcing,
information sharing and collaborations among group members, together with the
services behind the World Wide Web. This new computing paradigm has become
very successful during the last few years and has led Web based application a
better replacement of corresponding traditional desktop program. In spite of the
easy of use these web based applications have provided, the security and privacy
of organizations and individual users are more prone to be threatened than the
traditional desktop counterparts. One of the reasons, from technical point of
view, is that as a platform the Web browser lacks of enough client side security
mechanisms such as strong cryptography and secure storage than the operating
system. Some solutions, such as BeamAuth [1], WebIBC [2] and ClipperZ [3] have
been proposed to bridge the gap between the limited Web browser capabilities
and the security requirements based on introducing strong cryptography into
client side Web applications.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 267–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

268 Z. Guan et al.

Although these cryptography systems made great reinforcement to the secu-
rity of Web based applications through exploiting strong cryptography mech-
anisms such as symmetric encryption, MAC (Message Authentication Code),
public key cryptography and Identity-Based Encryption (IBE), as an important
building block of the proposed cryptosystems, the random number generator
(RNG) is often neglected by the designers. A strong random number generator
for cryptographic utilization is simply assumed to be exist and available. Unfor-
tunately, it is not the fact. The truth is no secure random number generator is
available for Web based applications.

Random number generator is one of the most fundamental primitives in cryp-
tography that has been researched for many years. “A random number generator
is a device or algorithm which outputs a sequence of statistically independent
and unbiased binary digits” [4]. True randomness is widely used in cryptography
applications, such as symmetric and asymmetric cryptography key generation.
Weak random numbers may offer the adversary abilities to bypass the hard-
ness of breaking a cryptosystem. However, in spite of the importance of ran-
dom number generation security, many designs, standards and protocols used
in practice instead leave the random number generator to non-security exports,
many real world implementations only rely their security on insecure solutions.
The most recent example is a random number generator defect found in Debian
Linux [5]. This flaw results in a large amount of security applications include
SSH, OpenVPN, SSL/TLS, DNSSEC and X.509 tools into the danger of eas-
ily broken. Therefore, current Web based security applications even without a
random number generator will result in great danger.

In this paper we describe the design and implementation of a random number
generator for Web based security applications. The security of random number
generation in Web browsers is discussed and particular threats are analyzed.
Through accumulating entropy from the browser, the user interactive opera-
tions and local environment variables, we present a secure random number gen-
erator completely through ubiquitous Web browser capabilities such as HTTP,
JavaScript, AJAX [6]. We also introduce a new mechanism called Pseudo-cookie
for JavaScript programs to access operating system services without changing
the Web browser security policies, we exploit the method to retrieve randomness
and use it to seed and refresh the state of our generator, which can largely im-
prove the performance of the generator. The security analysis and performance
evaluation show promising values for real world applications. As we know, this
is the first work addressing the security of random number generation in a pure
Web environment.

The rest of this paper is organized as follows: in Section 2 we introduce the
background of random number generator together with related attacks, followed
by the security model in Section 3, then we will introduce the design, implemen-
tation and performance evaluation of our web based random number generator.
In session 4, we will propose the Pseudo-cookie, a mechanism to bridge the gap
between browser and local environment. At last the paper will be concluded in
Section 5.

Pseudo-randomness Inside Web Browsers 269

2 Random Number Generator

2.1 Theory and Practice

Linear Congruential Generator. While widely available, the mathematic
random function rand()1 in glibc and Math.random() [7] in JavaScript are
not feasible for cryptography utilization. The algorithms implemented in
Math.random() in Safari 3 and Firefox 2 (we get this information through
read the code2,3, we assume other browsers might be the same) are called lin-
ear congruential generator, which produce a sequence of numbers x1, x2, . . .
according to the linear recurrence xn = axn−1 + b mod m, n ≥ 1; integers
a, b and m are parameters of the generator and x0 is the seed. Although
this generator provides the uniform distribution random numbers, it does
not satisfy the unpredictable requirement. Given a partial output sequence,
the remainder of the sequence can be reconstructed even if the parameters
a, b and m are unknown.

True Random Number Generator (TRNG). A TRNG requires a natu-
rally occurring source of randomness such as unpredictable physically proce-
dures. The implementation is through an especial hardware device of
software program to collect randomness from precise timing of hardware
events to monitoring people behaviors.

Pseudo-random Number Generator (PRNG). While true randomness is
widely available in the nature, it’s hard for deterministic computing system
to provide true random number generators through deterministic algorithms.
Instead the pseudo-random number generator is used, which extends a short
truly random number sequence to a much longer sequence that “appears”
to be random. The input to the PRNG is called the seed, while the outputs
of the PRNG are called pseudo-random numbers.

Random Number Generators in Practice. For the rarity of true random-
ness, the output of TRNG is often used as the input of PRNG. Many
software random number generators have been proposed, implemented and
researched. In a chapter in [8] a detailed survey of software random num-
ber generators are discussed, in [9] a generalized software architecture is
introduced, in [10] the model of secure random number generation service
is discussed, and [11] and [12] are analyses of random number generation
on Windows and Linux operating system. As a good engineering practice,
pseudo-random number generators have been provided as a system service
by modern operating systems. For it is more feasible for OS to collect en-
tropy from hardware events and user inputs. Unix-like operating system
implements kernel level pseudo-random number generator and provide the
interface through a virtual device /dev/random, while Windows provided
similar API to provide random numbers. Different from the random devices

1 http://www.gnu.org/software/libc/libc.html
2 The WebKit Open Source Project. http://nightly.webkit.org/
3 Mozilla Developer Center, http://developer.mozilla.org/en/docs/

Download Mozilla Source Code

270 Z. Guan et al.

above is a device implemented in kernel space. Windows RNG is most im-
plemented in user space, so that the design and implementation of Windows
can not resist forward security attack, which is considered a big flaw [11].

2.2 Break Cryptography through Weak Randomness

Random number generator is an important building block for cryptography and
used in many security applications, such as symmetric key generation, initial
vector selection in symmetric encryption, public key generation, nonce in proto-
cols, and random public key algorithms. The security of these systems is based
on the condition that the random number is unpredictable. Here we give some
examples on how to break a Web based security application through the weak
randomness in use.

ECDSA (Elliptic Curve Digital Signature Algorithm) [13] is the signature
scheme utilized in [2], which is a variant of DSA on elliptic curve groups. With
the same security level, ECDSA can provide shorter key length and signature
size than RSA. Our attacks on ECDSA are through predictable random values.
Given the elliptic curve parameters are T = (p, a, b, G, n), in which p specifying
the prime field Fp, a, b ∈ Fp specifying the elliptic curve equation E(Fp) : y2 =
x3 + ax + b mod p, G is a base point on curve E(Fp) and n is the order of G.
Signer’s private key is integer d ∈R [1, n − 1], public key is elliptic curve point
Q = d · G = G + G + . . . + G, addition of base point G with d times. When
signing on message m, the signer must randomly select an integer k ∈R [1, n−1],
compute R = k · G = (xR, yR), r = xR mod n and s = k−1(H(m) + dr) mod n,
H is a cryptographic hash function and (r, s) is the ECDSA signature. If k is
predictable, the attacker can extract signer’s private key by d = s·k−H(m)

r mod n.
Even if the attacker can not predict the value k but know the signer to use
the same random integer k on signing two different message m1 and m2 with
result (r, s1) and (r, s2) respectively, the attacker can also calculate the random
number k through k = H(m1)−H(m2)

s1−s2
mod n, and get signer’s private key through

d = s·k−H(m1)
r mod n. Similar attacks also available for other cryptosystems,

such as [14].
While the original papers do not mention what generators are in use, we

assume that it is the Math.random() default provided by JavaScript, which is
a linear congruential generator in both Firefox and Safari. An efficient attack
on DSS (Digital Signature Standard) through linear congruential generator is
introduced in [15] which can be easily converted into attack against ECDSA.
For the length of this paper we do not provide the details here.

3 Threat Model

A random number generator for Web based applications must be secure against
different threatens from both inside and outside attackers of the browser. One
type of typical attackers is the network eavesdropper that can get all the traf-
fic between the Web server and the browser; Another type of attack is local

Pseudo-randomness Inside Web Browsers 271

malware like Trojan horse which can eavesdrop not only all the network traffic,
but also local communication between browser and the operating system, the
local malware can even manipulate some data from the operating system to the
browser. Local attackers and remote attackers sometimes can also learn some
inner variables through memory probing or pharming techniques. The reason of
this attack considered to be short period is threefold: these attacks often can
only get a snapshot of system; The session of a Web application is short be-
cause web pages will be closed after browsing, and the close of both the attack
page or the target application page means the end of this attack; and the last,
if this attack can last, then its power is overwhelming and no solutions can be
used to protect the random number generation except for the reinforcement of
the whole system. The Web service provider should also be considered as an
attacker because when a Web application is designed to provide privacy for data
outsourcing, and then sever side will also be classified into potential attackers.
However, the server is considered not to provide a backdoor in its application.
This is because for Web applications the source code can be easily reviewed by
everyone and mechanisms such as JavaScript code signing [16] introduced by
Netscape and XML signature [17] can provide authentication for the application
from security experts.

From the above discussion, formally speaking an attacker to the Web based
random number generator would have the following capabilities:

– Have all the design and implementation details of the generator.
– Prompting the generator for output random number and observing this

output.
– Observing and even influencing some of the data that is used to refresh the

internal state of the generator.
– Learn the internal state of the generator at will, but this attack only last for

a short period.

Compared with the attacker in desktop environment, our Web based threat
model is weaker according to the attacker capability on tampering the generator
internal state. The rationality of this difference is that with the security policies, a
Web browser should be seen as a secure environment, and protecting a JavaScript
program’s inner data should be seen as the duty of the browser. So we will not
mix up a random number generator’s model with that of a browser.

Same to desktop random number generators, a secure Web based generator
should satisfy the above requirements:

– Pseudo-randomness. The generator’s output seems random to an outside
observer.

– Forward security. An adversary who learns the internal state of the genera-
tor at a specific time cannot learn anything about previous outputs of the
generator.

– Backward security/break-in recovery. An adversary who learns the state of
the generator at a specific time does not learn anything about future out-
puts of the generator, provided that sufficient entropy is used to refresh the
generator’s state.

272 Z. Guan et al.

4 Design and Implementation

4.1 System Construction

Our construction is modified from the Barak-Halevi model [10] with some vari-
ants for the characteristic of Web based applications. In traditional desktop
environment, the security applications can be divided into the random number
provider and the random number consumer. The consumer, while in web appli-
cations a JavaScript programs in a single page must implement either, on the
other side, the JavaScript program in a page often need less random values than
the desktop counterpart.

Entropy Collector

(Pool)

Browser, AJAX,

Pseudo-cookie

Short Output

Long OutputRefresh

HMAC-SHA1

Random Extractor

Continuous Outputs

Crypto PRNG

Entropy

Randomness

Randomness

Fig. 1. Construction of the Web Based Random Number Generator

In our construction shown in Fig. 1, the generator includes four components:
the entropy collector, the random extractor, the cryptography pseudo-random
number generator and a refresh algorithm.

– The entropy collector accumulates entropy from the browser events, user
inputs, remote server or other resources.

– The randomness extraction function extract(e) → s that converts the high-
entropy but non-uniform distributed input e to a shorter but uniform dis-
tributed output s.

– The cryptographic PRNG function prng(s, m) → r that generates m bytes
of pseudo-random values expanded from the seed s.

– The refresh function refresh(s, x) → s′ that refreshes the current seed by
additional entropy generated by the function extract.

Pseudo-randomness Inside Web Browsers 273

Unlike desktop applications to consume random numbers from a system ran-
dom generator as the provider, a random number generator inside a web page
acts as both the randomness provider and the consumer. If the extracted entropy
generated from the random extractor is enough (typically 128 bytes or 160 bytes)
for the application, these values will be used directly by the application. Con-
sidered if the application only consumes very short random numbers, then the
randomness can all extracted from the output of random extractor. Considered
if the entropy is not enough, the cryptographic pseudo-random number gener-
ator will be called to expand the extracted randomness to enough length and
output. If the session of the Web application will last for a long time and require
continuous new keys, for example in the online Web based chatting, our con-
struction will provide the full function, as the Barak-Halevi model, every time
new random number generated, the inner state of cryptographic PRNG will be
renewed, and when a fixed period of time, if enough entropy is collected the
refresh algorithm will mix new randomness with current inner state to refresh
into a new state.

Entropy Collection. The entropy for our generator is coming from three kinds
of sources, the browser environment, the browser events including user inter-
face events and network events, user inputs textual entropy feeding, and server
feeding.

When a page is loaded, the entropy accumulation callback function is reg-
istered to the browser environment. When some events with high entropy are
occurred, the accumulator will receive the event and the occurred time. The
following events are the main entropy resources.

– The current window place and size: 2 bytes.
– onkeypress event is occurred when a keyboard key is pressed,
– onmousemove event is occurred when the mouse is moved, and the x and y

coordinates (4 bytes) will be added into the random pool. The user interface
inside a page will notice the user to move his mouse randomly for entropy
collection.

– onmouseover is occurred when the mouse is moved over and element in an
HTML document (2 bytes). Web page includes some invisible elements on
the page for the moving mouse to trigger this event frequently.

Browser events are not the only sources of entropy, our construction also
provide other facilities. With the AJAX technique, the JavaScript program can
request a block of random data from the server through a Microsoft.XMLHTTP
ActiveX JavaScript object in IE or XMLHttpRequest JavaScript object in other
browsers without reloading the current page. While this is much easier and faster,
for the security of the system, random data from server should not exceed that
from local browser events.

User input entropy can also be utilized, for example, when user is asked to
input some random texts, the key value, press time will be added into the random
pool.

274 Z. Guan et al.

4.2 Randomness Consumption

How much randomness does a JavaScript cryptosystem consume inside a web
browser? This depends on what kind of application or cryptosystem is utilized.
Here we consider some typical applications:

Symmetric encryption with predefined key requires a random initial vector
(IV) with length same as the block size of the block cipher, typically 128 bits,
such as AES.

For password based encryption, the key derive function such as PBKDF2
in PKCS #5 standard [18] requires excessive random bytes as salt value, the
default length is 8 bytes, i.e. 64 bits. If the integration is needed, the generation
of password based MAC requires other 64 bits of salt. Password based encryption
established on symmetric encryption requires extra keys and IV, totally 320 or
384 bits.

For single message protected by public key cryptography, for example, an
PKCS #7 cryptographic message syntax [19] to envelop a message with encryp-
tion and digital signature. For public key encryption, ECIES(Elliptic Curve In-
tegrate Encryption Scheme) [13] and ECDSA both require a random k with 192
bits length for encryption and signature generation, together with the 256 bits
symmetric encryption key and IV random values, a PKCS #7 package require
about 640 bits of random values.

Randomness Extraction. In the area of random extractors one such example
is the so-called “strongly universal” or “pairwise independent universal” hash
functions, the other kind is extractors from CBC, Cascade and HMAC from
block ciphers and cryptographic hash algorithms. For security and engineering
considerations we apply HMAC as our random extractor instead of also available
AES CBC-MAC and SHA-1 hashing. In our benchmark, for the typical hash
function SHA-1 is nearly double speed of the typical block cipher AES with 128
bits key length in nearly all environment. While simply hashing is considered
not secure enough in the research result of [20]. To generate uniform distribution
random values from collected entropies, the input min-entropy size should be at
least double size of the output. Which means if the application require n-bit
random values and the random pool has at least 2n min-entropy values, then
the pseudo-random generation procedure can be bypass, and only the extracted
values is enough for the utilization of cryptographic applications.

Randomness Estimation. So the question becomes, how to estimate the min-
entropy of collected entropies. While this is an even harder problem in the area of
random number generation, with different environment the randomness will be
different, and the amount of entropy can even be manipulate by the adversary. So
we accept the suggestion of [10], giving up estimating the randomness, just collect
as much entropy as possible. In our implementation, the randomness extraction
will not start until the random pool is filled with 512 bytes entropy. The min-
entropy of these 4096 bits data will definitely fulfill the 160×2 bits (HMAC-SHA1
output size) requirement. This procedure requires about 10 seconds.

Pseudo-randomness Inside Web Browsers 275

Generation and Refreshing. Our pseudo-random number generation and
refreshing scheme is similar to that of [10]. The difference is that our pseu
function can generate a longer sequence of random values, not just double size of
the inner state. Our pseu can be easily implement by any secure pseudo-random
number generators. In our implementation, the standard FIPS 186 generator [21]
with SHA-1 is choose for the SHA-1 code can be reused in the generator.

4.3 Performance

The main time consuming of our generator comes from cryptography computa-
tion and entropy collection. We run a primitive JavaScript benchmark program
for the evaluation of our generator with different options. We test the perfor-
mance of AES with 128 bits key length and SHA-1 hashing algorithm on a
Laptop with 1.83 GHz 2-Core CPU running Mac OS X.

Table 1. JavaScript Cryptography Benchmark (Bytes per second)

SHA-1 AES 128

Firefox 3 140 65

Safari 3 104 51

Firefox 2 41 15

Opera 9 23 8

OpenSSL 111,739 38,774

As shown in 1, on two new browsers, Safari 3 and Firefox 3 (RC1), the block
cipher speed is about 50 KBytes per second while the hashing algorithm speed
is doubled. These algorithms are fast enough for randomness extraction and
pseudo-random number generation even they are about 1000 times slower than
OpenSSL, the compiled binary counterpart.

As a comparison, the entropy collection speed from browser events is no more
than 50 bytes per second, more than 1000 times slower than the cryptographic
operations! Which means the entropy collection procedure is the performance
bottle neck of this system.

5 Pseudo-cookie

With the benchmark in last section it is known that, while the cryptographic
computation is efficient, our Web based generator spend most of the time on
entropy collection instead of cryptography computations when no other entropy
source is provided. Compared to the limited entropy resources in Web browser,
operating system has much more entropy resources with higher quality. Unfortu-
nately, in Web browser security model the downloaded JavaScript programs can
only run inside a restricted “sandbox” that isolates them from the rest of the
operating system. Scripts are only permitted to access data in the current page
or closely related pages (generally those from the same site through the same

276 Z. Guan et al.

protocol). This is called the Same-Origin Policy. So no access is granted to the
local devices, events and programming interfaces for the collection of entropy or
retrieving randomness.

The common technique for extending browser capabilities is browser plug-in,
a software module can interact with the browser and provide specific functions.
For example, a dedicated plug-in can retrieve random numbers or collecting en-
tropy from operating system and provide these values to JavaScript programs in
the browser. However, this mechanism does not fulfill the security requirements
of Web application security. From the security point of view, a plug-in break the
Same-Origin Policy of Web browser, and unlike JavaScript programs with all
the source code opened, a compiled plug-in can do evil without any notice, while
the user have no choice but to trust it completely. In practice, the deployment
requires to develop different plug-ins for every browser in various operating sys-
tems, and need every user to install the correct plug-in into his browser, which
is a huge burden for both vendors and customers.

A question is, might the Web applications exploit services from local operating
system without breaking the Web browser security policies? The answer is yes,
here we introduce a new mechanism named Pseudo-cookie to bridge the gap
between the JavaScript programs in web browsers and the services provided by
local operating system. In Web browser a regular HTTP cookie is a piece of
data include name-value pairs stored on local disk that can be created, read and
written by JavaScript programs. While a pseudo-cookie is nearly all the same
for scripts and slightly logic difference for browsers. The difference is twofold:

– For a script, the pseudo-cookie is nearly the same as a regular cookie, only
with a pre-defined name-value pair with the fixed name “random”. A script
can read values from the “random” name-value pair (create and write opera-
tions are also permitted but nonsense for random number generation), every
time the script reads, the return value will be a different random value.

– For the browser when a cookie reading operation is evoked, if the target
is the “random” name-value pair browser should assume the corresponding
value has been changed by another programs , so the browser must retrieve
this value from reading the cookie file again then return the newest value.
The browser need not do this extra work for any other cookie values. The
implementation has two choices; the browser can do this all by itself. When
the random cookie reading triggered, the browser should retrieve random
value from system and return this value, or the browser can just assume the
cookie has been changed by other programs since its last access, and must
read the cookie file again to return the newest value. A separated filesystem
driver or a hood program can be used to replace the ordinary cookie file.

Our implementation of pseudo-cookie is based on WebKit, an open source
browser engine adopted by Safari, KDE desktop environment in Linux. The
random value is directly read from /dev/random device by the modified engine.
The appended C code is very short, no more than 100 lines. Although we did not
mention and implement in our prototype, this mechanism can be easily extended
as a generalized interface to support any other services.

Pseudo-randomness Inside Web Browsers 277

6 Conclusion and Future Work

We have presented a Web based random number generator, a critical crypto-
graphic building block for Web based applications. Through the security model
we give an analysis of threats and security requirements of random number gener-
ator in Web environments. Our design and implementation can be well adapted
by Web based security applications without any browser plug-ins or breaking
current security policies. To solving the lack of entropy in Web browser, we
also propose a mechanism call pseudo-cookie to bridge a gap between operat-
ing system service and the Web application by exploiting the feature of cookies
in modern browsers. We still remain some interesting topics such as the en-
tropy estimation and extension of the pseudo-cookie paradigm that require future
research.

References

1. Adida, B.: Beamauth: two-factor web authentication with a bookmark. In: CCS
2007: Proceedings of the 14th ACM conference on Computer and communications
security, pp. 48–57. ACM, New York (2007)

2. Guan, Z., Cao, Z., Zhao, X., Chen, R., Chen, Z., Nan, X.: WebIBC: Identity Based
Cryptography for the Client Side Security of Web Based Applications. In: Proceed-
ings of ICDCS (2008)

3. Barulli, M., Solaroli, G.C.: Clipperz: the free and anonymous online password man-
ager (2007)

4. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

5. Debian Security Advisory: DSA-1571-1 openssl – predictable random number gen-
erator (2008), http://www.debian.org/security/2008/dsa-1571

6. Wenz, C.: JavaScript und AJAX. Galileo Computing (2007)
7. ECMA: Standard ECMA-262, ECMAScript Language Specification 3rd (1999),

http://www.ecma-international.org/publications/standards/Ecma-262.htm
8. Gutmann, P.: The design and verification of a cryptographic security architecture.

submitted thesis (2000), http://www.cs.auckland.ac.nz/pgut001/pubs/thesis.
html

9. Gutmann, P.: Software generation of practically strong random numbers. In: Pro-
ceeding of 7th USENIS Security Symposium (1998)

10. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM
Conference on Computer and Communications Security, pp. 203–212. ACM, New
York (2005)

11. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM
Conference on Computer and Communications Security, pp. 476–485. ACM, New
York (2007)

12. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: S&P, pp. 371–385. IEEE Computer Society, Los Alamitos (2006)

13. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer, Heidelberg (2004)

http://www.debian.org/security/2008/dsa-1571
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.cs.auckland.ac.nz/pgut001/pubs/thesis.html
http://www.cs.auckland.ac.nz/pgut001/pubs/thesis.html

278 Z. Guan et al.

14. Zheng, Y., Matsumoto, T.: Breaking Real-World Implementations of Cryptosys-
tems by Manipulating their Random Number Generation. In: Proceedings of the
1997 Symposium on Cryptography and Informations Security (1997)

15. Bellare, M., Goldwasser, S., Micciancio, D.: Pseudo-random number generation
within cryptographic algorithms: The dds case. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)

16. Mozilla.org: Signed Scripts in Mozilla (2007), http://www.mozilla.org/
projects/security/components/signed-scripts.html

17. W3C: W3C Recommendation on XML-Signature Syntax and Processing (2002),
http://www.w3.org/TR/xmldsig-core/

18. RSA Laboratary: PKCS5: Password-Based Cryptography Standard version 2.0
(1999), ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf

19. RSA Laboratary: PKCS7: Cryptographic Message Syntax Standard version 1.6
(1997), ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-7/pkcs-7v16.pdf

20. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the cbc, cascade and hmac modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

21. FIPS 186: Digital Signature Standard. FIPS Publication 186, U.S. Department
of Commerce/NIST, National Technical Information Service, Springfield, Virginia
(1994)

http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.mozilla.org/projects/security/components/signed-scripts.html
http://www.w3.org/TR/xmldsig-core/
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-7/pkcs-7v16.pdf

Verifiable and Revocable Expression of Consent

to Processing of Aggregated Personal Data

Henrich C. Pöhls

University of Passau, Institute of IT-Security and Security Law (ISL), IT-Security
Innstr. 43, 94032 Passau, Germany
henrich.poehls@uni-passau.de

Abstract. We have identified the following three problems for the pro-
cessing of aggregated personal information with respect to privacy pref-
erences: Unverifiable proof of consent, unverifiable proof of consent for
aggregated personal data, and no verification if the consent is still es-
tablished. We constructed a solution based on a hash tree structure and
digitally signed only the hash tree’s root value. Thus, a verifiable signa-
ture can be retained even if data items are omitted and a valid signature
serves as signal of consent. To re-assure that no change of consent has
taken place we propose the use of certificate revocation mechanisms. As a
side-effect these mechanisms allow to maintain a record of personal data
usage and thus creates a win-win situation for both parties involved.

1 Introduction

Looking at the automatic processing of aggregated data the question of privacy
shall always be raised. Following the definition given by the EU [5] data items
that are personally identifying will be called personal data and “shall mean
any information relating to an identified or identifiable natural person (data
subject);” [5]. To be legally allowed to process this personal data the data subject
needs to express his consent to the processing: “the data subject’s consent shall
mean any freely given specific and informed indication of his wishes by which
the data subject signifies his agreement to personal data relating to him being
processed.” [5]

In digital systems this consent can be expressed by the data subject’s elec-
tion to “opt-in” or “opt-out” [10] of certain processing. This consent is usually
expressed at the time the user provides the service with his personal data. Ser-
vices collecting personal data state in their privacy policies how the service will
handle the submitted personal data. As these services process data we call them
processors. The processor’s privacy policy can be machine understandable, like
P3P [21] for websites. Most of the time we find services constructed in such a
way that users not consenting to the service’s privacy policy will not be able to
participate1. Thus, a direct relationship between the data subject and the data
1 Often found: “By using the service you consent to the collection and use of informa-

tion about you in the ways described in this Privacy Policy.”

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 279–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 H.C. Pöhls

processor exists. A direct relationship is the simplest case and transmits the data
subject’s expression of consent directly to the processor.

Besides the processor’s privacy policy the processing of personal data can be
restricted by the data subject. The restrictions and constraints under which the
data subject allows the processing will be called privacy preferences. Most of the
time the service’s privacy policy is equal to the data subject’s privacy preferences.
The processor’s privacy policy can be seen as a suggestion for privacy preferences.
The data subject accepts them as his own by expressing consent. Hence, the
processor dictates the restrictions instead vice versa. We do not further elaborate
on this problem, but the proposed solution allows the data subject to set forth
his privacy preferences.

In case of a dispute, the processor is obliged to present a proof that consent
was established, as “personal data may be processed only if the data subject
has unambiguously given his consent” [5]. With no verifiable paper-trail, i.e. no
paper lottery ticket with a ticked “opt-in” box, the service retains no direct proof
of established consent. Implicitly, the service’s sign-up process and the privacy
policies the data subject agreed to, in order to use the service, at the time of
data submission can be used. In order to serve as a proof that consent was
established, this process has to be documented, time stamped, and attested by a
trusted third-party. Even in the simple case of a direct relationship, constructing
a verifiable proof of the data subject’s consent to data processing does not exist
in most environments and requires trusted third-parties.

In a loosely connected, decentralized environment, with web services, agents,
or Web 2.0 [17], a direct relationship is often not existing or its establishment
would be a hindrance to the user. With compound services, like most web ser-
vices, the original processor engages additional sub-services to carry out the
processing. Each sub-service, if respecting privacy, would request a proof of es-
tablished consent before processing the given personal data. With the advent
of semantic applications on the semantic web [1] the exchange of such data will
increase. Services will combine or re-combine data items from different sources
and construct new data sets, a process we denote by aggregation. An aggregator
should, under circumstances set fourth by the data subject, be able to derive the
consent for the processing of aggregated personal data from the initial consent
established for the source data.

Personal data is also exchanged between services who have no direct relation-
ship to the data subject. On the other hand, the data subject can rectify, erase or
block the processing [5]. All these actions will vanish the consent. Until the time
personal data is processed, the data subject might have vanished his consent to
processing, rendering any further processing “unconsented” and thus inducing
possible legal challenges if processed. At most processing services, that have a
direct relationship to the data subject, are aware of this state change in the con-
sent from established to vanished. However, a service with no direct relationship
is left unaware that the data subject’s consent has vanished. Vanishing consent
removes the service’s ability to rightfully process and use the personal data held
by it any longer. A suggested approach is to time limit a given consent, but

Verifiable and Revocable Expression of Consent 281

most often the time of state change can not be predetermined, i.e. a change of
address. Thus, services need a way to automatically determine that the consent
is still established.

To summarize, we have identified the following three problems:
No possibility for third-parties to verify:

(i) data subject’s consent to personal data processing,
(ii) data subject’s consent to aggregated personal data, and
(iii) that the data subject’s consent is still established.

Our approach presented in this paper solves these three problems by retain-
ing a proof of established consent with the data. This proof is verifiable by
third-parties as well as by the data subject, and shows what privacy policy and
combination of data items the data subject consented to. Additionally, a once es-
tablished consent can be vanished, to indicate that the processing once consented
to is no longer consented to.

The rest of the paper is organised as follows: Starting with a short scenario
in Sect. 2, we will define more terms and clearly outline the problems in Sect. 3.
We will present our solution in Sect. 4 and show how existing mechanisms from
public key infrastructure (PKI) can be used to technically implement the con-
cept. We thoroughly discuss our solution in Sect. 5, including a discussion on
the performance and a discussion of existing work. We also show the security of
our solution in the presence of an attacker. Finally, we conclude in Sect. 6.

2 Scenario

In the given scenario, Mr. Luxe, is assumed as the data subject. Mr. Luxe has a
profile on a social network service (SNS), in the scenario called Soc. Soc is the
service Mr. Luxe has a direct relationship with, and he has consented that Soc
uses his personal data like email and relations as set forth by Soc’s privacy policy.
Now Soc is no walled garden and data items, like the list of Mr. Luxe’s friends
Alice and Bob, are accessible by sub-services2. Apart from keeping his social
relations on Soc, Mr. Luxe is a registered user on the website example.org.
example.org allows registered users to upload examples, but Mr. Luxe only
seldomly visits it. However, his friend Alice is an active user of example.org and
regularly uploads new examples.

Fig. 1. Scenario data sets representing Mr. Luxe

2 In SNS terminology often called “apps”,”widgets” or “gadgets”.

282 H.C. Pöhls

A sub-service, called Con, now offers the functionality to indicate which known
friends are also registered members on a website3. To enhance the user’s expe-
rience, example.org incorporates Con’s service to offer additional notifications
whenever friends are active on the website, for example sent an email when new
content is added by a friend. From the website’s point of view both, Con and
Soc, are third-parties. The website knows its list of registered users, Mr. Luxe
and Alice are both in this list, but example.org does not know their social rela-
tions. Now through the use of Con, example.org is given the information that
Alice is a friend of Mr. Luxe on Soc. From the registration and during the use
of example.org, the website has collected its own set of information about Mr.
Luxe and Alice, for example the email address and their browsing habits.

Some questions that arise are: Has Mr. Luxe consented to an aggregation of
example.org’s data with data received from Con? Can example.org sent him
emails whenever Alice posts something on the site, to boost his visits? Can Con,
as a service in the middle, be presented with a consent to process and transfer
the data that Mr. Luxe and Alice are friends without having a direct relationship
with them? In the rest of the paper we will look more closely at the identified
problems and present our solution that allows to answer the questions.

3 Semantical Data, Privacy Preferences vs. Policies, and
the Identified Problems

The scenario indicates the need to flexibly allow the use of different portions of
the personal data D. So, we split the personal data into atomic elements that
comprise D, called data items, denoted as di. Each data item covers one semantic
concept and can not be split further, i.e. a field in a data base. Hence, D is defined
as a set of all di. Every single data-item is identifiable by a name {di}ID that
carries the semantic meaning. The data item’s value is denoted {di}V AL. A data
graph [19] captures the data items and the respective privacy preferences. The
privacy preferences that are applied to a data item di are denoted as ppref i. Each
ppref i can contain one or more privacy preference expressions pref to express
the privacy preferences for di. All the data subjects privacy preferences for D
are denoted as PPref D being the set of all the ppref i.

How the privacy preferences expressions pref and privacy policies PPol are
codified and later enforced is not within our scope, the only constraint is that it
needs to be interoperable among the involved parties. Thus, we assume that the
involved parties share a common vocabulary for the variable names as well as
for the privacy preferences. So variables with the same semantic meaning can be
identified, and the terms expressing the privacy constraints are understood by
all parties. Ontologies can be used to establish this common vocabulary among
all the participating parties. Hence, we assume that for variables and prefer-
ences a single ontology, including domain-dependent and domain-independent
ontologies, exists [19].
3 This sounds familiar to a service called Friend Connect [6], but they differ technically

and policy-wise.

Verifiable and Revocable Expression of Consent 283

A boolean function match(PPref,PPol) allows to check if the data subject’s
preferences are fulfilled by a service’s policy, for example by applying policy
subsumption as described by Squicciarini et al. [19]. With this function a service
can check which available third-party service’s policy would comply, thus being
able to hand personal data to complying sub-services only. Here the first problem
becomes visible: The sub-service that receives the personal data lacks the ability
to verify the data subject actually expressed his consent to process this data.
We will now look at each problem in more detail.

3.1 No Verification of Consent to Data Processing

As mentioned, the sub-service is a third-party. Since it has no direct relation-
ship with the data subject, it has no way of being provided with the user’s
consent through a sign-up process. The function match only allows to check if
the provided privacy preferences can be fulfilled. Our goal is to ensure that the
sub-service will still be able to verifiable check the data subject’s consent before
processing.

The proposed approach provides services with an additional boolean function
verify . A positive result of verify(S, D,PPref D,PPol) allows to have confidence
that processing the data items of D following the privacy policy PPref D is
consented to by the data subject S. Vice versa, a negative result would indicate
that the processing is not be consented to. With verify we free the sub-service
from the need to trust the upper layer service, the service he got the data from.
For a processor, regardless on what layer, it shall not matter if it has gained
the data through a direct relationship, gained the personal data by transfer, or
by other means like harvesting openly available sources. In all cases a positive
result of verify assures the processor that processing under its PPol is consented
to by the data subject.

3.2 No Verification of Consent to Aggregated Data Processing

The second problem comes from the aggregation of personal data items by a
service that received them through different sources. First we also want to allow
the opposite of aggregation to happen: Fragmentation. Fragmentation of data
takes place rather often, as only some portions, some data items, of the complete
data set are shared. From a privacy point of view sharing of a minimal sub-set
of data items is preferred. The verification of a fragment given a data set A from
the data subject S works as follows: If verify(S, A,PPref ,PPol) is positive then
verify(S, C,PPref ,PPol) shall also yield a positive result iff C ⊆ A.

The opposite is the aggregation of two data sub-sets. For example the original
and complete data set contains three data items A = {a1, a2, a3}. Two sub-sets
{a1, a2}, {ppref 1, ppref 2} and {a1, a3} , {ppref 1, ppref 3} are aggregated. As the
aggregated data set will contain all data items, the verification of the aggregated
set verify(S, {a1, a2, a3} , {ppref 1, ppref 2, ppref 3} ,PPol) yields the same verifi-
cation outcome as verify(S, A,PPref A,PPol). More details follow in Sect. 4.

284 H.C. Pöhls

3.3 No Verification of Consent State Changes

The last problem we identified was that the state of the consent expressed for
the processing can change over time. Data fragmentation, aggregation, and the
involvement of sub-services lead to the distribution of personal data among dif-
ferent services. Thus, re-use of personal data will occur over time. On the other
hand, data items move virtually away from the data subject. Hence, each ser-
vice needs the ability to gain re-assurance that an initially given consent is still
established.

Three states are possible: No consent , established consent , and vanished con-
sent . Two state changes are expected: From no expression to established, and
from established to vanished. To initially establish consent the verifiable proof
of consent, together with the data subject’s privacy preferences is added and
distributed along with the data set. To vanish consent it is not enough to just
remove or strip the proof of consent completely. A retained expression of once
established consent must serve as a proof for all processing occurred previous
to the state change. Therefore, the two states established consent and vanished
consent are verifiable, while the state no consent can not be verified. As data
subjects are often unaware of their personal data’ flows, each service shall be
responsible to check that the consent has not vanished at processing time. This
check must be carried out during the evaluation of the verify function. Of course,
a status check involves additional communication between the service and the
data subject or a trusted-third party acting on his behalf. This is comparable
to a certificate revocation checking mechanism [8], and we will indeed propose
to use a solution for handling the consent state changes technically based on
certificate revocation.

4 Solution

We will now explain our proposed solution allowing to retain a verifiable ex-
pression of established consent, that can be later vanished, in more detail. To
represent the data D, we choose a tree. Each leaf contains a tuple of a single
data item di and its privacy preferences, so 〈di, ppref i〉. For this tree we compute
a hash tree, comparable to Merkle [13] hash tree. Starting from the leafs con-
taining the tuples, each intermediate node is a hash of the concatenation of its
children nodes. Finally the root node will be associated a hash value depending
on: All 〈di, ppref i〉, the tree’s structure, and the association of tuples to leafs. We
will then apply a digital signature scheme to just sign the root hash. We assume
a public key to be bound to a data subject S, thus we are able to associate S
with S’s signature, for example by a trusted public key certificate. This protects
the integrity and offers non repudiation with respect to identifying the key-pair
used for signing. The leaf’s and the intermediate node’s hash values are then
discarded.

In difference to a classical hash over D||PPref a tree-based hash allows omis-
sion of sub-trees. To omit a sub-tree rooted at a given node, while still being
able to re-compute the same root hash as in a tree without omissions, the node’s

Verifiable and Revocable Expression of Consent 285

hash value needs to be supplied as substitution for the omitted sub-tree. For
example the leafs A and B in Fig. 2(b) can be removed if the hash of node 1
is given, we call this a substitution hash of 1. A signature over a tree rooted
at node X is denoted by signed(X). So additionally to the tree’s structure
the nodes within the tree need to be identifiable and the association of tuples
needs to be communicated. We will assume that this information is known. For
brevity and better readability we use a shorthand notation: To indicate that
only the data items A and B of the tree from Fig. 2(a) are present we write
A, B; 2, 4 + signed(0), instead of (7 : A), (8 : B); (2 : substitution hash of 2), (4 :
substitution hash of 4) + signed(0) + treeinfo.

We will call this data tree, accompanied by the digital signature and additional
information, a signed data tree.

(a) One data tree with 8 leafs (b) Two smaller trees

Fig. 2. Example binary trees, each leaf represents a tuple 〈di, ppref i〉

4.1 Retaining a Verifiable Expression of Consent

Our signal to indicate consent is the digital signature and verifying it works as
follows: First the verify algorithm recomputes the hash tree root, using sup-
plied substitution hashes where necessary. Note, we strictly forbid substitution
hashes on paths leading to a not omitted tuple as this introduces ambiguities.
So A, B, C; 2, 4 + signed(0) would not yield a positive verification. To indicate
the omission of D one needs to supply A, B, C, h(D); 2 + signed(0). If the root
hash can not be constructed verification fails. Second the digital signature is
verified as usual according to the digital signature scheme. A positive signature
verification for a tree indicates the consent to use any combination of the data
items obeying the data item’s privacy preferences that are part of the tree. So,
with appropriate substitution hashes omissions are consented to.
Example: When node 2 in Fig.2(a) is signed then any combination of the tuples
E, F, G, and H are consented to by the signer.

4.2 Allowing Aggregation, While Retaining a Verifiable Expression
of Consent

Verifying the aggregation of two verifiable signed data trees is only sensible, if
the signers are the same. You can of course aggregate arbitrary data items, but

286 H.C. Pöhls

a verifiable signature means that the data subject has consented to this aggre-
gation. In other words, trying to verify the aggregation of verifiable data items
from Alice with verifiable data items from Bob means asking if Bob consented
to the aggregation with items of Alice and vice versa. As Bob does not need to
know Alice, this aggregation of verifiable data items only makes sense if they are
signed by the same key or the same identity.

We denote aggregation by ⊗. Example from Fig.2(a): E,G;h(F),h(H) +
signed(2)⊗F = E, F, G; h(H)+signed(2) obviously verifies. Aggregation is espe-
cially obviously consented to when we can find a “smaller” singed data tree with
a hash-value equal to a substitution hash in a “bigger” signed hash tree. Example
from Fig. 2(a): We assumed A, B, C, and D being of equal value in the trees.
Aggregating a big, partially known, but root signed tree with a smaller, incom-
plete signed sub-tree: E, F, G; h(H), 1+signed(0)⊗A, B, D; h(C)+signed(1) =
A, B, D, E, F, G; h(C), h(H) + signed(0). This result will verify, thus an aggre-
gator, still without knowing the real values of C and H , is able to reproduce a
verifiable signature of a larger tree after the aggregation.

An aggregator does not need a signed data tree to add an omitted data item
dx. If he knows the ppref x he can check prior to aggregation if hash(〈dx, ppref x〉)
corresponds to a substitution hash. If it corresponds, he can add the tuple during
an aggregation and verify will yield a positive result. Note, aggregating will
only yield a positive verification if the data items added during aggregation
directly match a substitution hash or if the aggregator is able to provide missing
substitution hashes. Example from Fig.2(a): To verifiable aggregate A, B; 4, 2 +
signed(0) and C the aggregator needs h(D).

A data owner, wanting to allow future aggregation of already known data
items, does not need to release all the data item’s values {dp}V AL. Instead, he
can release hash({dp}V AL), {dp}ID, and ppref p. Doing so he signals his consent
to possible future addition of the omitted values under the already stated privacy
preferences.

Example from Fig.2(a): E,F ;h(G),h(H)+ signed(2) allows to later add G or H .
In contrast E,F ;6 + signed(2) only verifies if either G and H , or their substi-
tution hashes can be provided. ence, on signature generation the data subject
can willingly express his consent to foreseen future aggregation, by supplying
substitution hashes of leafs as place holders.

As the signature protects the integrity, aggregation with changed data items or
changed privacy preferences will never yield a verifiable signature.

Example from Fig. 2(b):We assume the same signer for both trees. The aggrega-
tor’s goal is to combine data items from the left tree A, B with data items from
the right tree A′, E. If A = A′, and the aggregator is presented with the inputs
B, C, D; h(A) + signed(0) and A′, E + signed(1), the aggregation A′, B, C, D +
signed(0)will verify. All other combinations, for example B, E will not have a path
to a common signed node, and will not verify. So to not consent to a combination,
the data subject simply puts these data items into separate trees.

Verifiable and Revocable Expression of Consent 287

Example: To give no consent to the aggregation (B, C, D)⊗ (E, F, G) while still
allowing both of them to be combined with A results in the two signed trees
depicted in Fig. 2(b) with A = A′.

Thus, to forbid certain aggregation the data subject needs to make sure that
these data items do not end up in the same signed tree. Generating a different
signed data tree for each different service the data subject interacts is quite
natural. Note, our approach does not demand that a data item that is added
during a consented aggregation must initially come from a signed data tree.
Example: Having B, C, D; h(A) + signed(0), A can be added without respect
to its origins. This assumes that the aggregator knows A’s value, but also the
identifier {A}ID, and the privacy preferences ppref A.

4.3 Allowing Status Changes of Consent by Using PKI Mechanisms

To enable a status check the following information is additionally signed: A time
period established-until and information about a service to check the consent’s
actual status, named status provider. At the time of establishing consent, before
signature generation, the data subject needs to encode the information for the
status provider and optionally set the time limit. Thus, the data subject defines
how the status provider can be contacted. Using time periods limits the time
in which consented use can appear. If the time specified in established-until is
reached, the consent is no longer established but vanished.

The status provider provides a function check to processors and third-parties.
If the consent is still established, check yields a positive outcome. If check returns
a negative result, this means that the consent has vanished. As a extension
we envision to additionally provide information why the consent has vanished.
The data subject controls the outcome of the check function. Using the status
provider the processor queries the status of a given consent as it carries out
the verify procedure. As only the data subject shall be allowed to give an
authoritative answer, the outcome of check must be signed and contains a time-
stamp. To retain a verifiable proof that, at the time of processing, the consent
was still established, the processor saves the signed and time-stamped answer
for his record.

This sounds familiar to the information and mechanisms usually found in
public key certificates. In X.509 public key infrastructures (PKI) the revocation
status of certificates is queried through certificate revocation lists (CRL) [7]
or the online certificate status protocol (OCSP) [16]. A PKI can be used to
determine the trust of the binding between the data subject’s identifier and his
public-key. Further, X.509 certificates and the revocation mechanisms can be
facilitated to transport the information in our solution: The root hash value and
tree information can be stored inside a X.509 certificate. Our previous work [18]
showed the applicability for a similar use. Such a certificate will carry the status
provider information, as a CRL distribution point. The time period will be stored
as the certificate’s validity period. The data subject’s public-key, the root hash,
and additional information can be stored as well. The certificate would be issued
by the data subject, thus digitally signed using the data subject’s private-key. So

288 H.C. Pöhls

all the relevant information is protected and it can be revoked without affecting
the bond between the data subject and his key-pair.
Example: To participate in a raffle we consent that name and postal address are
processed in order to send us potential winnings, but as we know the draw takes
place in May, we could limit the established consent to the end of June. The
vanished consent rendering all uses later than June “unconsented”. Note aside,
this could also be defined using privacy preferences that handle timing.

The data subject controls the information which status provider a processor
uses to query the status of consent. Thus, logging revocation status checks al-
lows the data subject to see for which complete signed data trees verification
is requested. In other words, check is a call-back to the data subject, allowing
him to see which of his data sets is in question of being processed. Allowing
to only log on the level of data sets can be seen as a compromise, as it leaves
some privacy for the data processor. Nevertheless both parties have a gain from
using the status provider: The processor gains a re-assurance in the proof of the
consent, and the data subject gains information about the re-use of his personal
data.

4.4 Security in the Presence of an Attacker and Enforcement
through Detection

We assume that strong asymmetric cryptography and cryptographically sound
hash functions are used to generate the signature and the hash values. So an at-
tacker without knowing the data subject’s private-key can not modify or repro-
duce the expression of consent codified in the digital signature without knowing
the appropriate values. However, there is no protection against “unconsented”
data processing. Our approach deliberately chooses not to impose additional ac-
cess control restrictions to the personal data. An attacker can simply ignore or
change privacy preferences during processing, but he will not be able to present a
proof of consent that yields a positive verification outcome. Thus, “unconsented”
data processing destroys the verifiable proof of consent. With a system as ours
in use, personal data without a verifiable consent has only little business value,
because it can not be used further used to interact with the data subject or
released to third-parties without the loss of consent going undetected. Thus, an
attacker must fear legal implications or looses reputation when using or passing
on unverifiable personal data.

5 Discussion

5.1 Related Work

Privacy compliant processing can either be guarded through access control and
checked upfront or compliant processing can be checked and verified afterwards.
Our work falls into the second category, but we see the two approaches as com-
plimentary not as mutually exclusive. Examples of upfront checking approaches
that can easily be augmented by our approach are work by Hutter et al [9]

Verifiable and Revocable Expression of Consent 289

and Squicciarini et al. [19]. Hutter et. al. showed that while planning the com-
position and execution of compound web services the data owner’s preferences
with respect to privacy can be matched against each service’s privacy policy,
resulting in composition plans that use only web services that do not violate
the given data’s security policy. They use data flow analysis to see if the service
plan respects the given privacy constraints and enforce this in a “trusted” com-
position engine. Squicciarini et. al. [19] defined in their work how data handling
preferences set forth by the data subject can be matched against the policies
of processing services. Their approach bases on policy subsumption. This allows
to check whether the data can be handed over to the next service, because its
handling preferences comply with the policies or not. Both offer no retainable
proof of consent to benign parties involved.

In the case of checking privacy compliance afterwards the term of information
accountability has been brought up by Weitzner et. al. [23]. They discuss the
legal and technical framework to enable accountability for privacy. In another
work Weitzner [22] showed how a simple logging facility, invoked whenever data
is processed, can already help to detect privacy violations. Their work lacks a
proof that processors, data subjects, and third-parties alike could verify.

Related in the field of aggregation is work done Devanbu et al. [3], Bertino et
al. [4], and Carminati et al. [2]. Devanbu et al. use Merkle hash trees to verify
the completeness of answers on queries. Their focus on verifying partial trees
would be applicable for verification, but does not touch aggregation processes.
The latter works [4] [2] protect data in transit without the need of trustworthy
publishers, thus are more focussed on confidentiality.

We propose the use of digital signatures and suggest reusing existing PKI
mechanisms. These mechanisms are well studied, as also are their overheads
[15]. Our approach does not restrict the choice of the digital signature scheme.
Schemes that need less resources for revocation could be used, for example Le et
al. [11] proposed using a reverse chain of forward secure signature (FSS) in order
invalidate certified credentials with minimal overhead from CA or OCSP/CRL
involvement. Invalidating the private key sx used for signing the credential credx

would also invalidate, due to the forward secrecy, all signed credentials with
an index greater than x. This approach is not applicable in our case for two
reasons: First, the data subject wants to revoke certain consent without affecting
previously given consent. Second, the processor wants to retain a verifiable proof
for actions in the past.

5.2 Performance

Obviously adding a signature adds an overhead over unsigned data, both in
size and in performance. The increase in size is due to the need to additionally
store and transmit the following information: a digital signature and an optional
number of substitution hashes.

The data itself, and each data item, can be of arbitrary size, while the digital
signature is of fixed length. Each substitution hash is of fixed length, regardless of
the data item’s or sub-tree’s size it represents. When existing X.509 certificates

290 H.C. Pöhls

are reused to store the digital signature, accompanied with validity periods and
other relevant information, this would result in adding approximately 1200 bytes,
including the begin and end markers. Even when using 2048 bit RSA modulus
for the keys the certificates are usually smaller than 2000 bytes. Optional, if
data-items are omitted, the needed substitution hashes (for example using SHA-
1) occupy additional 160 bits. Of course using longer hash functions (SHA-256
or SHA-512) slightly increases this overhead. In general, the omission of a single
data item does not reduce the data set’s size by the size of the omitted data
item, as the substitution hash needs to be stored. On the other hand, if several
data items are to be omitted, and they form a sub-tree of the hash tree, they
can be substituted by just one single hash value.

We will now look at the overhead in performance, and when and where it
occurs. Generally speaking two steps involve processing time: The hash tree
and the asymmetric cryptography. We shortly show how expensive each of these
operations are, then we will look where and how often this additional computing
is needed to generate, process, and check the verifiable proof of consent.

The hash tree we used in our prototype is a complete binary tree. The number
of leaves equals the number of data items rounded up to the next even number.
So the number of hash operations needed to generate the tree is ≈ (2∗data
items)−1. Just to give you an indication, an Intel Core 2 Duo running at 2.4
GHz can roughly do 150 SHA-1 hashes on 1024 bits of data in 1 ms, and more
on smaller data. Thus generating the root hash of a data set of 75 data items
takes 1 ms. Since the original proposal by Merkle [14] in 1980, there have been
several improvements on the generation and traversal of Merkle hash trees. In
2004 Szydlo [20] showed that it is possible to compute sequential tree leaves and
authentication data in 2 log2(leaves) time and 3 log2(leaves) space.

Having the hash tree, the signature must be generated and verified. With RSA
the signature generation is more labor intensive than the verification. The same
Intel Core 2 Duo reported4 about 30 signing and 1000 verify operations for 2048
bits per second. Having identified the performance overhead we will now look
when and where it occurs.

The asymmetric distribution is helpful as the signature will be generated just
once by the data subject during data dissemination. The data subject generates
a single signature, once, when the consent is established. Additionally the data
subject is not expected needing to submit high volumes of personal data in a
short amount of time. On the other hand, the processors might need to process
high volumes of personal data, but their operations are hash computations and
signature verifications, both are less expensive.

Last, we look at the overhead required for querying the status provider. This
results in communication overhead and one signature generation by the data
subject or a service acting on his behalf and one signature verification by the
processor that requested the status. Performance measures gathered from an
unoptimized prototype that was implemented to secure the integrity and au-
thenticity of fragmented web content [18] showed the following: Our Firefox

4 Using openssl speed of OpenSSL 0.9.8h.

Verifiable and Revocable Expression of Consent 291

extension needed less than one second to parse a website’s DOM tree, iden-
tify data-items, generate the hash tree, query the OCSP responder, and ver-
ify the certificate’s digital signature, including the verification of the certificate
chain.

We suppose the increase in size is marginally compared to todays bandwidth
and communication costs. The increase in size can be limited if larger or multiple
data items are omitted. Here the tree based structure optimally allows to replace
several omitted data items by just one intermediate node’s substitution hash.
The cryptographic operations introduce another, more important, overhead, but
as we showed the more expensive operations are distributed among the data sub-
jects. The bulk processing done by processors only involves less costly operations
of hashing and signature verification.

6 Conclusion

Our solution allows services to gain a proof of consent even for aggregated per-
sonal data. Doing so without the need of a direct relationship with the data
subject and without the iterative involvement of the data subject. Additionally
our solutions caters for changes in the expression of consent, allowing to vanish
a once established consent. Technically, our solution builds on digitally signed
hash tree and reuses PKI mechanisms, especially certificates and certificate re-
vocation. As Weitzner et al. we see the desirable properties in accountability and
allowing the data subject to follow the use of his personal data. We balanced
the accountability with the reassurance gained through the consent status check.
This results in a win-win situation, the processor is reassured of that the data
subject’s consent is still established and the data subject is able to see this as
an entry in his accountability log.

Privacy protection based on access control, thus restricting the flow of personal
data upfront, shall be used whenever possible. However, ongoing trends like copy-
left licenses, advances in semantic web, and increased digital footprints through
the social web [12] show the need for a digital form of the data subject’s initial
expression of consent. Our work offers a provable expression of consent, in a form
that allows passing it on, that can be retained, and that remains verifiable by
third-parties. This was not available for aggregated personal data before.

Augmenting existing access control based privacy protection architectures, we
offer accountability based architectures a proof of consent that the social and
legal frameworks can rely upon. The already existing services that process data
can easily add the proposed mechanisms, as trust and revocation mechanisms
can be borrowed from existing PKI or web of trust systems. New services and
business models can be built upon the new proof of consent.

Further research will look into the adoption of other suitable digital signature
mechanism, and better fit aggregated data. We plan to integrate our approach
into existing web services.

292 H.C. Pöhls

References

1. Berners-Lee, T.: Semantic Web Road map (September 1998),
http://www.w3.org/DesignIssues/Semantic.html

2. Carminati, B., Ferrari, E., Bertino, E.: Securing XML data in third-party distri-
bution systems. In: Proceedings of 14th ACM CIKM, pp. 99–106 (2005)

3. Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G., Stubblebine, S.:
Flexible authentication of XML documents. In: 8th ACM Conf. on Computer and
Comm. Security (2001)

4. Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., Gupta, A.: Selective and
authentic third-party distribution of XML documents. IEEE TKDE 16, 1263–1278
(2004)

5. EU. Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (October 1995)

6. Google. Google Friend Connect (May 2008),
www.google.com/intl/en/press/annc/20080512 friend connect.html

7. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 3280 (Proposed
Standard), Updated by RFC 4325 (April 2000)

8. Housley, R., Polk, W., Ford, W., Solo, D.: RFC 3280 - internet X.509 PKI certificate
and certificate revocation list (CRL) profile (April 2002)

9. Hutter, D., Volkamer, M.: Information flow control to secure dynamic web service
composition. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC
2006. LNCS, vol. 3934, pp. 196–210. Springer, Heidelberg (2006)

10. Lai, Y.-L., Hui, K.L.: Internet opt-in and opt-out: investigating the roles of frames,
defaults and privacy concerns. In: Shayo, C., Kaiser, K., Ryan, T. (eds.) CPR, pp.
253–263. ACM Press, New York (2006)

11. Le, Z., Ouyang, Y., Xu, Y., Ford, J., Makedon, F.: Preventing unofficial information
propagation. In: ICICS, pp. 113–125 (2007)

12. Madden, M., Fox, S., Smith, A., Vitak, J.: PEW internet & american life project
report: Digital footprints (December 2007),
http://www.pewinternet.org/pdfs/PIP Digital Footprints.pdf

13. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems, PhD thesis, Stan-
ford (1979)

14. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy, p. 122 (1980)

15. Muñoz, J.L., Forné, J., Castro, J.C.: Evaluation of Certificate Revocation Policies:
OCSP vs. Overissued-CRL. In: DEXA Workshops, pp. 511–518. IEEE Computer
Society Press, Los Alamitos (2002)

16. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet Pub-
lic Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 2560 (Pro-
posed Standard) (June 1999)

17. O’Reilly, T.: What is Web 2.0 (September 2005),
http://www.oreillynet.com/lpt/a/6228

18. Pöhls, H.C.: ConCert: Content revocation using certificates. In: Sicherheit 2008,
Saarbrücken, Germany GI-Edition Lecture Notes in Informatics (LNI), vol. 128,
pp. 149–162. GI (April 2008)

http://www.w3.org/DesignIssues/Semantic.html
www.google.com/intl/en/press/annc/20080512_friend_connect.html
http://www.pewinternet.org/pdfs/PIP_Digital_Footprints.pdf
http://www.oreillynet.com/lpt/a/6228

Verifiable and Revocable Expression of Consent 293

19. Squicciarini, A.C., Bhargav-Spantzel, A., Czeskis, A., Bertino, E.: Traceable and
automatic compliance of privacy policies in federated digital identity management.
In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 78–98. Springer,
Heidelberg (2006)

20. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)

21. W3C. The platform for privacy preferences 1.0 (P3P1.0) specification (April 2002),
http://www.w3.org/TR/P3P/

22. Weitzner, D.J.: Reciprocal Privacy (ReP) for the Social Web (December 2007),
http://dig.csail.mit.edu/2007/12/rep.html

23. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman,
G.J.: Information accountability. Technical Report MIT-CSAIL-TR-2007-034, MIT
(June 2007)

http://www.w3.org/TR/P3P/
http://dig.csail.mit.edu/2007/12/rep.html

Embedding Renewable Cryptographic Keys into
Continuous Noisy Data

Ileana Buhan, Jeroen Doumen, Pieter Hartel, Qiang Tang, and Raymond Veldhuis

Faculty of EWI, University of Twente, The Netherlands

Abstract. Fuzzy extractor is a powerful but theoretical tool to extract uniform
strings from discrete noisy data. Before it can be used in practice, many concerns
need to be addressed in advance, such as making the extracted strings renewable
and dealing with continuous noisy data. We propose a primitive fuzzy embedder
as a practical replacement for fuzzy extractor. Fuzzy embedder naturally supports
renewability because it allows a randomly chosen string to be embedded. Fuzzy
embedder takes continuous noisy data as input and its performance directly links
to the property of the input data. We give a general construction for fuzzy embed-
der based on the technique of Quantization Index Modulation (QIM) and derive
the performance result in relation to that of the underlying QIM. In addition, we
show that quantization in 2-dimensional space is optimal from the perspective of
the length of the embedded string. We also present a concrete construction for
fuzzy embedder in 2-dimensional space and compare its performance with that
obtained by the 4-square tiling method of Linnartz, et al. [13].

1 Introduction

Most cryptographic protocols rely on exactly reproducible key material. In fact, these
protocols are designed to have a wildly different output if the key is perturbed slightly.
Unfortunately, exactly reproducible keys are hard to come by, especially when they also
need to have sufficient entropy. Luckily, it is relatively easy to find “fuzzy” sources, such
as physically uncloneable functions (PUFs) [17] and biometrics [8]. However, such
sources are inherently noisy and rarely uniformly distributed. The first (main) difficulty
in transforming a fuzzy source into key material is to correct the noise and reproduce
the same key every time. To solve this problem, the notion of secure sketch [12] has
been proposed. The second difficulty lies in the fact the output of secure sketch may
have a non-uniform distribution, while it should be as close to uniform as possible to
serve as a cryptographic key. A strong randomness extractor could be used to turn the
reproducible output into a nearly uniform string. In the literature, a common way of
extracting keys from noisy data is to combine a secure sketch with a strong randomness
extractor, which leads to the notion of a fuzzy extractor [8].

When deploying a fuzzy extractor in practice, more concerns need to be addressed.
Firstly, even with the same input (noisy data), it should be possible to extract differ-
ent keys (referred to as renewability). To achieve renewability, the (fixed) output of
the fuzzy extractor must be randomized, for instance by using a common reference
string. Unfortunately, this falls outside the scope of fuzzy extractor, even though it is

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 294–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 295

recognized as an important and sensitive issue [2]. Secondly, fuzzy extractor only ac-
cepts discrete sources as input. Existing performance measures for secure sketches,
such as entropy loss or min-entropy, lose their relevance when applied to continuous
sources [12]. This limitation can be overcome by quantizing the continuous input. Li, et
al. [12] propose to define relevant performance measures for secure sketch with respect
to the chosen quantization method.

CONTRIBUTIONS. Our contribution is threefold. Firstly, we propose a new primitive
fuzzy embedder which can be regarded as a practical replacement for fuzzy extractor.
Fuzzy embedder can embed a uniformly distributed key while taking continuous noisy
data as input. Its performance directly links to the property of the input data. Fuzzy
embedder formalizes the concept of “key binding” in biometric template protection
schemes surveyed by Uludag, et al. [20]. In fact, fuzzy embedder can also be regarded
as a natural extension of fuzzy extractor, since it can embed a fixed string (for instance
one obtained by applying a strong extractor to the input source) into a discrete source
and thus achieve the same functionality, namely a randomized cryptographic key. How-
ever, a fuzzy embedder scheme can be directly used with any type of input to achieve
the same goal as a fuzzy extractor scheme without the need to address those concerns
mentioned previously.

Secondly, we propose a general construction for fuzzy embedder based on the tech-
nique of Quantization Index Modulation (QIM) and derive the performance result in
relation to that of the underlying QIM. In the context of watermarking, using QIM can
achieve efficient trade-offs between the information embedding rate, the reliability and
the distortion [5]. The trade-offs of the underlying QIM give rise to similar trade-offs
in fuzzy embedder performance measures. Note that shielding functions [13] can be re-
garded as a particular construction of a fuzzy embedder, as they focus on one particular
type of quantizer. However, they only consider one-dimensional inputs.

Thirdly, we investigate different quantization strategies for high dimensional data
and show that quantization in two dimensions gives an optimal length of the embedded
uniform string. Finally, we propose a concrete construction of fuzzy embedder in 2-
dimensional space and compare its performance with that obtained by the 4-square
tiling method of Linnartz, et al. [13].

RELATED WORK. Dodis, et al. [8] consider discrete distributed noise and propose fuzzy
extractors and secure sketches for different error models. These models are not directly
applicable to continuously distributed sources. Linnartz, et al. [13] construct shielding
functions for continuously distributed data and propose a practical construction which
can be considered a 1-dimensional QIM. The same approach is taken by Li, et al. [12]
who propose quantization functions for extending the scope of secure sketches to con-
tinuously distributed data. Buhan, et al. [3] analyze the achievable performance of such
constructions given the quality of the source in terms of the false acceptance rate and
false rejection rate of a biometric system.

The process of transforming a continuous distribution to a discrete distribution in-
fluences the performances of secure sketches and fuzzy extractors. Quantization is the
process of replacing analogue samples with approximate values taken from a finite set
of allowed values. The basic theory of one-dimensional quantization is reviewed by

296 I. Buhan et al.

Gersho [9]. The same author investigates the influence of high dimensional quantiza-
tion on the performance of digital coding for analogue sources [10]. QIM constructions
are used by Chen and Wornell [5] in the context of watermarking. The same authors
introduce dithered quantizers [6]. Moulin and Koetter [16] give an excellent overview
of QIM in the general context of data hiding. Barron, et al. [1] develop a geometric
interpretation of conflicting requirements between information embedding and source
coding with side information.

Fuzzy embedder is somehow related to the concept of information theoretic key
agreement [14,15]. However, the settings of the problem are different. In secure mes-
sage transmission based on correlated randomness the attacker and the legitimate partic-
ipants have a noisy share of the same source data, while, in the fuzzy embedder setting,
the attacker does not have access to the data source.

ROADMAP. The rest of the paper is organized as follows. In Section 2 we describe our
notation and provide some background knowledge. In Section 3 we present the defini-
tion of fuzzy embedder and highlight the differences with fuzzy extractor. In Section 4
we propose a general construction of a fuzzy embedder from any QIM and express the
performance in terms of the geometric properties of the underlying quantizers. In Sec-
tion 5 we present a concrete construction for fuzzy embedder in 2-dimensional space
and compare its performance with that obtained by the 4-square tiling method of Lin-
nartz, et al.. In the last section we conclude this paper.

2 Preliminaries

LetM be an n-dimensional discrete, finite set, which together with a distance function
dM : M ×M → R+ forms a metric space. Similarly, let U be an n-dimensional
continuous domain, which together with the distance dU : U ×U → R+ forms a metric
space. For the purpose of this work, we use d for both dM and dU . Capital letters
are used to denote random variables while small letters are used to denote realizations
of random variables. Continuous random variables are defined over the metric space
U while discrete random variables are defined over the metric space M. A random
variable A is endowed with a probability density function fA(a). We use the random
variable P when referring to public sketch data and R for random binary strings in the
descriptions of fuzzy extractor and fuzzy embedder.

MUTUAL INFORMATION. By I(A; B) we note the Shannon mutual information be-
tween the two random variables A and B, which measures the amount of uncertainty
left about A when B is made public. We have I(A; B) = 0 if and only if A and B
are independent random variables. Formal definitions of entropy, min-entropy, average
min-entropy, and statistical distance SD can be found in [8].

FUZZY EXTRACTOR. According to the definition by Dodis, et al. [8], a fuzzy extractor
extracts a uniformly random string r from a value x of random variable X in a noise-
tolerant way with the help of some public sketch p (see, Figure 1). For a discrete metric
spaceMwith a distance measure d, fuzzy extractor [2,8] is formally defined as follows.

Definition 1 (Fuzzy Extractor). An (M, m, l, t, ε) fuzzy extractor is a pair of random-
ized procedures 〈Generate, Reproduce〉 with the following properties:

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 297

’x x′

rp〈p, r〉Generate Reproduce

Noise

Fig. 1. A fuzzy extractor is a pair of two procedures 〈Generate, Reproduce〉. The Generate
function takes noisy data x as input and returns a random string r and a public sketch p. The
Reproduce function takes noisy data x′ and the public sketch p as input, and outputs r if x and
x′ are close.

1. The generation procedure on input of x ∈ M outputs an extracted string r ∈ R =
{0, 1}l and a public helper string p ∈ P = {0, 1}∗.

2. The reproduction procedure takes an element x′ ∈ M and the public string
p ∈ {0, 1}∗ as input. The reliability property of the fuzzy extractor guarantees
that if d(x, x′) ≤ t and r, p were generated by (r, p) ← Generate(x), then
Reproduce(x′, p) = r. If d(x, x′) > t, then no guarantee is provided about the
output of the reproduction procedure.

3. The security property guarantees that for any random variable X with distribution
fX(x) of min-entropy m, the string r is nearly uniform even for those who observe
p: if (r, p) ← Generate(X), then SD((R, P), (N, P)) ≤ ε where N is a random
variable with uniform probability.

In other words, a fuzzy extractor allows to generate the random string r from a value
x. The reproduction procedure which uses the public string p produced by the genera-
tion procedure will output the string r as long as the measurement x′ is close enough.
This is the reliability property of the fuzzy extractor. The security property guarantees
that r looks uniformly random to an attacker and her chance to guess its value from the
first trial is approximately 2−m. Security encompasses both min-entropy and uniformity
of the random string r when p are known to an attacker.

We have two observations on the shortcomings of fuzzy extractor. One is that, the
public string is from the discrete set P = {0, 1}∗. However, there are biometric template
protection schemes that fit the model of the fuzzy extractors for which P is drawn from
R [13] or Z [18]. The other is that, defining min-entropy for X makes sense only if
X has a discrete probability density function otherwise its min-entropy depends on the
quantization of the variable [12].

QUANTIZATION. A continuous random variable A can be transformed into a discrete
random variable by means of quantization, which we write as Q(A). Formally, a quan-
tizer is a function Q : U →M that maps a ∈ U into the closest reconstruction point in
the setM = {c1, c2, · · · } by

Q(a) = argminci∈Md(a, ci)

where d is the distance measure defined on U . The Voronoi region or the decision re-
gion of a reconstruction point ci is the subset of all points in U , which are closer to
that particular reconstruction point than to any other reconstruction point. We denote

298 I. Buhan et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

fA(a)

fQ(A)(a)

U

P
ro

ba
bi

li
ty

Fig. 2. By quantization, fA(a) (continuous
line) is transformed into fQ(A)(a) (dotted line)

X X XO O O

r = 0r = 1

q

Fig. 3. Quantization of X with two scalar quan-
tizers Q0 and Q1 both with step size q

with Vci the Voronoi region of reconstruction point ci. When A is 1-dimensional, Q is
called a scalar quantizer. If all Voronoi regions of a quantizer are equal, the quantizer
is uniform. In the scalar case, the length of the Voronoi region is then called the step
size. If the reconstruction points form a lattice, the Voronoi regions of all reconstruction
points are congruent. By quantization, the probability density function of the continu-
ous random variable A, fA(a) which is continuous, is transformed into the probability
density function fQ(A)(a) which is discrete (See Figure 2).

QUANTIZATION-BASED DATA HIDING CODES. Quantization based data hiding codes,
introduced by Chen, et al. [5] (also known as QIM), can embed secret information into
a real value. We start with the following example.

Example 1. We want to embed one bit of information, thus r ∈ {0, 1} into a real
value x. For this purpose we use a scalar uniform quantizer with step size q, given by

Q(x) = q

[
x

q

]
.

The quantizer Q is used to generate a set of two new quantizers {Q0, Q1} defined as:

v0 =
q

4
, v1 = − q

4
, Q0(x) = Q(x + v0)− v0, Q1(x) = Q(x + v1)− v1.

In Figure 3 the reconstruction points for the quantizer Q1 are shown as circles and
the reconstruction points for the quantizer Q0 are shown as crosses. The embedding is
done by mapping the point x to the elements of these two quantizers. For example, if
r = 1, x is mapped to the closest ◦ point. The result of the embedding is the distance
vector to the nearest × or ◦ as chosen by r. During reproduction procedure, when x
is perturbed by noise, the quantizer will assign the received data to the closest × or ◦
point, and output 0 or 1 respectively.

Formally, a Quantization Index Modulation data hiding scheme, can be seen as QIM :
U ×R →M a set of individual quantizers {Q1, Q2, . . .Q2l}, where l = |R| and each
quantizer maps x ∈ U into a reconstruction point. The quantizer is chosen by the input

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 299

value r ∈ R such that QIM(x, r) = Qr(x). The set of all reconstruction points is
M =

⋃
r∈RMr whereMr ⊂ M is the set of reconstruction points of the quantizer

Qr.
We define the minimum distance σmin of a QIM, as the minimum distance between

reconstructions points of all quantizers in the QIM:

σmin = min
r1,r2∈R

min
ci

r1
∈Mr1 ,cj

r2∈Mr2

d(ci
r1

, cj
r2

)

whereMr1 = {c1
r1

, c2
r1

, · · · } andMr2 = {c1
r2

, c2
r2

, · · · }. Hence, balls with radius σmin
2

and centers inM are disjoint. Let ζr be the smallest radius ball such that balls centered
in the reconstruction point of quantizer Qr with radius ζr cover the universe U . We
define the covering distance λmax as:

λmax = max
r∈R

ζr.

Any ball B(c, ζr) contains at least one ball B(cr, σmin/2) for cr ∈ Mr, ∀r ∈ R.
Hence, balls with radius λmax and centers inMr cover the universe U .

A dithered QIM [6] is a special type of QIM for which all Voronoi region of all indi-
vidual quantizers are congruent polytopes (generalization of a polygon to higher dimen-
sions). Each quantizer in the ensemble {Q1, Q2, . . .Q2l} can be obtained by shifting
the reconstruction points of any other quantizer in the ensemble. The shifts correspond
to dither vectors {v1, v2, . . . v2l}. The number of dither vectors is equal to the number
of quantizers in the ensemble.

The reliability (or, the amount of tolerated noise) of a QIM is determined by the
minimum distance between two neighboring reconstruction points. The size and shape
(for high dimensional quantization) of the Voronoi region determines the tolerance for
error. The number of quantizers in the QIM set determines the amount of information
that can be embedded. By setting the number of quantizers and by choosing the shape
and size of the decision region the performance properties can be fine tuned.

3 Fuzzy Embedder

In this section, we define fuzzy embedder and show its relationship with fuzzy extractor.
It is worth stressing that the random key r is not extracted from the random x, but is
generated independently, as illustrated in Figure 4.

Definition 2 (Fuzzy Embedder). A (U , �, ρ, ε, δ)-fuzzy embedder scheme consists of
two polynomial-time algorithms 〈Embed, Reproduce〉, which are defined as follows:

– Embed: U × R → P , where R = {0, 1}l. This algorithm takes x ∈ U and r ∈ R
as input, and returns a public sketch p ∈ P .

– Reproduce: U × P → R. This algorithm takes x′ ∈ U and p ∈ P as input, and
returns a string from R or an error symbol ⊥.

Given any random variable X over U and a random variable R, the parameter ρ, ε, δ
are defined as follows:

300 I. Buhan et al.

’x x′

rr p pEmbed Reproduce

Noise

Fig. 4. A fuzzy embedder is a pair of two procedures 〈Embed, Reproduce〉. The Emded function
takes noisy data x and a binary string r as input, and outputs a public sketch p. The Reproduce
function takes noisy data x′ and the public sketch p as input, and outputs r if x and x′ are close.

– The parameter ρ represents the probability that the fuzzy embedder can successfully
reproduce the embedded key, and it is defined as

ρ = min
r∈R

max
x∈U

Pr(Reproduce(x′, Embed(x, r)) = r|x′ ∈ X).

In the above definition, the maximum over x ∈ U ensures that we choose the best
possible representative x for the random variable X . In most cases, this will be the
mean of X .

– The security parameter ε is equal to the mutual information between the embedded
key and the public sketch, and it is defined as ε = I(R; Embed(X, R)).

– The security parameter δ is equal to the mutual information of the noisy data and
the public sketch and is defined as δ = I(X ; Embed(X, R)).

Since the public sketch p is computed both on X and R, ε measures the amount of in-
formation revealed about X and δ measures the amount of information P reveals about
the cryptographic key R. When evaluating security of algorithms, which derive secret
information from noisy data, entropy measures like min-entropy, average min-entropy,
and entropy loss are appealing since these measures have clear security applicability.
However, these measures can only be applied to discrete random variable. In the case
of continuous random variables, these measures depend on the precision used to repre-
sent the values of a random variable, as shown in the following example.

Example. Assume that all points X are real numbers between [0, 1] and are uniformly
distributed. Assume further that points in X are represented with 2-digit precision,
which leads to a min-entropy H∞(X) = log2 100. If we choose to represent points
with 4-digit precision the min-entropy of X becomes H∞(X) = log2 10000, which is
higher then H∞(X) = log2 100 although in both cases X is uniformly distributed over
the interval [0, 1].

More examples related to average min-entropy and entropy loss can be found in
the work of Li et al. [12]. We have chosen mutual information because it captures
the measure of dependence between two random variables regardless of their types of
distributions (discrete or continuous).

FUZZY EXTRACTOR AND FUZZY EMBEDDER. From Definitions 1 and 2, we argue
that a fuzzy embedder may be more appealing than fuzzy extractor in practice, due to
the following reasons:

1. A fuzzy embedder scheme accepts continuous data as input and can embed differ-
ent keys. In contrast, in a practical deployment, a fuzzy extractor scheme must be

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 301

O

O

O

O

O

O

+

+

+ +

+

+

*

*

*

*

*

*

O

O O

O

*

*

λmax

x
p Qo(x)

Fig. 5. Embed function of QIM -fuzzy embed-
der

O

O

O

O

O

O

+

+

+ +

+

+

*

*

*

*

*

*

O

O

O

**

*

O

σmin

x′ p

Fig. 6. Reproduce function of a QIM -fuzzy
embedder

combined with quantization and re-randomization to achieve the same goals as a
fuzzy embedder.

2. A fuzzy embedder construction leads to a fuzzy extractor construction. Given a
(U , �, ρ, ε, δ)-fuzzy embedder scheme, we can construct a fuzzy extractor scheme
〈Generate′, Reproduce′〉 as follows:

– Generate′: U → P × R. This algorithm takes x ∈ U as input, chooses r ∈ R,
and returns p = Embed(x, r) and r.

– Reproduce′: U × P → R. This algorithm takes x′ ∈ U and p ∈ P as input,
and returns the value Reproduce(x, p).

4 A Practical Construction for Fuzzy Embedder

In this section, we present a general construction for fuzzy embedder using a QIM and
analyze the performance of this construction in terms of reliability and security. We also
investigate optimization issues when U is n-dimensional.

QIM-FUZZY EMBEDDER. A fuzzy embedder can be constructed from any QIM by defin-
ing the embed procedure as:

Embed(x, r) = QIM(x, r) − x,

and the reproduction procedure as the minimum distance Euclidean decoder:

Reproduce(x′, p) = Q̃(x′ + p),

where Q̃ : U → R is defined as

Q̃(y) = argmin
r∈R

d(y,Mr).

Intuitively, our construction is a generalization of the scheme of Linnartz, et al. [13].
Figures 5 and 6 illustrate Embed and Reproduce, respectively, for a QIM ensemble of
three quantizers {Qo, Q+, Q�}. During embedding, the secret r ∈ {o, �, +} selects a
quantizer, say Qo. The selected quantizer finds the reconstruction point Qo(x) closest
to x and the embedder returns the difference between the two as p, with p ≤ λmax.
Reproduction from p and x′ should return o only if x′ + p is in one of the Voronoi

302 I. Buhan et al.

regions of Qo (hatched area in Figure 6). Errors occur if (x′ + p) is not in any of the
Voronoi regions of Qo, thus the size and shape (for n ≥ 2) of the Voronoi region param
eterized by the radius of the inscribed ball σmin/2 determines the probability of errors.

RELIABILITY. In the following lemma, we link the reliability of a QIM-fuzzy embedder
to the size and shape of the Voronoi regions of the employed QIM.

Lemma 1 (Reliability). Let 〈Embed, Reproduce〉 be a (U , �, ρ, ε, δ) QIM-fuzzy embed-
der, and let X be a random variable over U with joint density function fX(x). For any
r ∈ R, we define

ρ(r) =
∫
Vr

fX(y − Embed(X, r))dy,

where Vr =
⋃

c∈Mr
Vc is the union of the Voronoi regions of all reconstruction points

inMr. Then the reliability is equal to

ρ = min
r∈R

ρ(r).

Proof : Since ρ(r) is exactly the probability that an embedded key r will be recon-
structed correctly, the statement follows from the definition. ��
Most known noisy data, such as biometrics and PUFs, have two main properties: larger
distances between x and the measurement x′ are increasingly unlikely, and the noise is
not directional. Thus the primary consideration for reliability is the size of the inscribed
ball of the Voronoi regions, which has radius σmin/2.

Corrolary 1 (Bounding ρ). In the settings of Lemma 1, the reliability parameter ρ can
be bounded by

min
r∈R

∑
c∈Mr

∫
B(c,

σmin
2)

fX(y)dy ≤ ρ

where B(c, r) is the ball centered in c with radius r.

Proof. The above relation follows from the definition of reliability, since S(c, σ
2) ⊂ Vc

and x + Embed(X, r) is always a reconstruction point. ��
Corollary 1 shows that reliability is at least the sum of all balls of radius σmin

2 inscribed
in the Voronoi regions. Thus the size of the inscribed ball is an important parameter,
which determines the reliability to noise.

SECURITY. In our construction, if an attacker learns the value x she can reproduce the
value r from p. However, if it learns the secret key r, she could cannot exactly reproduce
x, which is further illustrated in the following example

Example. In the fuzzy embedder example given in Figure 6, the attacker can choose
between three different key values{◦, +, �}. Assume she learns the correct key, in our
example ◦. To find the correct value for x she still has to decide which of the recon-
struction points of the quantizer Q◦ is closest to x. Without any other information this
is an impossible task since the quantizer Q◦ has an infinite number of reconstruction
points.

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 303

Since the full disclosure of the string r is not enough to recover x, we can conclude
that ε ≤ δ. We now consider how large δ, the leakage on the key depending on P ,
which is a continuous variable in our construction. We know that any p ∈ P has the
property that p ≤ λmax. A technical difficulty in characterizing the size of P arises as
P is not necessarily discrete. Tuyls, et al. [19] show the following result, establishing a
link between the continuous and the quantized version of P denoted here with Pd.

Lemma 2 (Tuyls et al. [19]). For continuous random variables X , Y and ξ > 0,
there exists a sequence of discretized random variables Xd, Yd that converge pointwise
to X , Y (when d → ∞) such that for sufficiently large d, I(X ; Y) ≥ I(Xd; Yd) ≥
I(X ; Y)− ξ.

Since I(R; Pd) ≤ H(Pd) ≤ |Pd|, where |Pd| is the size of the sketch. Thus it is best
to have |Pd| as small as possible. In our construction, we have |Pd| ≤ λmax. Thus by
bounding the size of p we bound the value of δ.

OPTIMIZATION. In this paragraph, we analyze the key length allowed by the restrictions
placed by our performance criteria on the embed and reproduce procedures. Firstly,
we take a look at the reproduce procedure which ties directly with the reliability. The
minimum size of an error to produce a wrong decoding is σmin/2. Thus, the collection
of balls centered in the reconstruction point of all quantizers with radius σmin/2 should
be disjoint.

Secondly, the embed procedure has to be able to embed any key r ∈ R into an arbi-
trary point x. Hence, for each key r the collection of balls centered in the reconstruction

λmax

σmin/2

Fig. 7. Optimization of reliability versus security. Reliability is determined by the size of the ball
with radius σmin/2. Each small ball has associated to its center a different key r ∈ R. The
number of small ball inside the large ball with radius λmax is at least 2l the number of elements
in R. To have as many keys as possible we want to increase the number of small ball, thus we
want dense (sphere) packing. The size of the public sketch p ∈ P is at most λmax. Since for
any x ∈ U we want to be within λmax distance to a specific r ∈ R, large balls should cover
optimally the space U . When the point x falls in a region, which does not belong to any ball the
reproduction procedure gives the closest center of a small ball, thus we want polytopes which
tile the space.

304 I. Buhan et al.

points of Qk and with radius λmax should cover the entire space U . λmax and λmin can
be linked as follows:

Lemma 3. The covering distance of a QIM , defined in Section 2, is bounded by:

λmax ≥ n
√

N
σmin

2

where n represents the dimension of the universe U and N is the number of different
quantizers.

Proof : As noted above, all balls with radius σmin/2 centered in the centroids of the
whole ensemble are disjoint. Each collection of balls with radius λmax centered in the
centroids of an individual quantizer gives a covering of the space U , see Figure 7. There-
fore, a ball with radius λmax, regardless of its center, contains at least the volume of N
disjoint balls of radius σmin/2, one for each quantizer in the ensemble. Comparing the
volumes, we have

snλn
max ≥ snN(

σmin

2
)n

where sn is a constant only depending on the dimension. ��

Consider the case when an intruder has partial knowledge about the random variable
X . For example, she could know the average distribution of all (fingerprint) biometrics,
or the average distribution of the PUFs. This average distribution is known in the litera-
ture as background distribution. While any QIM-fuzzy embedder achieves equiprobable
keys if the background distribution on U is uniform, the equiprobability can break down
when this background distribution is non-uniform and known to the intruder. A legiti-
mate question is: how can a QIM-fuzzy embedder achieve equiprobable keys when the
background distribution is not uniform?

In the literature [4,7,13], it is often assumed that the background distribution is a
multivariate Gaussian. We make a much weaker assumption, namely the background
distribution is not uniform but spherically symmetrical and decreasing. In other words,
we assume that measurement errors of the noisy data only depend on the distance, and
not on the direction, and that larger errors are less likely.

Thus, to achieve equiprobable keys given this background distribution, the recon-
struction points must be equidistant as for example the construction in Figure 8 (a).
Note that putting more small balls inside the large ball is not possible since they are not
equiprobable. The problem with the construction in Figure 8 (a) is the size of the sketch
which becomes large.

The natural question, which arise is: what is the minimum sketch size attainable such
that all keys are equiprobable for a given desired reliability? This question naturally
leads us to consider the kissing number τ(n), which is defined to be the maximum
number of white n-dimensional spheres touching a black sphere of equal radius, see
Figure 8 (b). The radius of the small balls determines reliability and the minimum λmax,
such that a QIM-fuzzy embedder can be built is equal to the radius of the circumscribed
ball of as shown in Figure 8 (b).

The next question we ask is: for a minimum sketch size and a given reliability, are
there dimensions which are better then others? For example why not pack spheres in

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 305

λmax λmax

σmin/2 σmin/2

(a) (b)

Fig. 8. (a) Construction which yields equiprobable keys in case the background distribution is
spherical symmetrical in the two dimensional space. (b) Optimal construction which results in
minimal public sketch size and has equiprobable keys in the two dimensional space.

the three dimensional space where the kissing number is 12. For the same reliability it is
possible to obtain more keys? For most dimensions, only bounds on the kissing number
are known [11,21]. Assuming a spherically symmetrical and decreasing background
distribution, we have the following bound on equiprobable keys.

Theorem 1 (Optimal high dimensional packing.). Assume the background distribu-
tion to be spherically symmetrical and decreasing. For a (U , �, ρ, ε, δ) QIM-fuzzy em-
bedder with dim(U) = n with equiprobable keys and minimal sketch size, we have that
� ≤ τ(n).

Proof sketch: The target reliability ρ0 will translate to a certain radius σ0. In other
words, we need to stack balls of radius σ0 optimally. To achieve the maximum number
of equiprobable keys without the sketch size getting too big, the best construction is to
center the background distribution in one such ball, and to assign a different key to each
touching ball. Thus the amount of possible equiprobable keys is upper bounded by the
kissing number τ(n). ��

From the known bounds on the kissing number [11,21], we have the following some-
what surprising conclusion:

Corrolary 2. Assuming a spherically symmetrical and decreasing background distri-
bution on U and equiprobable keys, for a (U , �, ρ, ε, δ) QIM-fuzzy embedder the most
equiprobable keys are attained by quantizing two dimensions at a time, leading to N(n)
different keys, where

N(n) = 6�
n
2 �2(n−2�n

2 �).

Proof : Known upper bounds [11] on the kissing number in n dimensions state that
τ(n) ≤ 20.401n(1+o(1)). This means that N(n) ≥ τ(n) in all dimensions, since N(n) ≈
21.3n and small dimensions can easily be verified by hand. Also note that N(n1 +
n2) ≤ N(n1)N(n2). Thus quantizing dimensions pairwise gives the largest number of
equiprobable keys for any spherically symmetric distribution. ��

306 I. Buhan et al.

r6

r6

r6

r6

r6

r6

r6

r5

r5

r5

r5

r5

r5

r5

r4

r4

r4

r4

r4

r4

r4

r3

r3

r3

r3

r3

r3

r3

r2

r2

r2

r2

r2

r2

r2r1

r1

r1

r1

r1

r1

r1

r0

r0

r0

r0

r0

r0

r0

B1
B2

Fig. 9. Reproduce function of 7-hexagonal tiling

r6

r6

r6

r6

r6

r6

r6

r5

r5

r5

r5

r5

r5

r5

r4

r4

r4

r4

r4

r4

r4

r3

r3

r3

r3

r3

r3

r3

r2

r2

r2

r2

r2

r2

r2

r1

r1

r1

r1

r1

r1

r1

B1
B2

Fig. 10. Reproduce function of 6-hexagonal
tiling

5 QIM-Fuzzy Embedder from 2-Dimensional Quantization

In this section we present our main construction, referred to as 6-hexagonal tiling, of
QIM-fuzzy embedder by quantizing 2-dimensional subspaces of continuous and noisy
data. We compare the performance with the 4-square tiling method introduced by Lin-
nartz, et al. [13].

Preliminary concept. Let the continuous and noisy data be represented with a n-
dimensional variable X = (X1, X2, · · ·Xn). We assume that n is even; otherwise one
of the vector elements can be quantized with a 1-dimensional QIM as the one in our
example in Section 2. Thus, X can be partitioned into n

2 2-dimensional subspaces and
each one can be considered separately. We take the subspace (X1, X2) as an example
in the rest of this section. On the x-axis in Figure 9 we have the values for X1 and on
the y-axis we have the values of X2. Along the z-axis (not shown in the figure) we have
the joint probability density fX1X2(x).

Naturally, we want to choose the densest circle packing for the 2-dimensional space,
where all circles have equal radius and the center of the circle is the reconstruction point
which is associated with a key value. However, the circles do not tile the space so that,
when x (the realization of X) falls into the non-covered region it cannot be associated
with any reconstruction point. Therefore, we need to approximate the circle with some
polygons that can tile the space. In 2-dimensional space, there are only three types of
polygons: triangle, square, and hexagon. Since we assume a spherical symmetrical dis-
tribution for fX1X2 , hexagon is the best approximation to the circle from the reliability
point of view.

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 307

5.1 Description of 6-Hexagonal Tiling

First attempt. In our construction, the reconstruction points of all quantizers are shifted
versions of some base quantizer Q0. A dither vector −→vr is defined for each possible
r ∈ R. We define the tiling polygon as the repeated structure in the space that is
obtained by decoding to the closest reconstruction point. It follows from this defini-
tion that the tiling polygon contains exactly one Voronoi region for each quantizer in
the ensemble. In Figures 9 the tiling polygons are delimited by the dotted line. More
specifically, we define a dithered QIM using an ensemble of 7 quantizers. The recon-
struction points of the base quantizer Q0 are defined by the lattice spanned by the vec-
tors
−→
B1 = (5,

√
3)q,
−→
B2 = (4,−2

√
3)q, where q is the scaling factor of the lattice.

In Figure 9 these points are labeled r0. The other reconstruction points of quantiz-
ers Qi (1 ≤ i ≤ 6) are obtained by shifting the base quantizer by the dither vectors
{−→v1, · · · ,−→v6} such that Qi(x) = Q0(−→x + −→vi). The values for these dither vectors are:
−→v1 = (2, 0), −→v2 = (−3,

√
3), −→v3 = (−1,−

√
3), −→v4 = (−2, 0), −→v5 = (3,−

√
3), and

−→v6 = (1,
√

3). The embed and reproduce procedures are defined in Section 4.
This construction (referred to as 7-hexagonal tiling) can embed n× log2 7

2 bits, where
n is the dimensionality of random variable X . It is optimal from the reliability point of
view. However, assume that the background distribution is a spherical symmetrical dis-
tribution with mean centered in the origin of the coordinates. In the construction above
the hexagon centered in the origin will typically have a higher associated probability
than the off-center hexagons. This effect grows as we increase the scaling factor q of
the lattice. Therefore, keys might be not equiprobable when the background distribution
is not flat enough.

Improved construction. In the improved construction, namely 6-hexagonal tiling, we
eliminate the middle hexagon to make all keys equiprobable (see Figure 10). Conse-
quently, the tiling polygon is formed by 6 decision regions and thus there are only 6
dither vectors. As a result, the dither vectors, {−→v1, · · · ,−→v6} are used to construct the
quantizers, but the basic quantizer Q0 itself is not used. The embed and reproduce pro-
cedures remain the same.

Our main construction can embed n × log2 6
2 bits, where n is the dimensionality

of random variable X . Compare with the first attempt, this construction is not opti-
mal from the key length point of view. However, keys are equiprobable regardless of
the background distribution, which we regard to be more favorable in cryptographic
applications.

5.2 Comparison with 4-Square Tiling

We compare the performance between 6-hexagonal tiling and 4-square tiling in terms of
reliability, the key length, and mutual information. Here we consider identically and in-
dependently distributed (i.i.d) Gaussian sources. We assume that the background distri-
bution has mean (0, 0) and standard deviation σX1X2

2. We also assume that for any ran-
dom (X1, X2) ∈ U2, the probability distribution of fX1X2(x) has mean µ = (µ1, µ2)
and standard deviation σ2

x. Note that these assumptions are abstracted from the area of
biometrics (as an example of continuous and noisy data).

308 I. Buhan et al.

ρ
-r

el
ia

bi
li

ty
q/σ2

7-hexagonal tiling

6-hexagonal tiling
4-square tiling

0

0.2

0.4

0.5

0.6

0.8

1

1 1.5 2 2.5 3

Fig. 11. Reliability of the three QIM -fuzzy embedder constructions

H
∞

(R
)

q/σ2

0

0.5

0.5

1

1

1.25

1.5

1.5 2 2.5 3

Fig. 12. Key length comparison for the three
QIM-fuzzy embedder constructions-scaled to
one dimension

7-hexagonal tiling

6-hexagonal tiling
4-square tiling

q/σ2

I
(R

;P
)

0

0.2

0.4

0.5

0.6

0.8
1

1

1.25

1.5

1.5 2 2.5 3

Fig. 13. Mutual information between the key
and the public sketch for the three QIM -fuzzy
embedders

To evaluate the reliability relative to the quality of the source data (i.e., the amount
of noise measured in the terms of standard deviation from mean), we compute probabil-
ities associated with equal area decision regions, and the reconstruction point centered
in the mean µ of the distribution fX(x). The curves in Figure 11 were obtained by pro-
gressively increasing the area of the Voronoi regions. The size of Voronoi region is con-
trolled by the scaling factor of the lattice, namely q. From the figure, our 6-hexagonal
tiling construction has a slightly better performance than the 4-square tiling method.
This is because the regular hexagon best approximates a circle, the optimal geometrical
form for a spherical symmetrical distribution. The key-length comparison is shown in
Figure 12. Clearly, our 6-hexagonal tiling construction has a significantly better per-
formance than the 4-square tiling method. Note that maximizing the key length means
minimizing the probability for an attacker to guess the key correctly on her first try. The
comparison of mutual information for the key when publishing the sketch is shown in
Figure 13. Note that the values are scaled to the number of bits lost from each bit that is
made public. From the figure, our 6-hexagonal tiling construction has a slightly better
performance than the 4-square tiling method.

Embedding Renewable Cryptographic Keys into Continuous Noisy Data 309

6 Conclusion

We have proposed a new primitive fuzzy embedder as a practical replacement for fuzzy
extractor. Fuzzy embedder has solved two practical problems encountered when a fuzzy
extractor scheme is used in practice: (1) fuzzy embedder naturally supports renewabil-
ity, and (2) it supports direct analysis of quantization effects. We have also proposed a
general construction of fuzzy embedder using a QIM. The QIM performance measures
(in the context of watermarking) can be directly translated into the reliability and se-
curity properties of the constructed fuzzy embedder. When considering equiprobable
keys, we have shown that quantizing dimensions pairwise gives the largest key length.
We have proposed a concrete construction, namely 6-hexagonal tiling, and shown that
it has a better performance than the 4-square tiling method introduced by Linnartz, et
al. [13].

References

1. Barron, R.J., Chen, B., Wornell, G.W.: The duality between information embedding and
source coding with side information and some applications. IEEE Transactions on Informa-
tion Theory 49(5), 1159–1180 (2003)

2. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B., McDaniel,
P.D. (eds.) ACM Conference on Computer and Communications Security, pp. 82–91. ACM,
New York (2004)

3. Buhan, I., Doumen, J., Hartel, P.H., Veldhuis, R.N.J.: Fuzzy extractors for continuous dis-
tributions. In: Deng, R., Samarati, P. (eds.) Proceedings of the 2nd ACM Symposium on In-
formation, Computer and Communications Security (ASIACCS), pp. 353–355. ACM, New
York (2007)

4. Chang, Y.J., Zhang, W., Chen, T.: Biometrics-based cryptographic key generation. In: Inter-
national Conference on Multimedia and Expo (ICME), pp. 2203–2206. IEEE, Los Alamitos
(2004)

5. Chen, B., Wornell, G.W.: Quantization Index Modulation Methods for Digital Watermarking
and Information Embedding of Multimedia. The Journal of VLSI Signal Processing 27(1),
7–33 (2001)

6. Chen, B., Wornell, G.W.: Dither modulation: a new approach to digital watermarking and
information embedding. In: Proceedings of SPIE, vol. 3657, p. 342 (2003)

7. Chen, C., Veldhuis, R.N.J., Kevenaar, T.A.M., Akkermans, A.H.M.: Multi-bits biometric
string generation based on the likelyhood ratio. In: IEEE conference on Biometrics: Theory,
Applications and Systems, pp. 1–6. IEEE, Los Alamitos (2007)

8. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biomet-
rics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

9. Gersho, A.: Principles of quantization. IEEE Transactions on Circuits and Systems 25(7),
427–436 (1978)

10. Gersho, A.: Asymptotically optimal block quantization. IEEE Transactions on Information
Theory 25(4), 373–380 (1979)

11. Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Prob-
lemy Peredachi Informatsii 1, 3–25 (1978)

12. Li, Q., Sutcu, Y., Memon, N.: Secure sketch for biometric templates. In: Lai, X., Chen, K.
(eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 99–113. Springer, Heidelberg (2006)

310 I. Buhan et al.

13. Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of
biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp.
393–402. Springer, Heidelberg (2003)

14. Maurer, U.: Perfect cryptographic security from partially independent channels. In: Proceed-
ings of the 23rd ACM Symposium on Theory of Computing (STOC), pp. 561–572. ACM
Press, New York (1991)

15. Maurer, U.: Secret key agreement by public discussion. IEEE Transaction on Information
Theory 39(3), 733–742 (1993)

16. Moulin, P., Koetter, R.: Data-hiding codes. Proceedings of the IEEE 93(12), 2083–2126
(2005)

17. Skoric, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable functions.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422.
Springer, Heidelberg (2005)

18. Tuyls, P., Akkermans, A., Kevenaar, T., Schrijen, G., Bazen, A., Veldhuis, R.: Practical bio-
metric authentication with template protection. In: Kanade, T., Jain, A., Ratha, N.K. (eds.)
AVBPA 2005. LNCS, vol. 3546, pp. 436–446. Springer, Heidelberg (2005)

19. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authentica-
tion systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 158–170.
Springer, Heidelberg (2004)

20. Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: Issues and
challenges. Proceedings of the IEEE 92(6), 948–960 (2004)

21. Zeger, K., Gersho, A.: Number of nearest neighbors in a euclidean code. IEEE Transactions
on Information Theory 40(5), 1647–1649 (1994)

Automated Device Pairing for Asymmetric Pairing
Scenarios

Nitesh Saxena and Md. Borhan Uddin

Computer and Information Science
Polytechnic Institute of New York University

Brooklyn, NY 11201, USA
nsaxena@poly.edu, borhan@cis.poly.edu

Abstract. “Secure Device Pairing” is the process of bootstrapping secure com-
munication between two human-operated devices over a short- or medium-range
wireless channel (such as Bluetooth, WiFi). The devices in such a scenario can
neither be assumed to have a prior context with each other nor do they share a
common trusted authority. However, the devices can generally be connected us-
ing auxiliary physical channel(s) (such as audio, visual) that can be authenticated
by the device user(s), and thus form the basis for pairing.

Recently proposed pairing protocols are based upon bidirectional physical
channels. However, various pairing scenarios are asymmetric in nature, i.e., only
a unidirectional physical channel exists between two devices (such as between a
cell phone and an access point). In this paper, we concentrate on pairing devices
using a unidirectional physical channel and analyze recently proposed protocol
on this topic [14]. Moreover, as an improvement to [14], we present an efficient
implementation of a unidirectional physical channel based on multiple blinking
LEDs as transmitter and a video camera as a receiver.

Keywords: Distributed Protocols, Mobile/Ad-Hoc Systems, Security.

1 Introduction

Short-range wireless communication, based on technologies such as Bluetooth and
WiFi, is becoming increasingly popular and promises to remain so in the future. With
this surge in popularity, come various security risks. Wireless communication channel
is easy to eavesdrop upon and to manipulate, and therefore a fundamental security ob-
jective is to secure this communication channel. In this paper, we will use the term
“pairing” to refer to the operation of bootstrapping secure communication between two
devices connected with a short-range wireless channel. The examples of pairing, from
day-to-day life, include pairing of a WiFi laptop and an access point, a Bluetooth key-
board and a desktop, and so on. Pairing would be easy to achieve, if there existed a
global infrastructure enabling devices to share an on- or off-line trusted third party, a
certification authority, a PKI or any pre-configured secrets. However, such a global in-
frastructure is close to impossible to come by in practice, thereby making pairing an
interesting and a challenging real-world research problem. The problem has been at the
forefront of various recent standardization activities, see [20].

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 311–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 N. Saxena and M.B. Uddin

A recent research direction to pairing is to use an auxiliary physically authenticatable
channel i.e., physical channel, also called an out-of-band (OOB) channel, which is gov-
erned by humans, i.e., by the users operating the devices. Examples of OOB channels
include audio, visual channels, etc. Unlike the wireless channel, on the OOB channel,
an adversary is assumed to be incapable of modifying messages, however, it can eaves-
drop on, delay, drop and replay them. A pairing scheme should therefore be secure
against such an adversary.

The usability of a pairing scheme based on OOB channels is clearly of utmost impor-
tance. Since the OOB channels typically have low bandwidth, the shorter the data that
a pairing scheme needs to transmit over these channels, the better the scheme becomes
in terms of usability.

Various pairing protocols have been proposed so far. These protocols are generally
based on the bidirectional automated device-to-device (d2d) OOB channels. Such d2d
channels require both devices to have transmitters and the corresponding receivers. In
settings, where d2d channel(s) do not exist (i.e., when at least one device does not have
a receiver) and even otherwise, same protocols can be based upon device-to-human
(d2h) and human-to-device (h2d) channel(s) instead. Depending upon the protocol,
only two d2h channels might be sufficient, such as in case when the user has to per-
form a very simple operation (such as “comparison”) of the data received over these
channels. Clearly, the usability of d2h and h2d channel establishment is even more
critical than that of a d2d channel.

The earlier pairing protocols requires at least 80 to 160 bits of data to be transmitted
over the OOB channels. The simplest protocol [1] involves devices exchanging their
public keys over the wireless channel, and authenticating them by exchanging (at least
80-bits long) hashes of corresponding public keys over the OOB channels. The more
recent, so-called SAS- (Short Authenticated Strings) based protocols, [7] and [9], re-
duce the length of data to be transmitted over the OOB channels to only 15 bits or so.
The concept of SAS-based authentication was first introduced by Vaudenay in [22].

Based on the above-mentioned protocols, a number of pairing schemes with various
OOB channels have been proposed. We review these in the next section. In this paper,
we concentrate on pairing devices using unidirectional OOB channels. The motivation
for this is that in various pairing scenarios, bidirectional d2d channels do not exist
because only one of the devices being paired has a receiver (such as while pairing
wifi laptop and a cell phone). Since receivers are generally expensive, it is not feasible
to add them onto commodity devices, such as access points, bluetooth headsets, etc.
Moreover, even in scenarios, where bidirectional d2d or the equivalent bidirectional
d2h-h2d channels do exist, it is always beneficial to use only one of them for efficiency
and usability reasons.

With the above motivation, we take a closer look at our previously proposed protocol
that can be used for pairing two devices using a “short” unidirectional OOB channel in
one direction and a unidirectional “single-bit” OOB channel in the other direction [14].
Since a “single-bit” channel is easy and fast to implement, we ignore this bidirectional-
ity and from here on, refer to the protocol of [14] as a protocol that can pair two devices
using a unidirectional OOB channel. The protocol is reviewed in next section.

Automated Device Pairing for Asymmetric Pairing Scenarios 313

Our Contributions. In this paper, we make twofold contributions:

– First, we analyze the protocol of [14] (as it did not come with a security proof).
We show that the protocol is insecure in a security model that allows an adversary
to delay/replay information transmitted over the OOB channels. In fact, we argue
that in such a model, it is impossible to achieve pairing with only a unidirectional
OOB channel. Next, we consider a weaker yet practical security model that does
not allow an adversary to delay/replay messages over the OOB channel and prove
that the protocol of [14] indeed remains secure in this model.

– Second, as an improvement to [14], we propose a new implementation of a OOB
channel using LEDs as transmitter and video camera as receiver. Unlike the results
of [14], the implementation of our channel is much more efficient and its band-
width improves with the increase in the number of LEDs. Since most devices have
multiple LEDs (and if not, they can be cheaply added on), our implementation is
an efficient way to pair two devices (such as headset and camera phone, access
point and camera phone), one of which has a video camera. Our implementation
has other useful applications in Bluetooth/WiFi device discovery, sensor network
key distribution and in general, in data transmission.

Organization. The rest of the paper is organized as follows. In Section 2, we review
the prior pairing schemes. In Section 3, we describe the security model and summarize
relevant protocols. In Section 4, we analyze the protocol of [14]. Finally, in Section 5,
we discuss our implementation of a d2d channel using LEDs and video camera.

2 Related Work

There exists a significant amount of prior work on the general topic of pairing. In their
seminal work, Stajano, et al. [19] proposed to establish a shared secret between two
devices using a link created through a physical contact (such as an electric cable). In
many settings, however, establishing such a physical contact might not be possible,
for example, the devices might not have common interfaces to do so or it might be
too cumbersome to carry the cables along. Balfanz, et al. [1] extended this approach
through the use of infrared as a d2d channel – the devices exchange their public keys
over the wireless channel followed by exchanging (at least 80-bits long) hashes of their
respective public keys over infrared. The main drawback of this scheme is that it is
only applicable to devices equipped with infrared transceivers. Moreover, the infrared
channels can not be perceived by humans and thus are easy to attack.

Another approach taken by a few research papers is to perform the key exchange
over the wireless channel and authenticate it by requiring the users to manually and
visually compare the established secret on both devices. Since manually comparing the
established secret or its hash is cumbersome for the users, schemes were designed to
make this visualization simpler. These include Snowflake mechanism [5] by Levienet et
al., Random Arts visual hash [10] by Perrig et al. etc. These schemes, however, require
high-resolution displays and are thus only applicable to a limited number of devices,
such as laptops.

Based on the pairing protocol of Balfanz et al. [1], McCune et al. proposed the
“Seeing-is-Believing” (SiB) scheme [8]. SiB involves establishing two unidirectional

314 N. Saxena and M.B. Uddin

visual d2d channels – one device encodes the data into a two-dimensional barcode and
the other device reads it using a photo camera. Since the scheme requires both devices
to have cameras, it is only suitable for pairing devices such as camera phones.

Goodrich, et al. [6], proposed a pairing scheme based on “MadLib” sentences. This
scheme also uses the protocol of Balfanz et al. The main idea is to establish a d2h
channel by encoding the data into a MadLib sentence. Device A encodes the hash of
its public key into a MadLib sentence and transmits this over a d2h channel (using a
speaker or a display); device B encodes the hash of the (received) public key from de-
vice A into a MadLib sentence and transmit this over a d2h channel (using a speaker or
a display); the user reads and compares the data transmitted over the two d2h channels,
and vice versa. Note that, however, the scheme is not applicable to pairing scenarios
where one of the devices does not have a display or a speaker.

As an improvement to SiB [8], we earlier proposed a new scheme based on visual
OOB channel [14]. The is the scheme that we analyze and improve upon in this paper.
We will review this scheme in the following section and show that it is not secure in
a security model in which the adversary has delaying/replaying capability on the OOB
channel.

Uzun et al. [21] carry out a comparative usability study of simple pairing schemes.
They consider pairing scenarios where devices are capable of displaying 4-digits of SAS
data. Some recent work has focused upon pairing devices which possess constrained
interfaces. These include the BEDA scheme [17], which requires the users to transfer
the SAS strings from one device to the other using “button presses;” the schemes [11],
[12], which require the users to compare simple blinking or beeping patterns on two
devices. Most recently, the approach of [11] was extended by making use of an auxiliary
device, such as a smartphone [15].

In [18], authors consider the problem of pairing two devices which might not share
any common wireless communication channel at the time of pairing, but do share only
a common audio channel.

To summarize, the prior schemes are applicable to different pairing scenarios and
have varying degree of usability. In this paper, our focus is on automated pairing meth-
ods using unidirectional OOB channels.

3 Communication and Security Model, and Applicable Protocols

We first review the communication and adversarial model for the SAS protocols as
described in [22]. The devices being paired are connected via two types of channels:
(1) a short-range, high-bandwidth bidirectional wireless channel, and (2) auxiliary low-
bandwidth physical OOB channel(s). Based on device types, the OOB channel(s) can
be device-to-device (d2d), device-to-human (d2h) and/or human-to-device (h2d). An
adversary attacking the pairing protocol is assumed to have full control on the wireless
channel, namely, it can eavesdrop, drop, delay, replay and modify messages. On the
OOB channel, the adversary can eavesdrop, drop, delay, replay and re-order messages,
however, it can not modify them. In other words, the OOB channel is assumed to be an
authenticated channel. Note that if two parties run multiple (serial/parallel) sessions
with each other, then the adversary has the capability to delay, replay and re-order

Automated Device Pairing for Asymmetric Pairing Scenarios 315

messages on the OOB channels among these sessions. We call such a model a
“DRR-OOB” model.

We believe that considering a DRR-OOB model might be an overkill for certain
OOB channels and certain applications, and that it would be useful to consider a weaker
model where two parties never run parallel instances with each other and the adversary
can eavesdrop and drop OOB messages, but it can not delay, replay and re-order them
among multiple serial sessions between a pair of parties. We refer to such a model
as an “nDRR-OOB” model. There might be various ways in which one can ensure
such a model in practice. The easiest approach is to disallow a device to run more than
one parallel session with a given party at a given time and whenever a new session is
executed with the same party, have the device erase from its memory the old session
with the same party.

The security notion for a pairing protocol is adopted from the model of authenti-
cated key agreement due to Canneti and Krawczyk [2]. In the DRR-OOB model, we
will consider an (n, R, R̄)-adversary A against the pairing protocol, which is allowed
to launch only R sessions per player, and only R̄ sessions between any pair of play-
ers. Note that in the DRR-OOB model, A is allowed to delay, replay and re-order
OOB messages among multiple session between two parties, while in the nDRR-OOB
model, A (which is effectively a (n, R, 1)-adversary) is not allowed to do so. In both
these models, the security of the pairing protocol is modeled by an interaction between
A and the challenger that operates the network of n players P1, ..., Pn. In this game,
the challenger has a private input of bit b. This security model does not consider denial-
of-service (DoS) attacks. Note that on wireless channels, explicit attempts to prevent
DoS attacks might not be useful because an adversary can simply launch an attack by
jamming the wireless signal.

Using the launch queries, A can trigger any of the n players Pi to start a session of
the protocol with another player Pj . The challenger responds by initializing the state
of the invoked session and sending back to A the message it generates. The adversary
can also issue send queries for any previously initialized session on a message M as
input, which triggers the challenger to deliver message M to that particular session and
respond by following the protocol on its behalf. Moreover, on any of the launched ses-
sions, A can also issue reveal query, which gives him the key output by that particular
session, if this session computed a key, and a null value otherwise. Finally, on one of
the sessions, A can issue a Test query. In response, if this session has not completed,
the adversary gets a null value. Otherwise, if b = 1 then A gets the key output by the
“tested” session, and if b = 0 then A gets a random BitString of the same length.

EventuallyA outputs a bit b̂. We say that an adversary has advantage ε in the attack,
if the probability that b̂ = b is at most 1/2 + ε. We say that the protocol is (T, ε)-secure
if for all A’s bounded by time T the above defined advantage of A is at most ε.

An example application of this model is during authentication for an ATM transac-
tion, where there are only two parties, namely the ATM machine and a user, restricted
to only three authentication attempts.

To date, two three-round pairing protocols based on short authenticated strings (SAS)
have been proposed [9], [7]. These protocols all require bidirectional OOB channels and
are proven (T, nRR̄2−k +ε)-secure in the DRR-OOB security model. Of course, these

316 N. Saxena and M.B. Uddin

protocols are secure in the weaker nDRR-OOB model as well. In a communication
setting involving two users restricted to running three instances of the protocol, these
SAS protocols need to transmit only k (= 15) bits of data over the OOB channels.
As long as the cryptographic primitives used in the protocols are secure, an adversary
attacking these protocols can not win with a probability significantly higher than 3 ×
10−4, which gives us security equivalent to the security provided by 5-digit PIN-based
ATM authentication [22].

4 Pairing with a Unidirectional OOB Channel

As we mentioned in the previous section, prior SAS protocols are proven secure in the
DRR-OOB model, however they require bidirectional OOB channels. In this section,
we focus upon pairing scenarios where bidirectional OOB channels do not exist.

We take a closer look at the protocol of [14], which requires a unidirectional OOB
channel. We show the underlying protocol in Figure 1 (we base the protocol upon the
SAS protocol of [9], although it can similarly work with other SAS protocols as well).
The protocol works as follows1. Over the wireless channel, A and B follow the un-
derlying SAS protocol. Then a unidirectional OOB channel is established by device A
transmitting the SAS data. This is followed by device B comparing the received data
with its own copy of the SAS data, and transmitting the resulting bit b of comparison
over a OOB channel (say, displayed on its screen). Finally, the user reads the transmit-
ted bit b and accordingly indicates the result to device A by transmitting the same bit b
over an h2d input channel.

4.1 Protocol of [14] in the DRR-OOB Model

The protocol of [14] did not come with a security analysis [14]. Therefore, the first
and a natural question is whether the protocol remains secure in a DRR-OOB security
model. Unfortunately, the protocol turns out to be insecure in the DRR-OOB model.
We show our attack next. In fact, we argue that it is hard to achieve pairing using only
a unidirectional OOB channel in the DRR-OOB model.

The attack we describe next stems from the fact that only a single bit b, indicating a
“success” or a “failure”, is transmitted in the second step, i.e., over the d2h channel, and
that this bit of information can be delayed or replayed (recall that our security model,
described in Section 3, allows an adversary to do so!). Therefore, the attack is exploited
as follows.

1. An instance of the above pairing protocol is run between two devices. The adversary
does not insert any messages (specifically, its own public key(s), for which it knows the
secret keys or its own secret shared key, based on the protocol) on the wireless channel.
However, the adversary stalls the bit b (which indicates a “success”) to be transmitted
over the d2h channel. This forces the user to abort the protocol and re-run it.

1 A similar modification was suggested to the protocol where devices exchange their public keys
over the wireless channel and exchange the (160-bits long) hash of the concatenation of the
two public keys over the OOB channel [14].

Automated Device Pairing for Asymmetric Pairing Scenarios 317

A B

Pick RA ∈ {0, 1}k

(cA, dA) ← commit(pkA, RA)
pkA,cA ��

Pick RB ∈ {0, 1}k

pkB ,RB��
dA ��

SASA = RB ⊕ HRA(pkB)
SASA ��

RA ← open(pkA, cA, dA)
b � � �� � � b��� � � � b ← (SASA == RB ⊕ HRA(pkB))

Accept pkB as B’s public key if Accept pkA as A’s public key if
b = 1 b = 1

���� : the wireless channel
�� : the unidirectional d2d channel

��� � � � : the d2h channel
 � � �� � � : the h2d channel
pkA, pkB: (Diffie-Hellman) public keys of devices A and B
commit() and open(): functions of a commitment scheme based on random oracle model
H(): hash function drawn from an almost universal hash function family

Fig. 1. The protocol of [14] based on the SAS protocol of [9]

2. During the second instance of the protocol, the adversary first inserts its own mes-
sages over the wireless channel and then delivers the previously stalled bit b over the
d2h channel. Since the bit b indicates a “success”, the user is fooled into accepting the
protocol instance instead of aborting it.

A similar attack can be based upon replaying of the bit b, instead of its delaying,
as follows. Over the first instance of the protocol, the adversary does nothing except
for recording the bit b. The adversary hopes that another instance of the protocol is run
and if so, it attacks the new instance by inserting its own messages over the wireless
channel, and simply replaying the previously recorded bit b over the d2h channel.

A general implication of the above attack on the protocol of [14] is that it seems
hard, if not impossible, to achieve pairing with a unidirectional d2d channel. In other
words, it appears hard to establish mutual authentication with a unidirectional d2d au-
thenticated channel. We know, from the original unidirectional message authentication
SAS protocol of Vaudenay [22], that a device A can authenticate itself to device B
if there exists a physical channel from A to B. The question is can this SAS channel
also be used by B to authenticate to A. Suppose that B wants to authenticate a message
mB to A. B can simply send mB to A over the wireless channel, which the adversary
might modify to m′

B . Now, both B and A need to know if mB was modified during the
transmission or not, i.e., if mB = m′

B or not. It is easy for B to know this: A can au-
thenticate to B m′

B using the unidirectional SAS from A to B, and B can simply verify

318 N. Saxena and M.B. Uddin

if m′
B = mB or not. However, there appears to be no way for A to know if it received

the same message mB that B transmitted, except for B itself notifying A whether or
not m′

B = mB , which can be achieved by B transmitting the bit b indicating the result
of match over a “single-bit” authenticated channel from B to A. However, this brings
us back to the attack that we described on the protocol of [14], since the bit b can be
delayed or replayed by an adversary.

4.2 Protocol of [14] in the nDRR-OOB Model

As shown in the previous section, the protocol of [14] is not secure in the DRR-OOB
model. Now, we analyze the protocol in the nDRR-OOB security model. As pointed
out in Section 3, this is a more practical model for certain applications. Fortunately, the
protocol can indeed be proven secure in the nDRR-OOB model. In fact, we show that
using the modification as in the protocol of [14], any known SAS protocol P based on
bidirectional OOB channels, which is secure in the DRR-OOB model (e.g., the protocol
of [9]), can be converted into a pairing protocol Q based on a unidirectional channel in
the nDRR-OOB model (e.g., the protocol of Figure 1).

Theorem 1. If any known SAS protocol P is (T, nR2−k+ε)-secure against a (n, R, 1)-
adversary in the DRR-OOB model, then the pairing protocol Q is (T + δ, nR2−k +
ε)-secure against a (n, R, 1)-adversary in the nDRR-OOB model, where δ denotes a
small polynomial amount of time.

Proof. We prove the above theorem by contrapositive. In other words, we show that if
there exists a (n, R, 1)-adversaryA in the nDRR-OOB model that can win against the
protocol Q with a probability significantly better than nR2−k and in time T , then we
can construct a (n, R, 1)-adversary B in the DRR-OOB model that can win against the
protocol P with a probability significantly better than nR2−k and in approximately the
same time T .
The idea of the construction of the adversary B is very simple. Basically, B receives
the queries fromA, submits them to its challenger and forwards the responses received
back to A, thereby perfectly simulating the role of the challenger to B.
A starts off by issuing the launch queries, which B submits to its challenger and

responds back to A with the messages delivered by the challenger. B does the same
when A issues the send queries for all the protocol messages on the wireless chan-
nel and the message transmitted over the OOB channel in one direction (say SASi

from Pi to Pj) (since the two protocols are alike in terms of the messages exchanged
over the wireless channel and message transmitted over the OOB channel in one di-
rection). However, when B receives the message transmitted over the OOB channel in
the other direction (say SASj from Pj to Pi) from the challenger, then B computes
b = (SASi == SASj) and sends b to A.

When A issues the reveal queries and finally the test query, B simply submits
these queries to the challenger and replies back with the responses it receives from the
challenger.

If A succeeds in correctly distinguishing the key output by the “tested” session, so
does B; since the two protocols are exactly alike in terms of the messages exchanged
over the wireless as well as the OOB channel in one direction, and also both essentially

Automated Device Pairing for Asymmetric Pairing Scenarios 319

have the same winning condition, since (b = 1) ⇒ (SASi = SASj). Both A and B
win with the same probability and have only a small δ time difference that is needed by
B in computing the boolean expression b = (SASi == SASj).

5 Automated d2d Channel Using LEDs and Video Camera

In this section, we discuss our implementation of a d2d channel in which the transmitter
is equipped with LEDs and the receiver is equipped with a video camera. Our channel
implementation is quite efficient and its bandwidth, unlike the results of [14], improves
with the increase in the number of LEDs. The implementation can also be used on
regular displays by simulating the LEDs on them. In the pairing application, we use
this channel to transmit 15-bits of SAS data.

5.1 Encoding Using LEDs

In our encoding, we need two types of LEDs: a “sync” LED for synchronization at
the beginning and end of SAS data transmission, and one or more “data” LEDs for
transmitting the SAS data. The sync LED is different in color from the data LEDs –
in our setup we keep a red LED as the sync LED and green LEDs as the data LEDs.
LEDs are placed horizontally and vertically on the transmitter display. The sync LED
can be placed at any vertical or horizontal position. The bit locations of the data LEDs
increases from left-to-right and top-to-bottom. So, the top left data LED shows the first
bit of the SAS data. There should be some gap between the two LEDs which needs to
be at least half of the width of the LED itself.

The sync LED is used for indicating the beginning and end of the SAS data trans-
mission in order to detect any synchronization delays, adversarial or otherwise, between
the two devices. The sync LED is kept in “ON” state only at the beginning and end of
data transmission and in “OFF” state otherwise.

The data LEDs are used for SAS data transmission by indicating different bits
(‘0’/‘1’) for different states (OFF/ON) of LEDs; in our setup, we used the ON state
of a data LED as a bit ‘1’ and the OFF state as bit ‘0’. Each transmitter needs to have
one or more data LEDs and the more in number of data LEDs are, the speedier the SAS
data transmission becomes. The transmitter can send the number of bits equal to the
number of data LEDs, i.e., one bit per LED at a time. If N is the number of Data LEDs,
the transmitter can display N bits of SAS data at a time. For transmitting 15-bits SAS
data it requires � 15N � frames. The state of the sync and data LEDs is kept unchanged
for a certain time period so that a stable state can be easily captured from the video
stream of the receiver video camera. Each stable state captured from the video stream is
termed as a “BitFrame”. For our setup, the time duration a BitFrame is kept unchanged
(henceforth referred to as the “hold time”) is set to an experimentally determined value
of 300 ms. After every 300 ms, next N bits of the SAS data are shown in the next frame.
This process continues until all bits of SAS data are transmitted. If the last frame does
not have N number of SAS bits to show, the first few LEDs show the data bits and the
remaining are kept OFF.

For discovering the LEDs’ location, color, dimension at the receiver side, we need
two extra frames – an “All-ON” frame having all LEDs in ON state and an “All-OFF”

320 N. Saxena and M.B. Uddin

frame having all LEDs in OFF state. Before transmitting the frames containing the
SAS data, the All-ON and All-OFF frames are first displayed. These two frames are
displayed within the same hold time of 300 ms. In addition to All-ON and All-OFF
frames, we need another frame, to detect synchronization delays, having the sync LED
in ON state and the data LEDs in OFF state. This frame is displayed at the end, after the
completion of SAS data transmission. Therefore, overall we need a total of three extra
frames. Thus, the total number of frames to be transmitted is � 15N � + 3, which yields a
total transmission time of (� 15N �+ 3)× 300 ms, where N is the number of data LEDs.

5.2 Decoding Using a Video Camera

The two devices being paired first execute the protocol as in Figure 1 over the wire-
less channel. When the receiver device is done with SAS data computation, it turns
on its video camera, asks the user of the device to adjust its camera setting, focus on
the LED-based display of the transmitting device and press “OK” button when done.
The user does the adjustment as needed and presses the OK button. After this, the re-
ceiver sends the “ready” signal to the transmitter and requests the transmitter to send
the acknowledgement over the wireless channel when it is done with computing its
SAS value and ready to start transmitting over the unidirectional channel. The transmit-
ter acknowledges the receiver when it is ready for transmitting the SAS data and starts
transmitting over the unidirectional channel. In this setting of unidirectional channel,
the receiver must have higher reception rate than transmitter’s transmission rate. So, the
video camera must have higher frame rate than frame rate of the transmitters displayer.
If frames are not carefully captured from the video stream, there is a chance of obtain-
ing the counterfeit frames which contain the transition state of LEDs. Such frames may
contain some LEDs of one state and some LEDs of next state.

Resolving the Timing Issue of Frame Capturing from Video Stream. Assuming that
the transmission delay of acknowledgement from the transmitter to receiver is negligi-
ble (5-6 ms) compared to the “hold time” (of 300 ms) between two successive frames at
the transmitter, the receiver captures the first frame from the video stream after a time
equal to the half of the hold time (i.e., 150 ms) after receiving the acknowledgement.
The receiver video camera also has a delay (about 30-40 ms, as most common cameras
have a rate of 30-40 frames per second) of capturing the frame from video stream. So,
the first frame is captured after the half of the hold time, after getting the acknowledge-
ment from the receiver. The timestamps of capturing rest of the frames is pre-calculated
by adding the hold time (300 ms) for each frames with capturing timestamp of the first
frame. The captured frames are processed after the completion of capturing of all trans-
mitted frames. During capturing, the captured frames are saved from the video stream
buffer location of frames to another location in main memory for later processing. There
is some initial delay in capturing of first frame and it is adjusted by capturing the frame
in the middle of hold time, however, there is no delay per frame for capturing the rest
of the frames. Thus, the frame capturing from the video stream works successfully in
real time. Note that our scheme does not require global clock synchronization for the
transmitter and receiver. Figure 2 depicts the synchronization of transmission and re-
ception of data. In this figure each small rectangle on the receiving window denotes a

Automated Device Pairing for Asymmetric Pairing Scenarios 321

Fig. 2. Synchronization of Transmission and Reception of Data

video frame of video stream and brown arrow marked with “Video Stream Capturing”
denotes the propagation of transmitted signal to streamed frame in video stream, which
makes sense that there is some propagation delay of an input transition from transmit-
ter’s side to receiver’s video stream.

Detection of LEDs and Retrieval of SAS data from Video Frames. The frames
are processed after the completion of capturing of all transmitted frames. The captured
frames are processed by direct access to the memory address location of pixels. Direct
addresses of pixels are calculated by knowing the pointer of memory address of first
pixel of the frame and calculating other pixels address using the stride, width and length
of frames.

Our LEDs location and dimension detection algorithm is a simple but fast, robust
and efficient one - unlike any existing object/face detection algorithms [13,16,23]. It
detects the position and dimension of LEDs deterministically. It is able to detect any
shape/geometry of LEDs unlike [16,23] and doesn’t require any prior training unlike
[13,16]. It uses the color threshold adjustment technique like [24] to detect the LEDs
position and dimension.

The maximal differences of RGB values, max(dR, dG, dB) (denoted as µ), of each
pixel of All-OFF and All-ON frames are measured and kept in memory, and using a
threshold value for µ, BitStrings are built for each row of pixels. For example, if the
µ exceeds a certain threshold, the corresponding bit in string becomes ‘1’, otherwise it
becomes ‘0’.

Each BitString is matched against a regular expression for consecutive 1s. For each
matching, its center is calculated and its safeness and centeredness as an LED center is

322 N. Saxena and M.B. Uddin

Fig. 3. Detected LEDs from BitString Fig. 4. Second Setting: breadboard with LEDs

checked by matching against the already explored LEDs and exploring only the adja-
cent pixels of this center in the frame. If its safeness and centeredness is proved, it is
taken as an LED and put in explored list of LEDs. After checking for each match of
regular expression for each bit strings, counts of explored LEDs is matched against the
original count of the LEDs. This process continues up to a number of times by adjusting
the threshold value of µ and constructing the new BitStrings until the count of LEDs
matches. See Figure 3 for an example of detection of LEDs from the BitString.

After successful discovery of LEDs, the length, width, average RGB values of ON
and OFF states of LED area for each LEDs are stored in memory for detecting the
On-Off state of LEDs in subsequent BitFrames.

From the successfully discovered LEDs, red colored the sync LED is detected on the
basis of its color. On the basis of the location of the sync LED, rest of the LEDs are
clustered according to a threshold value of proximity among the LEDs. After successful
detection of LEDs, the data LEDs are sorted according to the left-to-right and top-to-
bottom ordering of coordinates for a maximum value of tolerance limit in deviation
of coordinates. Tolerance limit is set by measuring the average width and length of
discovered LEDs. Now for bit frames containing SAS data, average RGB values of the
area of only the discovered LEDs are explored and matched against the ON and OFF
state of RGB values of the LEDs with a tolerance limit. If the average RGB values of
the area matches with the ON state of the LED, the corresponding bit is detected as ‘1’
and if these match with the OFF state, it is detected as ‘0’. In this manner, the whole
SAS string is retrieved by exploring the discovered LEDs for each bit frames. If there
arises any ambiguity, i.e., the average RGB values match with both the condition of ON
and OFF state or neither of them, tolerance limit is adjusted and decoding is repeated
up to a threshold number of times.

The last frame is examined to determine whether the sync LED is in the ON state
and that all data LEDs are in the OFF state. If not, there is an indication of a sync bit
failure due to synchronization delays.

If the extracted SAS matches with the computed SAS on the receiver and the
frames pass the synchronization test, the receiver and transmitter are successfully
paired. Otherwise, they fail due to mismatch of SAS or delay in synchronization. For a
successful pairing, the LEDs are marked with a rectangle of green color around them
and for a failed case, the LEDs are crossed with red color. Observing the graphical result

Automated Device Pairing for Asymmetric Pairing Scenarios 323

on screen of the receiver, the user either accepts or aborts the pairing on the transmitter’s
device.

5.3 Experimental Setup

We implemented and tested our channel in two different settings. One showed the Bit-
Frames on the monitor of a desktop PC and the other showed the BitFrames on real
implementation of the scheme on breadboard using 7 LEDs (1 sync and 6 data LEDs),
the breadboard being interfaced to a desktop PC using DB-25 parallel printer port. In
the first setting, bitmap images of actual ON and OFF states of real LEDs are used. The
pictures from the two settings are shown in Figures 5(a), 4 and 5(b).

(a) First Setting: transmitter is monitor (b) Second Setting: transmitter is LEDs on
breadboard

Fig. 5. Two Settings: receiver is laptop camera for both the settings

In both the schemes receiver is the Dell Vostro 1500 (Intel Core 2 Duo 1.6 GHz
with 2 GB RAM) Laptop having Integrated Webcam and wireless channel is Wireless
LAN (54 Mbps) of our university. The integrated webcam on the laptop has the ca-
pability of capturing 30 frames/second and it can take frames of fixed dimension of
640X480 pixels. We wrote the simulator in Microsoft VC# to implement the last two
OOB message exchange as in the Figure of 1, assuming that the devices have already
exchanged the first three messages over the wireless channel and each has computed
its SAS value. The implementation processes the frames, extracts the SAS data from
video stream and shows the result on screen. Actuation to real-timing is maintained
by Environment.TickCount variable of MS VC#. The webcam is interfaced on
port 1024 of the computer. Message passing is used to communicate with the webcam.
We used “avicap32.dll” for capturing the video. The webcam can be replaced with any
good IP Camera for better resolution of frames without any modification in the exist-
ing simulator. The camera is set in NON-STOP video capturing mode and frames are
taken setting the camera in preview mode. Camera controller is added in the simulator
to adjust the focus, tilt and pan of camera. For both the schemes transmitter is Dell
Desktop (Intel Xenon Processor 1.8 GHz with 1 GB RAM). Communication with the
transmitter is done by implementing the Client-Server communication model between
the transmitter and receiver.

The simulator is used to generate huge number of test cases for different numbers
and orientations of LEDs. We tested our system for different brightness of frames by

324 N. Saxena and M.B. Uddin

setting different level of brightness of the monitor. In the first setting, frames are pre-
stored in transmitter and are displayed when the receiver sent the request of transmitting
the frames. It is used to test our pairing scheme on this channel easily and rigorously.

5.4 Experiment Results

A couple of snapshots of the results of execution of our scheme in both settings are
shown in Figures 6(a) and 6(b).

(a) First Setting: Successful Pairing (b) Second Setting: Failed Pairing

Fig. 6. Partial Screenshots of Results of the Two Settings

From the result of the first setting, we found that our implementation works for dif-
ferent number and orientation of LEDs. LEDs need not be in any fixed location on
the screen and they can be on any random location while maintaining the left-to-right
and top-to-bottom ordering among themselves. We tested lot of test cases for the dif-
ferent number and orientation of LEDs and all of them passed without any error. We
also executed some test cases by changing SAS data on test cases, replacing the valid
frames with invalid frames and replacing the sync frame with other frames. All these
test cases were successfully determined as failing cases. By changing the brightness of
the monitor, we found that our scheme works for any brightness of the monitor. Our
first scheme works fine if the distance between the transmitter or receiver is less than
1.5–2 meters. If the distance is greater than 2 meter, the LEDs become to tiny to detect
for the camera. In this case LED count doesn’t match and the simulator searches up to a
threshold number of times by adjusting the color threshold value. If it doesn’t find any
match of count of LEDs, it shows the failure message. By using a camera with a better
resolution (which is currently 640X480) the distance of the transmitter and receiver can
be increased.

Our implementation in the second setting also works fine. The Light from illuminat-
ing LEDs scatters around the LEDs. For testing the maximum light scattering effect we
did not separate the LEDs by any type of separator or did not keep them inside the small
holes to negate the lighting effect among the LEDs. All the test cases (for successful
as well as failing pairing) passed without any problem. Our implementation of color
threshold adjustment strategy during discovery of LEDs also works fine in this setting.

Automated Device Pairing for Asymmetric Pairing Scenarios 325

This setting is also tested with varying distances between the transmitter and receiver.
It works fine up to 2.5 meters of distance, longer than in the first setting. Lights from
LEDs directly falls on camera and thus ON-OFF state detection becomes easy as there
is more change in lighting effect in this setting.

Based on the results obtained, we summarize the following salient characteristics of
our implementation in both settings.

Transmission Time. Using N data LEDs and one sync LED, the transmission requires
about (� 15N �+3)×300 ms for 15-bit of SAS data. Extraction of SAS data from captured
frames requires less than 1 second. Therefore, for a typical display which has 2 data
LEDs and 1 sync LED, our scheme requires less than 4.15 s to complete the whole
process. If a device has 5 data LEDs and 1 sync LED, it will require less than 2.8
s. Of course, since we need at least three extra frames, the transmission can not take
place quicker than 900 ms, no matter how many LEDs we have. Moreover, we require
a device to have at least two LEDs, one of which has a unique color.

Distance. Our scheme works well, if the distance between the sender and receiver is
less than 1.5-2.5 meters. Real implementation of channel with the LEDs on breadboard
in second setting shows that our channel is efficient for about 2-2.5 meter distance
between the receiver and transmitter. This represents a promising improvement over the
existing d2d channels which can work for very little distance between the transmitter
and receiver.

Brightness and Intensity of Light. Our channel is robust to varying brightness and
intensity of light. It compares the states of LEDs ON and OFF state on current default
settings of brightness and intensity of light on devices we tested on. From first two,
All-OFF and ALL-ON frames, it learns the environment.

5.5 Other Applications of Our Implementation

Our channel implementation using LEDs and video camera and our underlying algo-
rithms for real-time capturing of the frames from video stream, processing the frames
efficiently and extracting data from video frames, can be used in a number of applica-
tions. We briefly discuss some applications as follows.

Device Discovery. A device needs to, before starting to communicate with another wire-
less device, first determine its address. Currently, in Bluetooth and WiFi, such a device
discovery is performed over the wireless channels and has serious implications in terms
of efficiency as well as usability – the device senses for devices in the neighborhood
and dumps a list of devices (which could be long) and asks the user to select the de-
vice it wants to connect to. Using our d2d channel, one can discover a device over the
physical channel itself – the user goes near the device it wants to connect its device to
and presses a button on it to start transmitting its address in the form blinking LEDs
and reads the address using the camera. Using just two data LEDs, this would only take
about 9 seconds to discover a 48-bit long Bluetooth device address, and ease the burden
on the user.

Secure Key Distribution in Sensor Networks. Before, deploying a sensor network, the
nodes need to be provided with keys that they can use to secure communicate among

326 N. Saxena and M.B. Uddin

themselves. Due to the lack of a trusted infrastructure, such a key distribution needs
to be performed on-site by the administrator of the network. Moreover, due to lack of
hardware interfaces (such as USB interfaces) on sensor nodes and for usability reasons,
the key distribution must be performed wirelessly. Using the existing, so called key
pre-distribution schemes, e.g., [4], the key distribution can be achieved, if one could
establish a secure channel or a key between each sensor node and the base station. We
are currently in the process of extending our implementation of the d2d channel and
the protocol of Figure 1 to simultaneously pair each sensor node with the base station.
Most existing commercial sensor nodes generally have three LEDs and the base station
PC can be easily connected with an IP camera. We claim that our approach would be
much more efficient, scalable and user-friendly than a recently proposed scheme [3].

General Data Transmission. Our implementation can also be used in applications
other than security, for data transmission. Using N data LEDs (or an equivalent sized
display) and a hold time of 300 ms, we are able to achieve a bandwidth of 3.33N bps.
With such a bandwidth, one could efficiently send out information such as advertise-
ments, calendars, low-resolution images, etc.

6 Conclusion

In this paper, we focused upon pairing two devices using unidirectional OOB chan-
nels. We analyzed the protocol of [14] and proved its security in a reasonable security
model. We also devised an efficient implementation of an OOB channel using LEDs as
transmitter and video camera as a receiver. With a display consisting of just two LEDs,
our implementations takes less than 6.5 seconds. With increase in the number of LEDs,
the bandwidth of our channel gets better. For example, with six LEDs, we need less
than 2.8 seconds. Our implementation has other useful applications in Bluetooth/WiFi
device discovery, sensor network key distribution and in general for data transmission.

Acknowledgments. We would like to thank N. Asokan for his comments on an earlier
version of this paper.

References

1. Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Authentication in
ad-hoc wireless networks. In: NDSS (2002)

2. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045. Springer,
Heidelberg (2001)

3. Cynthia, K., Luk, M., Negi, R., Perrig, A.: Message-in-a-bottle: User-friendly and secure key
deployment for sensor nodes. In: ACM SenSys. (2007)

4. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution scheme for
wireless sensor networks. In: ACM CCS (2003)

5. Goldberg, I.: Visual Key Fingerprint Code (1996),
http://www.cs.berkeley.edu/iang/visprint.c

6. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and Clear: Human-
Verifiable Authentication Based on Audio. In: ICDCS (2006)

http://www.cs.berkeley.edu/iang/visprint.c

Automated Device Pairing for Asymmetric Pairing Scenarios 327

7. Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication based on short authen-
ticated strings. IACR Cryptology ePrint Archive: Report 2005/424 (2005)

8. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for
human-verifiable authentication. In: IEEE Symposium on Security and Privacy (2005)

9. Pasini, S., Vaudenay, S.: SAS-Based Authenticated Key Agreement. In: Yung, M., Dodis, Y.,
Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958. Springer, Heidelberg (2006)

10. Perrig, A., Song, D.: Hash visualization: a new technique to improve real-world security. In:
CrypTEC (1999)

11. Prasad, R., Saxena, N.: Efficient device pairing using human-comparable synchronized au-
diovisual patterns. In: Applied Cryptography and Network Security (ACNS) (2008)

12. Roth, V., Polak, W., Rieffel, E., Turner, T.: Simple and effective defenses against evil twin ac-
cess points. In: ACM Conference on Wireless Network Security (WiSec), short paper (2008)

13. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. In: Pattern Anal-
ysis and Machine Intelligence(PAMI) (1998)

14. Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure device pairing based on a
visual channel. In: IEEE Symposium on Security and Privacy (ISP 2006), short paper (2006)

15. Saxena, N., Uddin, M. B., Voris, J.: Universal device pairing using an auxiliary device. In:
Symposium On Usable Privacy and Security (SOUPS) (2008)

16. Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied to faces
and cars. In: TRINITY (2003)

17. Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association. In: Interna-
tional Workshop on Security for Spontaneous Interaction (IWSSI) (2007)

18. Soriente, C., Tsudik, G., Uzun, E.: Hapadep: Human asisted pure audio device pairing. Cryp-
tology ePrint Archive, Report 2007/093 (2007)

19. Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Security Protocols Workshop (1999)

20. Suomalainen, J., Valkonen, J., Asokan, N.: Security associations in personal networks: A
comparative analysis. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007.
LNCS, vol. 4572. Springer, Heidelberg (2007)

21. Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing methods. In: USEC
(2007)

22. Vaudenay, S.: Secure communications over insecure channels based on short authenticated
strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

23. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Computer Vision and Pattern Recognition (2001)

24. Weszka, J.S.: A survey of threshold selection techniques. Computer Graphics and Image
Processing 7, 259–265 (1978)

Algebraic Description and Simultaneous

Linear Approximations of Addition in Snow 2.0.�

Nicolas T. Courtois1 and Blandine Debraize2,3

1 University College London, Gower Street, London, UK
2 Gemalto, Meudon, France

3 University of Versailles, France

Abstract. In this paper we analyse the algebraic properties over the
field GF(2) of the addition modulo 2n. We look at implicit quadratic
equations describing this operation, and at probabilistic conditional lin-
ear equations. We show that the addition modulo 2n can be partly or
totally linearized when the output is fixed, and this for a large family of
outputs. We apply these results to analyse the resistance of the stream
cipher Snow 2.0 against algebraic attacks.

Keywords: Modular addition, multivariate quadratic equations, alge-
braic immunity, stream ciphers, Snow 2.0, algebraic cryptanalysis.

1 Introduction

Many ciphers are based on mixing of S-Boxes, arithmetic and Boolean opera-
tions. One of the fastest arithmetic operations is addition modulo a power of 2,
that is handled very efficiently on modern processors. We will adopt the notation
‘�’ for this operation in this article, to differentiate it from the “exclusive-or”
which we denote ‘⊕’. The addition modulo 2n is used in block ciphers such as
TwoFish, hash functions such as MD5 and SHA 1 and in many stream ciphers.
Among stream ciphers, the most prominent example is Snow 2.0, which is today
a reference standardized software-oriented stream cipher.

The algebraic immunity is defined as the minimum degree for which one can
write multivariate equations mixing input bits and output bits (see [17]). It is an
important design criterion for S-boxes. However this criterion is not sufficient in
itself to define the resistance of an S-box against algebraic attacks. Indeed, the
modular addition is partly linear, thus it has the same algebraic immunity as
the exclusive or. Yet ‘�’ is stronger. For example, an interesting analysis of the
security of the stream cipher Snow 2.0 has been given in [5] by Billet and Gilbert.
They propose an attack on a modified version of the cipher, where the ‘�’ are
replaced by ‘⊕’ that is fully linear. But as ‘�’ cannot be described entirely by
linear relations, the attack could not be directly extended to the real cipher.

A generalisation of the notion of algebraic immunity has been studied in [1]
and [14]. It is concerned with implicit equations conditioned on the value of
the output or a part of the output. It has interesting applications in algebraic
cryptanalysis of stream ciphers as shown by Fischer and Meier in [14].

� Partly supported by the EU Commission via the ECRYPT network of excellence.

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 328–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algebraic Description and Simultaneous Linear Approximations 329

Algebraic properties of the addition modulo a power of two have previously
been studied in [5,15,19]. In [5], a quadratic description over GF(2) implying
carry bits is proposed. In this paper we propose a new notion called describing
degree to explore the algebraic properties of the ‘�’ in a more refined way. We
develop a description of this function as a set of implicit quadratic equations
over GF(2) without any additional variable. Then we study the question of how
equations can be partially linearized from the point of view of the attacker. For
this we use conditioned equations described in [14] to introduce a new method
to approximate the addition modulo 2n, that is the main contribution of this
paper. Actually one can view ‘�’ as an S-box in two different ways, and both
versions can be partially or totally linearized. One of the interests of these partial
linearization techniques is that they can improve considerably the complexities
of algebraic attacks, that can potentially be developed also for other ciphers.

One of the propositions of the authors in [5] to extend their method to the
real Snow 2.0 is to guess the carries of the modular addition. In this paper we go
further in the analysis of the security of this cipher against this type of attack. We
implement their proposition, and show that by using our linearization techniques
on ’�’ we obtain better results than by guessing the carries. In this paper we
consider KGSnow 2.0, that is the keystream generator part of the cipher, where
the initial state of the registers is considered as the key of the cipher. We compare
our results to the classical time-memory trade-off attack on KGSnow 2.0.

In Section 2 we recall and define various notions of algebraic immunity, in
Section 3 we study algebraic deterministic descriptions of ’�’, and these can be
partially linearized as shown in Section 4. In Section 5 we explain how to handle
algebraic cryptanalysis and our basic algorithm. Based on all these, an analysis
of KGSnow 2.0 is presented in Section 6.

2 Preliminaries

2.1 Notation
Let us consider three n-bit words (xn−1, . . . , x0), (yn−1, . . . , y0) and (zn−1, . . . , z0)

with z0 being the low-order bit. The modular addition
(x, y) &→ z = x � y mod 2n

is a T-function (see [16]), as each bit zi of the output only depend on the bits
x0, · · · , xi, y0, · · · , yi. This T-function can be described the following way by (∗)
and (∗′), using new variables that are carry bits, represented by the (n− 1)-bit
word c = (cn−1, . . . , c1):

(∗)

8>>>>>>>>>>><
>>>>>>>>>>>:

z0 = x0 + y0

z1 = x1 + y1 + c1

z2 = x2 + y2 + c2

...
zi = xi + yi + ci

...
zn−1 = xn−1 + yn−1 + cn−1,

(∗′)

8>>>>>>>><
>>>>>>>>:

c1 = x0y0

c2 = x1y1 + (x1 + y1)c1

...
ci = xi−1yi−1 + (xi−1 + yi−1)ci−1

...
cn−1 = xn−2yn−2 + (xn−2 + yn−2)cn−2

330 N.T. Courtois and B. Debraize

2.2 Descriptive Algebraic Representation Criteria for S-Boxes

We first recall important notions in algebraic cryptanalysis:

Definition 1. A system of equations is said to be overdefined if the rank of the
system equations is strictly larger than the number of variables.

Let S : {0, 1}n → {0, 1}m be an S-box.

Definition 2. An I/O equation for S is a nonzero algebraic equation r(x, y) = 0
that holds with probability 1, i.e. for every pair (x, y) such that S(x) = y.

The notion of Algebraic Immunity (also sometimes called Graph Algebraic Im-
munity or I/O degree) has been introduced by Carlet, Meier and Pasalic [17].

Definition 3. The algebraic immunity AI is defined by the minimum degree of
an I/O equation for S.

The algebraic immunity of the modular addition is clearly 1, because of the linear
equation mixing the least significant bits described at Section 2.1: z0 = x0 + y0.
The algebraic immunity of the exclusive or is also 1, yet typically � will be
cryptographically much stronger than ⊕. We see that the algebraic immunity is
not always the best criterion to define the resistance of an S-box against algebraic
attacks. Two other important properties of an S-box are:

1. The minimal degree d such that the S-box is entirely defined by equations
of degree at most d.

2. The number of such linearly independent equations of degree at most d.

We define a new criterion to describe the first property :

Definition 4. The minimal degree d such that the S-box is entirely defined by
equations of degree at most d is called describing degree (DD) of S.

The notion of algebraic immunity is based on the existence of an I/O degree
equation. But if for a function F some equations of minimal degree d exist,
however all these degree d equations may not define the function F . As we have
seen, the algebraic immunity of ‘�’ is 1 but as this function is not defined by
the only one linear equation z0 = x0 + y0, its describing degree is 2.

2.3 Criteria for Conditioned Algebraic Representation of S-Boxes

Conditional algebraic I/O equations emerge as an important tool in cryptanalysis
of stream ciphers as illustrated by Krause, Armknecht, Fischer and Meier [1,14].

Definition 5. Let us assume n > m. Given some fixed output y, a y-conditional
I/O equation for S is a nonzero algebraic equation ry(x) = 0 that holds with
probability 1 for every x such that S(x) = y.

The relevant notion of conditional algebraic immunity is defined by Fischer and
Meier [14] as follows:

Algebraic Description and Simultaneous Linear Approximations 331

Definition 6. Given some fixed output y, let d be the minimum degree of a y-
conditional I/O equation. The conditional algebraic immunity CAI of S is the
minimum of d over all y in GF (2)m.

Similarly, we adapt our describing degree criterion:

Definition 7. Given some fixed output y, let d be the minimum degree such that
the equation S(x) = y is entirely defined by conditional I/O equations of degree
at most d. The minimal d over all y in GF (2)m is called conditional describing
degree (CDD) of S.

3 Describing Degree of the Addition Modulo 2n

In this section, we show that the addition modulo a power of two can be described
by quadratic I/O equations over GF(2). We give a “describing” set of quadratic
equations and compute many extra equations.

We note that there are several ways to consider � as an S-box function. If we
consider three n-bits words x, y and z, the equation

x � y = z

leads to two possible functions P ,M of type {0, 1}2n → {0, 1}n:

– P : (x, y) &→ z

– M : (x, z) &→ y andM′ : (y, z) &→ x that is exactly the same function.

3.1 Equations with No Extra Variables

Proposition 1. The Describing Degree is 2 for both P and M.

Proof. Looking at the equation (∗) and (∗′) of Section 2.1, we notice that all the
carry bits ci from (∗′), can be expressed as linear combinations of other variables
using (∗), and eliminated. The resulting equations remain quadratic and there
is no extra variable at all:

(#)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = x0 + y0

z1 = x1 + y1 + x0y0

z2 = x2 + y2 + x1y1 + (x1 + y1)(x1 + y1 + z1)
...
zi = xi + yi + xi−1yi−1 + (xi−1 + yi−1)(xi−1 + yi−1 + zi−1)
...
zn−1 = xn−1 + yn−1 + xn−2yn−2 + (xn−2 + yn−2)(xn−2 + yn−2 + zn−2)

At this stage, these equations entirely define the function �, but are not
overdefined (this will change below). Yet they are already quite sparse. Apart
from the linear terms, only products of type AiBi or AiBi−1 do appear with A
being x or y, and with B being x, y or z. The number of terms is only O(n)
instead of O(n2) for a generic system of quadratic equations.

332 N.T. Courtois and B. Debraize

3.2 Additional Equations

Many other quadratic equations do exist for the adders modulo 2n. Their exis-
tence can be derived as follows:
– For any n, from (#) we have 1 linear and n− 1 quadratic equations.
– Then there are 3n additional equations that come from the fact that you

can multiply the linear equation by any variable and it becomes quadratic.
However it turns out that the dimension of the vector space spanned by
these equations is only 3n − 1 because of the following linear dependency:
(z0 + x0 + y0) = z0(z0 + x0 + y0) + x0(z0 + x0 + y0) + y0(z0 + x0 + y0)

– We also have 2 equations that come from the fact that you can multiply
z1 = x1 + y1 + x0y0 by x0 or by y0.

– Then for each of the n − 2 remaining equations, one gets 3 additional
quadratic equations. This is because the equation:

zi = xi + yi + xi−1yi−1 + (xi−1 + yi−1)(xi−1 + yi−1 + zi−1)
= xi + yi + xi−1 + yi−1 + xi−1yi−1 + xi−1zi−1 + yi−1zi−1

can be multiplied by (xi−1 +yi−1), by (xi−1 +zi−1) and also by (yi−1+zi−1).
These three new equations are linearly dependent and their rank is two. Thus
we get 2(n− 2) additional equations.

In the extended version of this paper, we prove that all the 6n− 3 quadratic
equations described above are linearly independent.

4 Conditional Linear Equations for ‘�’

By fixing z for P , and y for M, we obtain conditional equations of degree at
most 2, with at least 2 linear equations. In some cases, when the n − 2 least
significant bits of z are 1 for P , and when the n− 2 least significant bits of y are
0 forM, it can be completely linearized. That is what we show in section 4.1.

At section 4.2, we refine this result by showing that for both P and M, if
the output contain r consecutive bits of the same value 0 or 1 (whatever the
value it is for both P andM), we obtain a set of r + 2 linear equations that are
simultaneously true with a certain probability.

4.1 Conditional Describing Degree of ‘�’

Proposition 2. The Conditional Describing Degree is 1 for both P and M.

Proof. For M, this result is straightforward: we put y = 0, and the relation
becomes completely linear as we have x = z.
For P , we put z = 2n − 1, and we see that the first carry c1 = 0, because
x0 ⊕ y0 = 1 ⇒ x0 � y0 < 2. Then we prove recursively that all the carries of
this function are zero and that: ∀i xi ⊕ yi = 1. Finally, these equations clearly
describe exactly all possible input values that lead to the chosen fixed output
for this S-box (for both M and P).

Algebraic Description and Simultaneous Linear Approximations 333

In fact y = 0 is not the only value for y such that the relationM(x, z) = y can
be entirely described by linear equations. Our simulations showed that exactly 4
values of y have this property: the values for which the n−2 least significant bits
of y are zero. This can be proven as follows : as the carry cn−2 is 0, the equation
of the second most significant bit of the modular addition is zn−2 = xn−2⊕yn−2.
If yn−2 = 0, the same result holds for the most significant bit equation: zn−1 =
xn−1⊕yn−1. If yn−2 = 1, we have: cn−1 = �xn−2+yn−2+cn−2

2 � = �xn−2+1
2 � = xn−2.

Then the most significant bit equation is zn−1 = xn−1 ⊕ yn−1 ⊕ xn−2.
The same way, z = 2n − 1 is not the only value for z such that P(x, y) = z

can be fully described by linear equations. Our simulations showed that the 4
values of z such that its n−2 least significant bits are 1 have the same property.
This can be proven in a similar way as forM.

When we fix the output, the number of linear equations describing P andM
is at least 2 and in many cases it is more than 2. One can observe that (this
point will be developed later) :

– For P , this depends on the number of consecutive 1 in the least significant
bits of the binary representation of z. If there are r consecutive 1 and r ≤
n− 2, the number of linear equations is r + 2.

– ForM, this depends on the number of consecutive 0 in the least significant
bits of the binary representation of y. If there are r consecutive 0 and r ≤
n− 2, the number of linear equations is r + 2.

4.2 Probabilistic Conditional Properties of ‘�’

We will now give two general theorems on the number of probabilistic conditional
equations for P andM. Let S : {0, 1}n → {0, 1}m be an S-box.

Definition 8. A set E of equations is said to be p-probable for S if the probability
that all equations in E are simultaneously true, taken over the set of all pairs
(x, y) such that S(x) = y, is equal to p.

Theorem 1. Let z be a fixed output for P.

– If z has r consecutive 1s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for P, with
p = 1

2 + 1
2i+1 .

– If z has r consecutive 0s from the bit 0 to the bit r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
r − 1 = n− 2, and r if r − 1 = n− 1) linear equations for P, with p = 1

2 .
– If z has r consecutive 0s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its

binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for P, with
p = 1

2 −
1

2i+1 .

A symmetrical result holds for M when replacing 0s by 1s:

334 N.T. Courtois and B. Debraize

Theorem 2. Let y be a fixed output for M.

– If y has r consecutive 0s from the bit i to the bit i + r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for M, with
p = 1

2 + 1
2i+1 .

– If y has r consecutive 1s from the bit 0 to the bit r − 1 ≤ n − 1 in its
binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
r − 1 = n− 2, and r if r − 1 = n− 1) linear equations for M, with p = 1

2 .
– If y has r consecutive 1s from the bit i ≥ 0 to the bit i + r− 1 ≤ n− 1 in its

binary representation, then there is a p-probable set E of r + 2 (only r + 1 if
i + r − 1 = n − 2, and r if i + r − 1 = n − 1) linear equations for M, with
p = 1

2 −
1

2i+1 .

For proofs of Theorem 1 and 2 we refer to Appendix A.

Remark. In both theorems 1 and 2, the assertions are true with probability 1 if
we fix another constraint. For assertion 1 and 3, this constraint consists in fixing
the carry ci to 0. For assertion 2 of Theorem 1, it consists in fixing x0 to 0, and
for assertion 2 of Theorem 2 , in fixing x0 to 1 (this also implies that the first
carry bit c1 is 0). This can be seen in the proof in Appendix A. A randomly
chosen linear equation is true for M or P with probability close or equal to
1
2 . The interest of our theorems is that they allow to obtain r, r + 1 or r + 2
linear equations that are simultaneously true with probability close to 1

2 . Thus in
cryptanalysis, one is able to, if certain constraints are added, to partially linearize
the modular addition. Adding a large number of linear equations to a quadratic
system allows to eliminate many variables, and is expected to make it in general
easier to solve, at least for known Gröbner bases algorithms. This concept of
simultaneous linear approximations is very different from Linear Cryptanalysis
with multiple characteristics, and to the best of our knowledge has not been
studied before.

5 Algebraic Cryptanalysis and Application to KGSnow

5.1 Overview of Algebraic Cryptanalysis

Algebraic cryptanalysis is usually made of two stages:

1. Writing the equations. describing the problem of the recovery of the key.
This stage determines the complexity of the second stage.

2. Solving the polynomial system. The most usual family of algorithm for
solving polynomial systems is the XL and Gröbner bases family. XL ([7])
and Gröbner bases algorithms like F4 ([12]) and F5 ([13]) are based on the
same idea of expansion of the system followed by an elimination step.
– During the expansion the equations are multiplied by monomials of a

chosen degree.

Algebraic Description and Simultaneous Linear Approximations 335

– The elimination is a Gaussian elimination applied to the expanded sys-
tem where each monomial is considered as a variable.

This principle is applied once in XL whereas it is applied several times for
F4 and F5 with additional clever tricks to decrease the number of equations
in the Gaussian elimination.

The theoretic bound for the complexity of XL,F4 and F5 algorithm depends
on the maximal degree d of the polynomials manipulated during the computation
of the algorithm. The most important cost in these algorithms is the complexity
of the (most costly step) Gaussian elimination, that is bounded by M3, where
M = 1 + n +

(
n
2

)
+ ... +

(
n
d

)
is the number of monomials of degree less than d (n

being the number of variables).
Some work has been done to compute the value of this degree for a given

system by Diem in [10] and Bardet, Faugère and Salvy in [4]. But it is not relevant
for non random systems such as the systems derived from cryptographic systems.
What is well-known and proved by [4] is that the more overdefined the system
is, the lower this degree is. Thus, experimentation plays still an important role
in evaluating which overdefined systems of equations derived from cryptographic
systems can be solved and how.

5.2 Description of ElimLin and Simulations on KGSnow 2.0

In our experiments on KGSnow 2.0. we are heavily limited by the computational
power available and in this paper we limit the maximal degree for the polynomi-
als used during our computations to a very small value that is 2. We handle all
our computations with a very simple algorithm for solving polynomial systems
over GF(2) that is called ElimLin. A high-level description of ElimLin is given
in Algorithm 5.1. It is hard to make a fast and memory efficient implementation
of this algorithm, and serious research is needed about how to handle sparse
Gaussian elimination and how do we store equations in memory in ElimLin. It

Algorithm 5.1. ElimLin algorithm.
INPUT: a system S of GF(2)-equations {p1, ..., pm} describing an ideal I
Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L ←−Number of linear equations in S
while L > 0:

for i = 1 to L:
v ←− greatest variable of the linear equation li
l′i ←− li ⊕ v
Substitute v by l′i in all the equations of S except from li

Apply a total order on the monomials of S
S ←− Gaussian elimination(S)
L′ ←− Number of linear equations in S
L ←− L − L′

return S

336 N.T. Courtois and B. Debraize

appears that (with our current version already) we do not obtain better results
with the F4 version of the computer algebra system MAGMA (see [21]) than
with the simple ElimLin.

ElimLin in Cryptanalysis of KGSnow 2.0
In our simulations on KGSnow 2.0 we write the I/O equations describing the
update of the LFSR and FSM, and the output of the cipher occurring for some
consecutive clocks (from 11 to 18 consecutive clocks). The equation describing
the addition modulo 232 are those described at section 3. The equations describ-
ing the 32 bits S-box are directly derived from the 39 I/O quadratic equations
describing the AES S-box (see [8]). We fix some bits belonging to the states of
the FSM, and apply ElimLin on this system.

We consider here that brute force is the exhaustive search of the LFSR and
FSM initial states (576 bits). If we fix all but a key bits, an attack will be faster
than brute force if the running time is less than 2aE, where E is the time to
check one potential possibility for the initial state. Given a sufficient number
of output bits, heuristically about |LFSR| + [R1| + |R2| + ε, (as in [2]), this
system has a unique solution that gives these ’key’ bits. Exact figures are hard
to evaluate because they depend on an optimised implementation of the cipher.
Here we will assume that one encryption takes 300 CPU clocks and that the
CPU runs at 3 GHz. Then E ≈ 2−35 hours. Thus, if we fix all key bits except
35, an attack done in less than 1 hour on a PC will be faster than brute force.
If we fix all except 40 key bits, any attack done in less than (approximately) 1
day, will be faster than the exhaustive search of the initial LFSR and FSM bits.

6 Analysis of Snow 2.0 and KGSnow 2.0

KGSnow 2.0 is the keystream generator part of Snow 2.0. In this part we give
a short description of Snow 2.0 and recall the analysis of the security of this
cipher given in [5] and propose new ways to investigate this security by studying
KGSnow 2.0 and using our results of sections 3 and 4.

6.1 Description of Snow 2.0

Snow 2.0 is a reference standardized software-oriented stream cipher. It is be-
lieved quite secure and is quite fast: less than 6 CPU cycles per byte on a PC,
which is roughly about 3 times faster than RC4 and 4 times faster than AES,
cf. [20]. We give a brief description of Snow 2.0; see [11] for details. Snow 2.0
stream cipher is based on one linear feedback shift register made of 16 elements
from GF (232) (that can also be seen as a binary LFSR with 512 bits), and a
finite state machine composed of 2 states of 32 bits each, nonlinearly clocked.

The output of the FSM is given by the equation:

zt ⊕ st = (st+15 � R1t)⊕R2t (1)

Algebraic Description and Simultaneous Linear Approximations 337

and the update of the FSM is given by:

R1t+1 = st+5 � R2t (2)

R2t+1 = S(R1t), (3)

where S represents the S-box. This 32 bits S-box is made of four parallel Rijndael
S-boxes followed by the MixColumn operation (see [9]). The Rijndael S-box can
be described by 39 I/O quadratic equations, see [8]. The MixColumn transfor-
mation is GF(2) linear then the entire S-box can be described by 156 quadratic
I/O equations. The length of the key is 128 or 256 bits and the initialisation
of the key is nonlinear. Our contribution, in section 6.3 essentially consists in
analysing KGSnow 2.0.

KGSnow 2.0. has the same design as Snow 2.0, but we ignore the key and
IV setup, this meaning that we consider that the key of KGSnow 2.0. is the
initial state of the registers when the first keystream bits are produced. This is
because with algebraic attacks, the values we are looking for are the values of
these registers as they are the solution of the systems of equations, and especially
because we do not even know today concerning the security of Snow 2.0 against
algebraic attacks if these attacks are able to recover this state faster than its
exhaustive search.

6.2 Previous Work

The best known attacks on Snow 2.0 are distinguishing attacks. In [18], it is
shown that it possible to distinguish an output keystream of Snow 2.0 of length
2174 words from a truly random sequence with workload 2174. No key recovery
attack on this cipher have been found so far.

In [5], Billet and Gilbert analyse the security of the cipher by replacing the
addition modulo 232 by ‘⊕’. It is then possible to break the modified cipher by
linearization with a complexity of 251. They use the fact that the describing
degree of the S-box is 2, added to the fact that with the replacement of the ‘⊕’
by ‘�’, it is possible to eliminate all the FSM memory bits except the initial
ones. They proposed two ways to exploit this result for the real Snow 2.0.:

– The first one consists in guessing the carries of the addition modulo 232, or
to look for the most probable case, that is when all the carries are 0. We have
implemented this approach by fixing some carries in the system of equations.
But by applying our algorithm (see section 5.2) on such systems we could
never recover the initial state fast enough to perform an attack more efficient
than the exhaustive search. In section 6.3 we improve this method by using
our results of section 4.1.

– The second one consists in introducing the carry bits of the two modular
additions ‘�’ at each clock. This allows to build a system of quadratic equa-
tions describing the initial state. But in this case it is not possible anymore
to totally linearize the system of equations, the attacker has to apply a poly-
nomial system solving algorithm like Gröbner bases algorithms to recover

338 N.T. Courtois and B. Debraize

the initial state. We give an overview of this kind of algorithm and their
complexities in Section 5. This second approach can be much improved by
our analysis of the modular addition proposed in part 3. Indeed, as we ex-
plain in Section 5, the more overdefined the polynomial set is, the better
the complexity of solving the system becomes. The equations produced by
our method implies exactly the same number of variables and provides 189n
quadratic equations for each � instead of 31n. Another advantage comes
from the fact that these equations are very sparse.

As the theory is very poor concerning the complexity of algorithms like
Gröbner Bases algorithms, the effectiveness of this kind of attacks remains ex-
tremely unclear. An interesting question that has not been answered so far con-
cerning this type of attack is the following: is an algebraic attack able to break
KGSnow 2.0? We show at section 6.3 that by using the algebraic properties of
‘�’, the answer is yes.

6.3 Towards an Optimal Linearizing Attack

In [5], the authors propose to linearize the � by guessing the carries. We fixed
17 × 31 + 17 × 31 carries of consecutive clocks and applied ElimLin on the
system of the linearized equations coming from the 34 � and the quadratic I/O
equations describing the 17 uses of the S-box. We suppose that when the carries
are fixed, the solving part behaves the same way as if all the carries were zero.
The probability for this event to happen for 16 consecutive clocks, as proposed
in [5], is : (3

4)31∗17(2
3)31∗15 � 2−497. (The approximation of this probability in

[5] is too large, as all the random variables are not independent). ElimLin had
not finished its computations after 80 hours. Then this attack is not faster than
the exhaustive search of the initial state.

We show in this part that guessing the consecutive values of the register
R1 and using the properties of ’�’ described at section 4 seems to be a much
better strategy. This is our contribution. We use here the word ’linearizing’
to differentiate from linearization attacks where the term linearization means
considering each monomial as a variable. Here the concept is completely different,
as we do not increase the number of variables.

First Attack. We observe that in the design of KGSnow 2.0 (this coming from
the design of Snow 2.0) , the fact that for a given t, R2t+1 only depends on
R1t: by guessing R1t, one gets immediately R2t+1. Then, by guessing several
consecutive values of R1, we obtain also several consecutive values of R2. With
this method we still do not completely linearize the equations: each time the
value of R1t is known, by equation 1 we just know that we get at least 2 linear
relations, the other ones remaining quadratic. But each time the values of R2t

and R1t+1 are simultaneously known, we obtain the values of 32 bits of the
internal state. The known values and linear relations between the internal state
bits are also linear relations between the bits of the initial state of the LFSR
as each bit of the internal sequence can be expressed as a linear expression of
the initial LFSR state bits. The same way, the quadratic relations between the

Algebraic Description and Simultaneous Linear Approximations 339

internal state bits means that we have quadratic equations between bits of the
initial state of the LFSR as a composition f ◦ l where f is a degree 2 boolean
function and l a linear boolean function is still a degree 2 function.

If we guess 10 consecutive R1s (320 bits to guess), we obtain an overdefined
system of linear equations and quadratic equations implying only the bits of
the 512 initial state bits of the LFSR. These equations come from 17 additions
modulo 232. As each ‘�’ provides an amount of information of 32 bits, the
information provided by this quadratic and linear boolean function is enough to
recover the 512 initial state bits of the LFSR.

By applying any Gröbner bases algorithm on this system of equations, we
obtain the initial state bits. No method is known to compute compute a theoret-
ical complexity for this multivariate polynomial system solving part. Under the
hypothesis that this system can be solved at degree 2, a theoretical complexity
would be O(251). In practice we could solve such systems with an algorithm
called ElimLin described in Section 5.2 in 2.4 minutes on a PC, which is much
faster than the theoretical complexity.

Even if this method seems much better than the guess of the carries, it does
not completely linearize the equations. Actually we are able to do it by using
the conditional properties of ‘�’ described at Section 4.2.

Improvement of the Attack. In this part the idea is to go through the
keystream to look for the most interesting case instead of guessing the in-
formation. We will use the facts described in theorem 1 and theorem 2 that
11...11 = 232 − 1 being an output of P and M simultaneously linearize both
operations with almost the same probability, (as 11...11�1 = 00...00 mod 232),
and the trivial fact that 0 being an output of P linearizes the operation.

We look for the case when R11 = 0, R12 = 232 − 1, R13 = 0, R14 = 0, R15 =
0, R16 = 0, R17 = 0, R18 = 0, R19 = 0 by going through the keystream. These
constraints on the R1is are essentially constraints on the internal sequence: we
need that

– s5 = −R20 mod 232,
– s6 = −1−R21 mod 232,
– s7 = −S(0) mod 232,
– s8 = −S(232 − 1) mod 232,
– for 9 ≤ i ≤ 13 , si = −S(0) mod 232.

As the LFSR is clocked by a primitive feedback polynomial, the period of the
internal sequence is 2512 − 1 and the probability for this constraint to happen
is 2−288. We know that we are at the right place on the keystream when the
system of equations is solved and provides the right initial state of the LFSR.

Let us suppose these constraints are verified. The same way as the previous
attack, we obtain 224 GF(2) linear relations implying only initial LFSR state
bits by equation (2). Each time R1 is 0, from clock 3 to 9, we obtain 32 GF(2)
linear relations in the initial LFSR state bits by equation (1), that is an amount
of 224 linear equations. By equation (2) at clock 1 we have:

s6 � R21 = 111 · · ·1.

340 N.T. Courtois and B. Debraize

Then from the proof of proposition 4.1 we obtain :

R21 = s6 ⊕ 111 · · ·1.

By replacing R21 by s6 ⊕ 111 · · ·1 and R11 by 0 in equation (1), we obtain
32 new GF(2) linear relations in the initial LFSR state bits. Finally by using
Theorem 2 (Section 4) for equation (1) at clock 2, we obtain 32 linear relations
in the LFSR initial state bits with probability 1

2 . To obtain a probability 1, it
is enough to add another constraint on the internal sequence: we need that the
least significant bit of s2⊕z2⊕S(0) is zero. This is because we have by equation
(1) at step 2:

s2 ⊕ z2 ⊕ S(0) = s17 � (232 − 1),

then, as in proof of theorem 1, we obtain:

(s2 ⊕ z2 ⊕ S(0)) � 1 = s17.

If the least significant bit of s2 ⊕ z2⊕ S(0) is zero, there is no carry with proba-
bility 1 in this modular addition. As z2 is known, it is a constraint on the least
significant bit of s2.

The total number of linear equations is 512. If we assume that these equa-
tions are linearly independent, the system can be solved by a simple Gaussian
reduction. But this Gaussian reduction can be performed as a precomputation
step: during the precomputation the keystream bits are not known and become
variables. We then obtain each initial LFSR state bit as a linear combination of
the 9× 32 keystream bits variables that are used in the 512 equations described
above. Then the final step consists in replacing the keystream variables by their
real values and verifying that the LFSR initial state bits are correct. This would
give a final time complexity of about 2288.

If the rank of the system is r < 512, we precompute r initial state bits as
linear boolean functions of the keystream variables and the last 512− r initial
state variables. The complexity is then multiplied by 2512−r as we have to guess
the last 512− r variables. Actually our simulations showed that this rank is 504.
We show in Appendix B, that by using theorem 1, it is possible to compute at
least two more linear equations in the LFSR initial state bits. The final time
complexity of this attack is then at most 2294.

The drawback of this method compared to the first one we have proposed is
of course the huge amount of necessary keystream bits, about 2288 × 32 = 2293.
This amount can be reduced because, as we explain in section 4, fixing only the
30 least significant bits of the 9 states R1t have the same linearizing properties
as fixing all the bits. We just guess the 2 most significant bits of R11, · · · , R19

instead of looking for their right value. We store a 218 entries lookup table in
which we set the values of the key depending on the keystream variables for each
value of the 18 bits coming from the 2 most significant bits of each R11, · · · , R19.
The time complexity is the same but the keystream requirements are lower, about
2275 bits. The space complexity is quite small, (about 16 Gb to store the table).

Algebraic Description and Simultaneous Linear Approximations 341

In [3], a time-memory trade-off is proposed, with TM = N and D = T , where
T is the time complexity, M the memory, D the data and N the number of
possible states. We can compare our method with this attack on KGSnow 2.0
with the precise parameters of our method. We show in Table 1 that we obtain
better results with our attack. In [6] a better time-memory-data trade-off is
proposed: N2 = TM2D2, with the following constraint: D2 ≤ T . Because of this
constraint, in principle it is impossible to compare this attack with ours.

Table 1. Our attack on KGSnow 2.0 vs. general time-memory trade-off

Babbage time-memory trade-off

Our best attack

time memory keystream

2302 2295 2287

2294 237 2275

Remark. We have made some computations on KGSnow 2.0 to try to improve
this attack by guessing fewer variables. We have written the system of equations
describing 9 consecutive clocks of KGSnow 2.0. In this system we fixed all the
bits of R11, R13, R14, R15, R16, R17, R18, R19 to 0 except from the most
significant bits, and the five most significant bits of R19, and we fixed the 31
least significant bits of R12 to 1. We were able to recover the initial LFSR
state bits in 2.08 hours. The total complexity is here 2311 (see Section 5.2 for
details on the computation of the total complexity). We could not obtain a better
complexity than 2311 by fixing less variables, this meaning that we were not able
to improve the complexity of the theoretical attack described above.

7 Conclusion

In this paper we study multivariate linear and quadratic properties over GF(2) of
the addition modulo 2n. We propose a new method for describing this operation
as an overdefined system of implicit boolean equations of degree 2. We also
introduce the concept of multiple and simultaneous linear approximations. This
concept is different from Linear Cryptanalysis with multiple characteristics: we
show how to partially or completely linearize the boolean equations describing
this function by setting appropriate specific constraints on the output or/and
one of the inputs.

These properties can be used to design conditional linearizing attacks on ci-
phers that use additions modulo 2n. We propose an example of application in
cryptanalysis of KGSnow 2.0, the keystream generator part of Snow 2.0. Given
the specific structure of KGSnow 2.0, we have found a combination of con-
straints, such that the number of linear equations obtained is large compared to
their cost. This allows us to recover the key of KGSnow 2.0 within 2294 opera-
tions. This is not much more than the exhaustive search of the 256 bits key of
Snow 2.0 compared to what we could have expected from an extension of the
Billet-Gilbert attack of [5] on the real cipher, or more generally to what we could
have expected from an algebraic attack on this type of cipher. It is also more

342 N.T. Courtois and B. Debraize

efficient than the classical time-memory trade-off attack TM = N . This shows
that the key of Snow 2.0 should not be longer than in the current specification.

Acknowledgments. It is clear that the addition modulo 2n can be described by
a system of quadratic equations with extra variables (carries), see [5]. However
the idea that this can also be achieved without introducing any extra variable is
not trivial and was owe it to Josef Pieprzyk and (independently) Philip Hawkes.

References

1. Armknecht, F., Krause, M.: Constructing Single- and Multi-output Boolean Func-
tions with Maximal Algebraic Immunity. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 180–191. Springer, Heidelberg
(2006)

2. Gwenolé, A., Jean-Charles, F.: An Algebraic Cryptanalysis of Nonlinear Filter
Generators using Gröbner Bases, INRIA research report,
https://hal.ccsd.cnrs.fr/

3. Babbage, S.: A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-
phers European Convention on Security and Detection. In: IEE Conference Publi-
cation No. 408 (1995)

4. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving ICPSS, Paris,France, pp. 71–75

5. Billet, O., Gilbert, H.: Resistance of Snow 2.0 against Algebraic Attacks. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidel-
berg (2005)

6. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: ASIACRYPT 2000. LNCS, vol. 1975, pp. 1–13. Springer, Heidelberg
(2000)

7. Courtois, N.T., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

8. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

9. Daemen, J., Rijmen, V.: The Block Cipher Rijndael. In: Schneier, B., Quisquater,
J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg
(2000)

10. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004)

11. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003), http://www.it.lth.se/cryptology/snow/

12. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999),
www.elsevier.com/locate/jpaa

13. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Workshop on Applications of Commutative Algebra,
Catania, Italy, April 3-6, 2002. ACM Press, New York (2002)

https://hal.ccsd.cnrs.fr/
http://www.it.lth.se/cryptology/snow/
www.elsevier.com/locate/jpaa

Algebraic Description and Simultaneous Linear Approximations 343

14. Fischer, S., Meier, W.: Algebraic Immunity of S-boxes and Augmented Functions.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 366–381. Springer, Heidel-
berg (2007)

15. Goubin, L.: A Sound Method for Switching between Boolean and Arithmetic Mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001)

16. Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer,
Heidelberg (2003)

17. Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean
Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

18. Nyberg, K., Wallén, J.: Improved Linear Distinguishers for SNOW 2.0. In: Rob-
shaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg
(2006)

19. Silverman, J.H., Smart, N.P., Vercauteren, F.: An Algebraic Approach to NTRU (q
= 2n) via Witt Vectors and Overdetermined Systems of Nonlinear Equations. In:
Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 278–293. Springer,
Heidelberg (2005)

20. Results of ESTREAM project benchmarks of ESTREAM stream ciphers compared
to AES-CTR, RC4 and Snow 2.0,
http://www.ecrypt.eu.org/stream/perf/#results

21. MAGMA, High performance software for Algebra, Number Theory, and Geometry,
— a large commercial software package, http://magma.maths.usyd.edu.au/

A Proofs of Theorem 1 and 2

Proof (Proof of Theorem 1.). We first prove by induction on i ≥ 1 that, the
carry bit ci in the addition x � y = z (see section 2.1 for notations) is equal
to 0 with probability 1

2 + 1
2i+1 . This assertion is true when i = 0, as we always

have c0 = 0. Let us call pi the probability that the carry bit ci = 0. We have:
ci = �xi−1+yi−1+ci−1

2 � (the condition on z does not affect the bits at positions
0 . . . i − 1 that are random and independent bits). If ci−1 is 0, then pi has a
probability 3

4 to be 0. If ci−1 is 1, then pi has a probability 1
4 to be 1. Thus we

have :

pi = 3
4 × pi−1 + 1

4 × (1− pi−1) = 1
2pi−1 + 1

4 (4)

Now if the assertion is true at rank i− 1, by using equation (4), we compute
pi = 1

4 + 1
2·2i + 1

4 = 1
2 + 1

2i+1 , i.e. the assertion is true at level i.
If i > 0 and the carry ci of the addition x�y = z is 0, and zi = 1, ..., zi+r = 1,

we show that we obtain r + 2 linear I/O equations for P if i + r − 1 ≤ n − 3,
r + 1 linear equations if i + r − 1 = n − 2 and r if i + r − 1 = n − 1 in the
same way as in the proof of Proposition 4.1, namely we simply have xi ⊕ yi = 1
because ci = 0, and then successively we can show that xi+1 ⊕ yi+1 = 1 which
in turn implies ci+1 = 0, which in turn gives xi+2 ⊕ yi+2 = 1, then ci+2 = 0
etc. This gives r + 1 equations as it goes up to the position i + r, where we
have xi+r ⊕ yi+r = zi+r. Moreover, the carry bit ci+r+1 = �xi+r+yi+r+ci+r

2 �.

http://www.ecrypt.eu.org/stream/perf/#results
http://magma.maths.usyd.edu.au/

344 N.T. Courtois and B. Debraize

Then if zi+r = 1, ci+r+1 = 0. If zi+r = 0, ci+r+1 = � 2xi+r

2 � = xi+r , and we
obtain zi+r+1 = xi+r+1⊕yi+r+1⊕xi+r. In both cases we obtain one more linear
equation, that gives a total of r+2 linear equations, except when i+r−1 = n−1
in which case we get only r, and when i + r − 1 = n− 2 we get r + 1.

We can observe that when i = 0, p = 1 and we get the same equations as we
always have c0 = 0, in particular when i = 0 and r ≥ n − 2 we get again the
Proposition 4.1.

To prove the second and third assertion of Theorem 1, we need to observe
that y � (ȳ �1) = 0, where ȳ is the result of bitwise complementation of y. Thus
we have:

x � y = z ⇔ z � (ȳ � 1) = x ⇔ (z � 1) � ȳ = x (5)

In the case of the second assertion, the r least significant bits of z are 0. Then
z � 1 becomes z⊕ 1 and c′1 = � ȳ0+1

2 �, that is 0 with probability 1
2 . We obtain by

induction that if c′1 = 0, yj ⊕ xj ⊕ 1 = 0 for 1 ≤ j ≤ r − 1 and yr ⊕ xr ⊕ zr = 0.
With the least significant bit equation y0 ⊕ x0 = 0 we obtain r + 1 equations.
Another equation comes from the fact that the carry cr+1 = �xr+yr+cr

2 �. This
implies that if zr = 1, cr+1 = 0 and if zr = 0, cr+1 = xr. As the carry cr+1

can be linearly described in both cases, we obtain one more linear equation
zr+1 = xr+1 ⊕ yr+1 ⊕ cr+1. We then obtain a total of r + 2 linear equations,
except when r− 1 = n− 2 in which case we get one less, and when r− 1 = n− 1
in case we get two less.

For the third assertion, we consider the carry c′′i in the addition of three
numbers: z � 1 � ȳ = x. We assume that c′′i = 0 and zi = 0, ..., zi+r−1 = 0, we
also obtain by induction r+2 (or r+1 if i+r−1 = n−2, or r if i+r−1 = n−1)
linear I/O equations: yj ⊕ 1⊕xj = 0 for i ≤ j ≤ i+ r− 1, yi+r⊕ zi+r⊕xi+r = 0
and yi+r+1 ⊕ zi+r+1 ⊕ xi+r+1 ⊕ ci+r+1 = 0 where the carry ci+r+1 is zero or
xi+r , depending on the value of zi+r.

Here the first carry c′′1 = � z0+ȳ0+1
2 � has a probability 1

4 to be 0. The other

carries c′′j can be computed as : c′′j = � zj−1+ȳj−1+c′′
j−1

2 �. The probability that
c′′i = 0 for z � ȳ � 1 = x is computed by induction in the same way as for the
first assertion and gives a probability p′′i = 1

2 −
1

2i+1 .

Proof of Theorem 2. Appears in the extended version of this paper.

B Additional Linear Equations in Attack on KGSnow 2.0

Let us consider the equation (2) (section 6.1) at step 9. According to theorem 2,
as R29 is known, the two least significant bits of R110 can be expressed as linear
expressions of the initial state bits. Depending on the value of R29, more bits of
R110 may be expressed in such a way.

In equation (1) at step 10, we can now substitue the two least significant bits
of R110 by these linear expressions. Now we observe that in this equation (1), the
value of s10 is known as it depends on the value of R16 that has been guessed.
Then the value of z10 ⊕R210 ⊕ s10 is know. This implies by theorem 1 that we
have two linear boolean equations mixing only initial state bits. Depending on
the value of R29 and z10 ⊕R210 ⊕ s10, we may have more linear expressions.

Towards an Information Theoretic Analysis of

Searchable Encryption

Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker

University of Twente, Enschede, The Netherlands

Abstract. Searchable encryption is a technique that allows a client to
store data in encrypted form on a curious server, such that data can be
retrieved while leaking a minimal amount of information to the server.
Many searchable encryption schemes have been proposed and proved
secure in their own computational model. In this paper we propose a
generic model for the analysis of searchable encryptions. We then iden-
tify the security parameters of searchable encryption schemes and prove
information theoretical bounds on the security of the parameters. We
argue that perfectly secure searchable encryption schemes cannot be ef-
ficient. We classify the seminal schemes in two categories: the schemes
that leak information upfront during the storage phase, and schemes that
leak some information at every search. This helps designers to choose the
right scheme for an application.

1 Introduction

Storage outsourcing is a popular approach towards reducing the total cost of
ownership of enterprise data storage. Current solutions either store data in plain,
such that the confidentiality of the data is easily compromised, or the data is
stored encrypted, which severely limits the kind of service that can be pro-
vided. In particular, the ability to search encrypted data is much needed but
difficult to provide. Searchable encryption has many applications, particularly
where client privacy is a main concern such as in E-mail servers [3], keeping
medical information of a client [17], storing private videos and photos, and
backup applications [16].

There are two trivial, extreme approaches towards searching in encrypted
data. The first trivial approach is for the server to send the client the entire en-
crypted data base, such that the client may decrypt, then query. Although this
solution has a high security, the communication overhead between the server and
the client is prohibitively high. The second trivial approach is for the server to
decrypt the entire data base, then to execute the query. Although this solution is
efficient, letting the server decrypt the data base offers poor security. The prob-
lem is thus to find a good compromise between query and data communication
efficiency on the one hand, and security on the other hand.

Efficiency means that the query performance should not be influenced nega-
tively by encryption, and that data communication to and from the server should
be appropriate. Security means that the stored data, the query that the client

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 345–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 S. Sedghi et al.

sends to the server to retrieve the data selectively, and executing the query on
the stored data should not reveal any information to the server about the data
except the data items matched with the query.

Three seminal searchable encryption schemes have been proposed [16,3,9],
each with specific advantages and disadvantages. A good overview is provided in
the PhD thesis of Brinkman [4]. The main problem with each of these propos-
als is that they assume different limitations: in each case the security analysis
assumes a specific model consisting of an adversary with specific limitations.
Therefore, the security analysis in each case does not show exactly which pa-
rameters reveal information to the server, in a manner that allows us to compare
the leakage of schemes.

Contribution. We propose a model for searchable encryption that facilitates
an information theoretic security analysis against an adversary with unlimited
power. Since an information theoretic analysis implies no restriction on the com-
putational model of the adversary, information leakage from the parameters is
computable in this model. We stress that an information theoretic approach
requires idealized encryption and hash functions, and as such this work is an ex-
ploration into the theoretical properties of searchable encryption. We apply our
model and analysis method to the three seminal approaches towards searchable
encryption to show that the model and the analysis method are both general
and powerful. The scope of our analysis and results in this paper is limited to a
single client using a single server to store a single data item. There can be any
number of keywords associated with the data item, and the client may perform
any number of keyword searches. The extension to multiple data items, multiple
clients and multiple servers is future work.

The paper is organized as follows. Section 2 formalizes the problem. Section 3
presents our approach towards analyzing the security of searchable encryption
schemes. Section 4 analyzes the security of the three seminal searchable encryp-
tion schemes. A summary of the related work is described in Sect. 5. We present
some concrete examples of our analysis in Sect. 6. The last section concludes
and suggests future work.

2 Statement of the Problem

Notation. We use the following notation, which is borrowed from Moulin et
al [11]. Random variables are denoted by capital letters (e.g. X) and their
individual values by lower case letters (e.g. x). The domain over which a random
variable is defined is denoted by a script letter (e.g. X) and the number of
elements in the range of X is denoted by |X |. The probability mass function
(pmf) of a random variable X ∈ X is denoted by PX(x). When no confusion
is possible, we drop the subscript to simplify the notation. We write X ∼ PX

to indicate that a random variable X is distributed according to PX . Given
random variables X and Y , we denote the entropy of X by H(X), the entropy
of X conditioned on Y by H(X |Y) and the mutual information between X and
Y by I(X ; Y).

Towards an Information Theoretic Analysis of Searchable Encryption 347

2.1 Description of the Problem

There are various formulations of the searchable encryption problem. We propose
the following generic formulation in this paper. Without loss of generality we
assume that the client splits his data into a non-searchable part d and a set of
searchable keywords m. Referring to Fig. 1, let us assume that a client is about
to store a tuple u =< d, m > consisting of a single data item d and an associated
metadata item m on a server. The metadata m is actually a set of l keywords
m = {w1, ..., wl} where each keyword is taken from a finite setW . The objectives
of the client are:

1. The confidentiality of d and m is preserved.
2. d is retrieved in the case m contains a queried keyword.

All solutions to the searchable encryption problem proceed in four phases:

Setup: The client and the server may need to share some data and functions
and each may need to prepare some private data.

Storage: The data and the metadata items are transformed to an appropri-
ate format for storage on the server by the steps below:

– The client transforms m to a searchable representation c = f(m), where f(.)
is a metadata function.

– The client transforms d to an appropriate encrypted form for storage on the
server s(d, k), where s(., .) is a data function and k ∈ K is a secret key.

– The client sends the tuple t =< s(d, k), c > to the server for storage.

�

�u =< d, m >

d

m = {w1, ..., wl}

Data function s �s(d, k)

� c = f(m)
Metadata function f �

�

Server

Verification

t =
< s(d, k), c >

function v

Client

�w �q = g(w)
Query function g

� t =< s(d, k), c > is sent back if v(q, c) = 1

Fig. 1. Formulation of the searchable encryption problem. Here, d is a data item, and
m = {w1, ..., wl} is the associated metadata.

348 S. Sedghi et al.

Query: To query the server if a keyword w ∈ W occurs in m, the client sends
the query q = g(w) to the server, where g(.) is a query function.

Search: Given q and c, using a verification function v(., .) the server checks
if v(q, c) = 1, t =< s(d, k), c > is sent back to the client in case of a match.

2.2 Problem Instances

The data d, the metadata m and the functions s(., .), f(.), g(.) and v(., .) are the
parameters of our proposed searchable encryption formulation. To show that this
is a realistic formulation we will instantiate these parameters in such a way that
the formulation specializes to the three seminal searchable encryption schemes.
These are: Song, Wagner, and Perrig (SWP) [16], Public key encryption with
keyword search (PEKS) [3], and Secure indexes (SI) [9]. Below a description of
the listed schemes is presented.

The SWP scheme. The first practical approach to the problem of searchable
encryption has been proposed by Song, Wagner and Perrig [16]. This scheme does
not search for keywords in the metadata; instead searching approaches the data
directly. The SWP scheme requires the client to split the data item d into fixed
size blocks d = (b1, ..., bl) and calculates a searchable representation for each
block bi. However, to apply our formulation to the SWP scheme we consider
each block to be a keyword, i.e. wi = bi.

Setup: The client and the server agree to use a hash function h1 : {0, 1}v ×
{0, 1}n −→ {0, 1}n−v, where n is the number of bits in each keyword and
1 ≤ v < n. The client also uses a hash function h2 :W −→ {0, 1}n.

Storage f(m): To generate a searchable representation c = f(m), the client:

1. Generates a sequence of random values ri ∈ {0, 1}v, 1 ≤ i ≤ l.
2. Generates a sequence of trapdoors xi = ri||h1(ri, h2(wi)), 1 ≤ i ≤ l.
3. Produces e(wi, k) using a symmetric key encryption function e(., .), and

a secret key k ∈ K, for each keyword wi ∈ m.
4. Generates ci = xi ⊕ e(wi, k), for each keyword wi ∈ m.
5. Gathers the sequence c = (c1, ..., cl) since the data item is actually a

sequence of keywords d = (w1, ..., wl).

The client sends the tuple t =< s(d, k), c > to the server for storage, where
s(d, k) = 0.

Query g(w): To search for a keyword w ∈ W , the client sends the query q =<
e(w, k), h2(w) > to the server.

Search v(q, c): After receiving q, the server calculates the trapdoor y′
i||y′′

i =
ci ⊕ e(w, k) for each element ci of c and checks if y′′

i = h1(y′
i, h2(w)); the

server sends back t =< s(d, k), c > to the client in case of a match.

The PEKS scheme. The main disadvantage of the SWP scheme is that the
encrypted keyword(s) must be sent to the server for the verification function.

Towards an Information Theoretic Analysis of Searchable Encryption 349

Boneh et al [3] propose the idea of a public key searchable encryption based
on the Diffie-Hellman problem. In contrast with the SWP scheme, searching is
performed on a set of keywords m = {w1, ..., wl} associated with the data d.

Setup. The client chooses two groups of prime order p, G1 and G2, using group
generators g1 and g2 respectively and a non-degenerate bilinear function
b : G1×G1 −→ G2. The server and the client agree to use two hash functions
h1 : {0, 1}∗ −→ G1 and h2 : G2 −→ {0, 1}[log(p)]. The client picks a random
numbers α ∈ Zp such that gα

1 ∈ G1.
Storage f(m): To generate a searchable representation c = f(m), the client:

1. Generates a random value ri ∈ Zp for each keyword wi ∈ m.
2. Generates a searchable representation ci =< gri

1 , h2(b(h1(wi), g
(riα)
1)) >

for each wi ∈ m.
3. Gathers a set c = {c1, ..., cl}, since the metadata is a set of keywords.

The client sends the tuple t =< s(d, k), c > to the server for storage, where
s(d, k) is any appropriate encryption of d.

Query g(w): To query for a keyword w ∈ W , the client sends q = h1(w)α to
the server.

Search v(q, c): The server checks for each element ci of c, if h2(b(q, gri)) =
h2(b(h1(wi), g(riα))); t =< s(d, k), c > is sent back to the client in case of a
match.

The SI scheme. Both the SWP and the PEKS schemes have the disadvantage
that a search takes time linear in the number of keywords. To obtain a secure,
efficient and practical method, Goh [9] proposes an approach to map each
keyword to a hash value. The client has a data item d and an associated set of
keywords m = {w1, ..., wl} to store on the server.

Setup. The client chooses z ≥ 1 independent hash functions h1, ..., hz, where
each hi :W −→ {0, 1}j, j ∈ N.

Storage f(m): To generate a searchable representation c = f(m), the client:
1. Calculates a trapdoor xi = {h1(wi), ..., hz(wi)} for each keyword wi ∈ m.
2. Represents c by an array of 2j bits, where each element cn, 1 ≤ n ≤ 2j ,

takes the value 0 or 1 as follows:

cn =
{

1 if there is at least one hs(wi) = n, i = 1, ..., l, s = 1, .., z
0 Otherwise (1)

The client sends the tuple t =< s(d, k), c > to the server, where s(d, k) is
any appropriate encryption of d.

Query g(w): To query for a keyword w ∈ W the client sends q = {q1, ..., qz},
where qs = hs(w), s = 1, ..., z, to the server.

Search v(q, c): The server checks for all 1 ≤ s ≤ z if cqs = 1; s(d, k) is sent back
to the client in case of a match.

Table 1 summarizes the functions to be used for f(.), g(.) and v(., .) by each
of the cited methods.

350 S. Sedghi et al.

Table 1. Summary of the employed functions in searchable encryption approaches.
In this table r is a random number, h(.) is a hash function, e(., .) is an encryption
function, g(.) is a group generator, and b(., .) is a bilinear map.

Parameters of the formulation

Scheme t =< d, m > c = f(m) q = g(w) v(q, c)
m = {w1, ..., wl}

ci = e(wi, k) ⊕ xi, x′
i||x′′

i = ci ⊕ e(w,k)
SWP [16] d = (b1, .., bl) where q = e(w,k) Check if

wi = bi xi = ri||h(ri) x′′
i = h(x′

i)

d c = {hj(wi)} for q = {hj(w)} Check if
SI [9] m j = 1, ..., z and for j = 1, ..., z q ⊂ c

i = 1, .., l

d ci =< xi, yi > Check if
PEKS [3] m where xi = gri and q = (h1(w))α h2(b(q, xi)) = yi

yi = h2(b(h1(wi), g
riα))

3 Security Evaluation

In this section we evaluate the security of searchable encryption schemes.
SWP [16] informally divide the security evaluation of searchable encryption
schemes into the following properties:

– Provable security: A searchable encryption scheme is provably secure if the
confidentiality of the data and the metadata is preserved before performing
any search.

– Hidden query: A searchable encryption scheme is hidden query if a received
query does not leak any information on the queried keyword.

– Query isolation: A searchable encryption scheme supports query isolation if
the server learns nothing about the metadata after a search is performed.

There are two approaches for evaluating the security of cryptographic schemes:
the information theoretic approach and the computational complexity approach.
While the information theoretic approach evaluates the security of cryptographic
schemes against an adversary with unlimited computational power, the compu-
tational complexity approach decides whether it is feasible for an adversary with
reasonably limited computational power to extract information about the plain-
text of a ciphertext.

All the previously proposed searchable encryption schemes are proved secure
in the computational complexity setting. However, we are interested in the the-
oretical bounds on the security of searchable encryption schemes in general,
and the seminal schemes mentioned earlier in particular. Therefore, we use an
information theoretic approach to analyze the security of idealized searchable
encryption schemes.

Towards an Information Theoretic Analysis of Searchable Encryption 351

In Section 3 we present and motivate four assumptions that formalize the
difference between the seminal schemes as published and their idealized inter-
pretations analyzed here.

We now formalize the security evaluation of searchable encryption schemes
using the tools of information theory as follows:

– Provable security: We formalize the provable security of d as I(D; s(D, K),
f(M)) (i.e. the information that the stored tuple < f(M),s(D, K) > leaks
on D) and the provable security of m as I(M ; s(D, K), f(M)) (i.e. the in-
formation that the stored tuple < f(M),s(D, K) > leaks on M).

– Hidden query: We formalize hidden query as I(W ; g(W)) (i.e. the infor-
mation that a query leaks on the queried keyword).

– Query isolation: We formalize query isolation as: I(M ; v(f(M), g(W)))
(i.e. the information that a search result leaks on the metadata).

3.1 Security Parameters of the Formulation

In this section we introduce a convenient notation for the information leakage
from each searchable encryption parameter. In our formulation we have four
different functions that can leak information:

– The stored data s(d, k) leaks on d: εs = I(D; s(D, K)).
– The searchable representation f(m) leaks on m: εf = I(M ; f(M)).
– The query g(w) leaks on w: εg = I(W ; g(W)).
– The search result v(f(m), g(w)) leaks on m: εv = I(M ; v(g(W), f(M))).

Here, εg and εv correspond to hidden query and query isolation respectively.
An idealized searchable encryption scheme has perfect security if:

εs = εf = εg = εv = 0 (2)

Theorem 1, relates provable security to εs and εf by giving upper bounds on
the uncertainty of the server about the data and the metadata items, under the
condition that the server has access to s(d, k) and f(m).

Theorem 1. The provable security of any searchable encryption scheme admits
the following upper bound:

I(D; s(D, K), f(M)) ≤ εs + εf −H(M |D) + H(M |D, f(M))
I(M ; s(D, K), f(M)) ≤ εf + εs −H(D|M) + H(D|M, s(D, K))

Proof: see the technical report [14].
The intuition of the first inequality is as follows: εs is the information that the
stored data s(D, K) leaks on D directly, and εf −H(M |D) + H(M |D, f(M)) is
the information that the searchable representation f(M) leaks on D indirectly
via M . A similar intuition applies to the second inequality.

352 S. Sedghi et al.

4 Analysis of Known Schemes

The security of searchable encryption schemes is analyzed in related work using
the computational complexity approach. The reason is that the cryptographic
primitives which are used for the data, the metadata, the query and the verifi-
cation function (e.g. block ciphers and hash functions) are not information the-
oretically secure. Here, we are interested in an adversary with unlimited power,
who however cannot look inside the cryptographic primitives. In other words, we
analyze whether searchable encryption schemes leak information to the server
under the assumption that perfectly secure cryptographic primitives are used:

Assumption 1. Any encryption function is a one-time pad encryption since
only the one time pad encryption has been proved to be information theo-
retically secure.

Assumption 2. The client uses a secret table by way of a hash function. In most
cases considered here, the server does not need to know the hash function
h. A secret table works as follows: given y = h(x), and a string y it is
impossible to find the corresponding bit string x, whereas in the case that
h(.) is a hash function, it is hard to find the string x. Therefore, a secret
table is information theoretically secure and I(W ; h(W)) = 0.

We make the following assumptions on the distribution of the keywords in the
metadata:

Assumption 3. The distribution of the total number of keywords in m is L �
PL(l). i.e. clients tend to choose the number of keywords according to a
distribution which depends on the application domain.

Assumption 4. Given the total number of keywords, l, the distribution of
choosing a keyword P (w ∈ M|L = l) is uniform. i.e. the client picks each
keyword from the set W with the same probability. Although this assump-
tion might not be correct for all practical situations, the uniform distribution
of keywords gives the highest security in comparison with the other distri-
butions.

These assumptions are purely theoretical. In particular, we are not suggesting
to use a one time pad encryption as in this case outsourcing data to the data
base would not help the client (i.e. the secret key must be as large as the data
itself). The hash table is just as impractical. However, these assumptions allow
us to analyze how close the seminal schemes are to ideal security. In other words,
by these assumptions the client uses the most secure cryptographic primitives
(for the data, metadata, query and verification functions) and keyword distri-
bution, and we explore the theoretical upper bounds on the security of these
schemes. Moreover, our results show how much information the parameters of
the searchable encryption schemes leak to the server.

When it comes to a practical implementation, the leakage of information from
the functions can not be smaller than what is derived here. The reason is that

Towards an Information Theoretic Analysis of Searchable Encryption 353

although the cryptographic primitives are secure against an adversary with lim-
ited power, they are not information theoretically secure. Therefore, our results
show:

1. The minimum leakage of information from the functions of searchable en-
cryption in all situations.

2. Which functions of a searchable encryption scheme leak more information,
and which functions leak less information. This type of analysis is not pos-
sible in computational security settings.

4.1 Idealized SWP

The parameters of the SWP scheme are as follows: the data and the metadata are
the same d = m, there is no stored data on the server s(d, k) = 0, the metadata
is a sequence of keywords m = (w1, ..., wl), for each keyword wi ∈ m a random
value ri is generated. According to assumption 1, the encryption function e(., .)
is a one time-pad encryption. Hence, each keyword wi ∈ m is encrypted using a
unique key ki ∈ {0, 1}n as e(wi, ki).

– The information leakage from s(D, K): Since there is no stored data in
the SWP scheme (s(D, K) = 0),

εs = I(D; s(D, K)) = 0 (3)

– The information leakage from f(M): Let define the function

T (e(m, k)) = e(m, k)⊕ (r1||h(r1), ..., rl||h(rl)) (4)

then f(m) = T (e(m, k)), where k = (k1, ..., kl). Since M −→ e(M, K) −→
T (e(M, K)) forms a Markov chain:

I(M ; T (e(M, K))) ≤ I(M |e(M, K)) (5)

Using one time pad encryption for e(m, k), I(M |e(M, K)) = 0 [15]. Hence,

εf = I(M ; f(M)) = 0 (6)

Therefore, the searchable representation achieves perfect secrecy.

– The information leakage from g(W): To query for a keyword w the client
sends the query g(w) =< e(w, k), h1(w) > to the server. Hence,

εg = I(W ; e(W, K), h1(W)) (7)

Using standard information theoretic formulas:

εg = I(W ; h1(W)) + I(W ; e(W, K)|h1(W)) (8)

According to assumption 2, I(W ; h(W)) = 0, and according to assumption
1, I(W ; e(W, K)) = 0. Hence, εg = 0. Therefore, a query does not leak any
information about the keyword queried.

354 S. Sedghi et al.

– The information leakage from v(f(M), g(W)): The SWP scheme trans-
forms each keyword wi to a unique searchable representation ci, since each
keyword is transformed to a searchable representation by a unique random
value ri. Therefore, if the keywords wi and wj are the same keywords in
the metadata, ci and cj are different. However, if the client sends the query
g(wi) (or g(wj)) to the server, by the search result the server learns that ci

and cj are searchable representations of the same keywords. Therefore, the
uncertainty of the server about ci and cj reduces to the uncertainty about ci

(or cj) alone. The following theorem quantifies the information that a search
leaks on M .

Theorem 2. Let P (M |L) = 1
|W|l , E(S) denotes the expected number of

repeated keywords and E(L) denotes the expected number of keywords in M .
Then,

εv = I(M ; v(f(M), g(W))) = H(W)(E(S) − 1) (9)

where E(S) ≈ (1
|W|).

Proof: see the technical report [14].
Intuitively, Theorem 2 says that the uncertainty of the repeated keywords
is the reductions in the uncertainty of M due to the knowledge of a search
result. If each keyword occurs once in M , then E(S) = 1 and I(M ; v(f(M),
g(W))) = 0, and if all the keywords are the same, then E(S)) = E(L) and
I(M ; v(f(M), g(W))) = E(L)− 1.

Summarizing, even using perfectly secure cryptographic primitives for the SWP
scheme, a search reveals some information to the server. However, storing data
does not leak any information.

4.2 Idealized SI

Without loss of generality we assume that the client uses only one hash function
h(.) to map each keyword w to a searchable representation h(w). (i.e. f(m) =
{h(w1), ..., h(wl)}). According to assumption 2, the client uses a secret table by
way of the hash function. We also assume that P (M |L) = 1

(|W|
l) , since according

to assumption 4 the distribution of keywords in the metadata is uniform and the
metadata is a set of keywords.

– The information leakage from s(D, K): Since we assume that encryption
is one time-pad encryption (assumption 1), the stored data achieves perfect
secrecy [15]. Hence,

εs = I(D; s(D, K)) = 0 (10)

– The information leakage from f(M): In contrast with the SWP scheme,
the SI scheme admits false positives. A false positive occurs when two or
more different keywords are mapped to the same searchable representation
by h(.). First we evaluate the information leakage in the case without false

Towards an Information Theoretic Analysis of Searchable Encryption 355

positives. We then extend the evaluation in the case of a probability of a
false positive.

- Without false positives

εf = I(M ; f(M)) = I(M ; h(W1), ..., h(WL)) (11)

Theorem 3 shows the information leakage from f(M) in the case without
false positive.

Theorem 3. The information that the searchable representation leaks on
the metadata is:

εf = I(M ; f(M)) = H(L) (12)

where H(L) is the uncertainty in the number of unique keywords in the
metadata.

Proof: See the technical report [14].
Intuitively, Theorem 4 says that the uncertainty in the number of unique
keywords contained in the metadata is the reduction in the uncertainty of
the metadata due to the knowledge of the searchable representation.

- A False positive
In this case the server cannot learn the precise number of unique keywords
since more than one unique keywords could be mapped to the same search-
able representation. The following theorem shows how the probability a false
positive P reduces the information that f(M) leaks on M .

Theorem 4. Let j be the number of bits in the output of the hash values.
Then,

εf = I(M, f(M)) = H(L)− β (13)

Here, β =
∑|W|

i=1

∑i
x=1(P (i)log(1

(W
i)) + (2j)!xi−l

(2j−x)!2ji P (i)log((2j)!xi−x

(2j−x)!2ji(W
i))).

Proof: see the technical report [14].
Intuitively, Theorem 4 says that a false positive reduces the revealed infor-
mation about the uncertainty of the number of keywords to the server.

– The information leakage from g(W): To query for a keyword w the client
sends the query g(w) = h(w) to the server. According to assumption 2:

εg = I(W ; h(W)) = 0 (14)

Therefore, a query in the SI scheme does not reveal any information about
the queried keyword.

– The information leakage from v(f(M), g(W)): In contrast with the SWP
scheme, the metadata is a set of keywords. Hence, each keyword in the
metadata is unique and by a search result the server learns nothing about
the metadata.

εv = I(M ; v(f(M), g(W))) = 0 (15)

356 S. Sedghi et al.

Summarizing, using even perfectly secure cryptographic primitives for the SI
scheme, the searchable representation reveals information to the server. The
probability of false positive increases the security of the SI.

4.3 Idealized PEKS

The PEKS scheme was originally proposed for transforming a set of keywords
to a searchable representation. However, the scheme is capable of transforming
a sequence of keywords to a searchable representation as well, since a different
random value ri is considered to transform each keyword wi to a searchable
representation (see section 2.4 PEKS). In other words, the same keywords can
be mapped to a different searchable representation. Therefore we consider the
metadata as a sequence of keywords. Since an information theoretic approach
cannot handle public key cryptography, we analyze only the hash function of
the PEKS scheme. In other words, our analysis relies on the security of the hash
function only.

– The information leakage from s(D, K): According to assumption 1,
s(D, K) is one time-pad encryption. Hence,

εs = I(D, s(D, K)) = 0 (16)

Therefore, the stored data does not reveal any information about the data.

– The information leakage from f(M): Since the client uses a secure ta-
ble and a unique random value to transform each keyword to a searchable
representation, the server cannot learn anything about the metadata. Hence,

εf = I(M ; f(M)) = 0 (17)

Therefore, the server cannot learn anything about the metadata due to the
knowledge of the searchable representation.

– The information leakage from g(W): To query for a keyword w the
server sends the query g(w) = h(w)α to the server. According to assumption
2,

εg = I(W ; h(W)α) = 0 (18)

Therefore, the server cannot learn anything about the plaintext of the query
after receiving a query.

– The information leakage from v(f(M), g(W)): Similar to the case of the
SWP scheme, before performing any search by the client, the server cannot
learn the unique keywords in the metadata. However, after a search for the
keyword w, the server learns the repeated keywords in case of a match. By
the same analysis as of Theorem 2, the information leakage from a search is
calculated as follows:

εv = I(M ; v(f(M), g(W))) = H(W)(E(S) − 1) (19)

Towards an Information Theoretic Analysis of Searchable Encryption 357

Table 2. Summary of the information leakage from the parameters of the SWP,
SI, and PEKS schemes, as well as the two trivial schemes. In this table β =P|W|

i=1

Pi
x=1(P (i)log(1

(W
i)

) + (2j)!xi−l

(2j−x)!2ji P (i)log((2j)!xi−x

(2j−x)!2ji(W
i)

)) (see 4.2).

Information leakage from

Scheme Stored data Searchable representation Query Search
εs εf εg εv

Schemes that do not leak at all
Trivial solution 1 0 0 0 0

Schemes that leak at each search
Trivial solution 2 0 0 H(W) H(D)

SWP 0 0 0 (E(S) − 1)H(W)

PEKS 0 0 0 (E(S) − 1)H(W)

schemes that only leak up front
SI 0 H(L) − β 0 0

Summarizing, using even perfectly secure cryptographic primitives for the PEKS
scheme, a search reveals some information to the server.

Table 2 summarizes the information leakage from the parameters of the SWP,
SI and PEKS schemes. In this table the analysis of the two trivial schemes from
the introduction is included for comparison. Trivial solution 1 lets the server
return the entire encrypted data base to the client at each query. In this case
the server never learns anything about the data, hence εs = εf = εg = εv = 0.
Trivial solution 2 lets the server decrypt all data at the first query, hence, the
uncertainty in the keywords H(W) and the data H(D) is leaked to the server
at the first query.

We conclude by categorizing the seminal searchable encryption schemes into
three groups: (1) schemes that do not leak at all, (2) schemes that leak everything
up front, and (3) schemes that leak nothing up front but which leak at each
search. In practice this means that if an application is expected to perform
many searches, a scheme from the second group is probably best. If we have a
scenario where only a few searches are expected, a scheme from the third group
is best.

5 Related Work

Our analysis of the information leakage of searchable encryption is limited to the
three seminal schemes, SWP, PEKS and SI. However, we believe that the same
analysis can be applied to more recent schemes based on the seminal schemes.
Here, we discuss the most prominent searchable encryption schemes that follow
the seminal schemes.

SWP based schemes. For XML documents Brinkman et al [5] modify the
SWP scheme to facilitate a faster search by exploiting the tree structure of
XML documents.

358 S. Sedghi et al.

SI based schemes. Chang and Mitzenmacher [6] propose a scheme based on
mapping keywords of the metadata to hash values. The proposed scheme has a
lower probability of false positives than the SI scheme and the scheme also hides
the number of keywords in the metadata from the server. Curtmola et al [7]
propose a symmetric key encryption approach that offers better efficiency than
the SI scheme, and the scheme can be applied for multiple users scenarios by
generating a random value for each user.

PEKS based schemes. The schemes proposed by Abdalla et al [10] lowers
the probability of false positives in the PEKS scheme. Bellare et al [2] propose
a deterministic searchable encryption scheme that offers faster search than the
PEKS scheme by mapping each searchable representation to an index. Baek et
al [1] propose a modified PEKS in such a way that the client could send a query
through an insecure channel by mapping each keyword to several hash values.
Park et al [13] propose a modified PEKS that gives a proxy the ability to decrypt
searchable representations containing desired keywords. Fuhr at al [8] propose
a scheme that allows the client to recover the plaintext of the keywords after
transforming the metadata to a searchable encryption. The scheme applies the
xor operation to the searchable representation and the hash value of a random
value. The random value is kept by the client.

None of the extensions to the seminal schemes use primitives that cannot be
idealized in the same way as we have idealized encryption and hashing. Therefore
we believe that our methods are applicable to the extensions of the seminal
schemes. To prove this is future work.

6 Example

In this section we present a few numerical examples to illustrate what the anal-
ysis actually means. Our cryptographic primitives in this example are chosen
according to assumptions 1 and 2. According to assumption 4, the distribution
of the keywords in the metadata is uniform and we consider a Poisson distribu-
tion for the distribution of the number of keywords (P (l)) in the metadata as
follows [12]:

P (l) =
λle−λ

l!
(20)

Here λ is the expected number of keywords in the metadata. Let the cardinality
of keyword in metadata be equal to the size of Oxford dictionary, 126000 words.
Moreover, let the expected number of keywords in the metadata be λ = 100.

SWP and PEKS: The expected number of the repeated keywords E(S) =
16.9 1

126000 and the enctropy of keywords is H(W) = 16.9 Hence the information
leakage from the parameters is then as follows, εd = εf + εg = 0, and εv =
16.9 1

126000 .

SI: The SI scheme is applied to a set of keywords. Let assume there is no false
positives. The entropy of the number of the number of keywords is H(L) = 5.14.

Towards an Information Theoretic Analysis of Searchable Encryption 359

Hence, the information leakage from the parameter is: εd = εg = εv = 0 and
εf = 5.14. Now, let the number of in the hash of keywords be j = 200, Then,
H(L) = 4.7.

The example shows that in the case that the client performs only a few
searches on the stored data (e.g. backup scenarios), the SWP scheme or the
PEKS scheme would be ideal. However, In the case that the client intends to
send many queries to the server, the SI scheme is a better choice since this
scheme has higher efficiency.

7 Conclusion and Future Work

We present an information theoretic analysis of searchable encryption, where a
single client stores a single data item on a single server. Any number of keywords
may be associated with the data item and the client can perform any number of
queries. We propose a generic formulation for the searchable encryption problem
and apply the formulation to all three seminal schemes (SWP, SI, and PEKS)
from the literature. We then formalize the security of searchable encryption us-
ing the tools of information theory and analyze the seminal schemes. The results
of our analysis shows that even using perfectly secure cryptographic primitives,
the parameters of all seminal schemes leak some information to the server. Our
analysis shows that each scheme has its specific strengths and weaknesses in
terms of provable security, hidden query and query isolation, and thus provides
a useful tool to compare searchable encryption schemes. In future work we in-
tend to extend the analysis to multiple data, multiple client and multiple server
settings.

Acknowledgements

We thank Henk van Tilborg, Qiang Tang and Peter van Liesdonk for their help
with the paper.

This research is supported by the SEDAN project, funded by the Sentinels
program of the Technology Foundation STW, applied science division of NWO
and the technology programme of the Ministry of Economic Affairs under project
number EIT.7630.

References

1. Baek, J., Safiavi-Naini, R., Susilo, W.: Public key encryption with keyword search
revisited. Available on Cryptology ePrint Archive, Report 2005/119 (2005)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

360 S. Sedghi et al.

4. Brinkman, R.: Searching in encrypted data. PhD thesis, University of Twente,
Enschede, The Netherlands (2007), ISBN 9789036524889

5. Brinkman, R., Feng, L., Doumen, J.M., Hartel, P.H., Jonker, W.: Efficient tree
search in encrypted data. Information Systems Security Journal 13(3), 14–21 (2004)

6. Chang, Y.C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531. Springer, Heidelberg (2005)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS 2006: Proceedings of
the 13th ACM conference on Computer and communications security, pp. 79–88.
ACM, New York (2006)

8. Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 228–236. Springer, Heidelberg
(2007)

9. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003)
10. Malone-Lee, J., Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T.,

Lange, T., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous ibe, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

11. Moulin, P., O’Sullivan, J.A.: Information-Theoretic analysis of information hiding.
IEEE Transactions on information theory 49(3), 563–593 (2003)

12. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 4th edn
(2002)

13. Park, D., Cha, J., Lee, P.: Searchable keyword-based encryption. Cryptology ePrint
Archive, Report 2005/367 (2005), http://eprint.iacr.org

14. Sedghi, S., Doumen, J.M., Hartel, P.H., Jonker, W.: Towards an information theo-
retic analysis of searchable encryption (extended version). Number TR-CTIT-08-
50, Enschede, August 2008. University of Twente,
http://eprints.eemcs.utwente.nl/13176/

15. Shannon, C.: Communication theory of secrecy systems. Bell Sys. Tech. 28(4),
656–715 (1949)

16. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 21st Symp. on Security and Privacy (S&P), Berkeley, California, May
2000, pp. 44–55. IEEE Computer Society, Los Alamitos (2000)

17. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: CCS 2007: Proceedings
of the 14th ACM conference on Computer and communications security, pp. 519–
528. ACM, New York (2007)

http://eprint.iacr.org
http://eprints.eemcs.utwente.nl/13176/

A Bootstrap Attack on Digital Watermarks in

the Frequency Domain

Sam Behseta1, Charles Lam2, and Robert L. Webb3

1 Department of Mathematics, California State University,
Fullerton, CA, 92834, USA
statistician@gmail.com

2 Department of Mathematics, California State University,
Bakersfield, CA, 93311, USA

clam@csub.edu
3 Department of Computer Science, California Polytechnic State University,

San Luis Obispo, CA, 93407, USA
webb@calpoly.edu

Abstract. In this paper, we propose five simple algorithms to execute a
collusion attack given several watermarked documents. Each document
considered is a picture represented as a matrix of two dimensional Dis-
crete Cosine Transform (DCT2) coefficients. Our algorithm is indepen-
dent of media type. Bootstrap methods are used to construct confidence
intervals for each DCT2 coefficient and determine its uncertainty. Us-
ing simulation studies we show that Bootstrap procedures are highly
efficient with respect to the number of iterations and sample size per
iteration while maintaining stellar probabilistic coverage, providing re-
sults at least as good as averaging or taking the median of signals. Most
importantly, a set of simulation studies suggest that the precision of
our heuristic methodology increases quickly when the number of water-
marked copies are increased, but good probabilistic coverage is achieved
with a low number of independently watermarked copies. We conjecture
that the Bootstrap methodology will be highly effective in reconstructing
the original signal for documents with high redundancy.

1 Introduction

A secure spread spectrum digital watermark is a signal added into a digital
document in such a way that the alteration to the final use, usually analog, of
the digital signal is minimal. However, the watermark is strategically placed so
that common operations on the signal will not destroy it. Since the watermark
can be recovered from the host signal if the original signal is available, the
watermark can be used to identify the original owner of a specific copy [3]. For
a discussion of the overall motivations for digital watermarking, see [3,15].

The questions of security and robustness of these types of watermarks
have stimulated a large number of research activities. For example, see
[3,6,10,11,19,25]. In this paper, we describe resampling algorithms to determine
a confidence interval for the true value of any part of the original signal in a

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 361–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 S. Behseta, C. Lam, and R.L. Webb

collusion attack. This coverage shows that we can obtain knowledgeable infor-
mation about the original unwatermarked document, when only a small number
of watermarked documents are available. By using a measure of centrality such as
the median, we can also produce a document at least as accurate to the original
document as averaging signals of all available watermarked documents.

Our algorithms generate two statistics that can be used to determine the
original signal: the percentage of altered 2D Discrete Cosine Transform (DCT2)
coefficients that are inside a particular confidence interval, and the average span
of that confidence interval. We develop methods which can be used to make
confidence intervals as narrow as possible without effecting their coverage rate.

The creators of secure spread spectrum digital watermarks attempted to ap-
proximate the original signal by averaging all of the available watermarked sig-
nals [3]. This method is satisfying because each watermarked signal is created
by adding a sequence with low correlation.

Unfortunately, simple averaging does not satisfactorily reconstruct the original
image unless the number of attackers is large. The metric to determine the
similarity of watermark W with some other watermark W ∗ is

sim(W, W ∗) =
W ·W ∗
√

W ·W
. (1)

Let W1, W2, ...Wn be n sequences with low correlation. Let W ∗ = W1+W2+...+Wn

n ,
then

sim(W1, W
∗) =

W1 ·
(

W1+W2+...+Wn

n

)
√

W1 ·W1

≈ W1 ·W1

n
√

W1 ·W1

≈ sim(W1, W1)
n

.

When sequences follow the white noise assumption, then sim(W1, W1) ≈
√

L,

where L is the length of the sequence W1. Therefore, if
√

L
n is large enough

to register a positive match between two watermarks, then simple averaging is
insufficient to obscure the original watermark.

If we continue to assume that watermarks are drawn from N(0, 1), and
if sim(W1, W

∗) = s, then the probability that W1 and W ∗ are unrelated is
the same as the probability of choosing a sample from N(0, 1), which is s
standard deviations away from the mean. This is demonstrated by the fact
that if W = w1, w2, ..., wL is a fixed sequence of numbers from N(0, 1), and
W ∗ = w∗

1 , w∗
2 , ..., w

∗
L is independently generated from samples of N(0, 1), then

W ·W ∗ = w1w
∗
1 + w2w

∗
2 + ...wLw∗

L

will follow the distribution N(0, w2
1 + w2

2 + ... + w2
L). Notice that the standard

deviation of this distribution is
√

W ·W . Therefore, sim(W, W ∗) will follow the
N(0, 1) distribution if W ∗ is independently generated from a fixed W . For the
averaging collusion attack to be effective, n must be very large or L must be
very small. However, these are generally unreasonable assumptions [3]. The al-
gorithms in this paper address these issues by using a small number of attackers
to find a narrow confidence interval with a high probability of containing the

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 363

true value of the original signal. We also show that choosing the median of the
generated confidence interval produces a result at least as good as the average.

Our work was initially inspired by Cox, et al. [3]. They detailed a water-
marking system that is used to determine the original owner of a signal. In this
paper, we use the watermarking method described by Zhu, et al. [25], which is a
modification of the method presented by Cox [3]. The term “digital watermark”
has been used for many other purposes (see Furon [11], Delaigle, et al. [4], Can-
nons and Moulin [1], Soriano, et al. [17], Wolfgang, Podilchuk and Delp [21] and
references therein).

Collusion attacks have been specifically addressed by Doërr and Dugelay [6]
where redundancy in the host signal was used to distort the included watermark.
Vinod and Bora [19] used similar methods on video signals, where redundancy
is especially applicable. These types of geometric attacks can be mitigated using
the methods presented in Dong [5].

The specific problem of this paper has been considered by Comesana, et al.
[2] Their paper also includes an especially detailed discussion of the difference
between the motivations for watermarking presented in [18] and [3]. A theoretical
result on the limitations of the method presented in [3] and a possible attack is
presented in Ergun, et al [10]. However, there are perceptible negative effects on
the host signal when this attack is used.

More recent work on collusion attacks have been done in [23,24,22,20]. In this
series of papers, the authors classify collusion attacks into linear and non-linear
categories where simple averaging is the most naive of the linear attacks and us-
ing the median of the colluding copies is the most naive of the non-linear attacks.
Specifically, in [24], the authors introduce a non-linear attack that reduces the
similarity metric. Further work on non-linear attacks has been done by [14,13].
The attack presented in our paper is non-linear, but extends previous schemes
by using the non-parametric Bootstrap methodology to mitigate possible effects
of outliers in the parametric watermark.

The term “watermark” has been used in the literature for other purposes.
Included are references to papers explaining these other uses. For a discussion
of video watermarking see Podilchuk and Delp [15]. The relationship between
video and image watermarking is explored in Doerr and Dugelay [7]. Another
application for watermarking is steganography where a detailed signal is hidden
in a host signal. Vila-Forcén, et al [18] have used collusion attacks to extract
information about the host signal and original signal in this setting.

This paper is organized in the following way: We describe our notations and
algorithms in section 2. In section 3, we summarize the extensive empirical sim-
ulations we performed using the “Lena” picture as the host signal. The results
demonstrate that the output of the algorithms are effective in terms of speed
and ability to determine precise confidence intervals with high probability of
containing the true value of the original signal. At the end of section 3, we in-
clude a discussion of the technical details of the simulation. Section 4 contains
a discussion of our methods and also includes some suggestions on future work.
Tables containing the numerical results are presented in the appendix.

364 S. Behseta, C. Lam, and R.L. Webb

2 Methods

2.1 The Bootstrap Methodology

Let X∗
1 , ...X∗

n be an independently drawn and identically distributed sample
from F̂ , the empirical cumulative distribution function of a dataset X1, ..., Xn.
X∗

1 , ...X∗
n, or the Bootstrap sample, can be acquired by sampling with replace-

ment from X1, ..., Xn. Also, suppose that Tn is an estimator of some unknown
parameter θ (for example, Tn = X̄). The Bootstrap sample is nonparametric
in a sense that since it is obtained from the dataset, it makes no assumptions
regarding the underlying statistical model and its parameters. By generating
repeated Bootstrap samples, one can obtain a probability distribution for T ∗

n ,
hence being able to assess its uncertainty.

Let UF (x) = Pr(Tn ≤ x) denote the distribution of Tn. By replacing F with
F̂ , we have Uboot(x) = UF̂ (x) = Pr[T ∗

n ≤ x|(X1, ..., Xn)], the conditional dis-
tribution of T ∗

n given data. Let ρ∞ be a metric generated by a sup-norm1 on the
space of all distributions in Rp, for an integer p, representing the dimensionality
of the distribution space. Then the following results hold (See Shao and Tu [16]
for details):

(1) If T is continuously ρ∞-Hadamard differentiable, then the Bootstrap estima-
tor Uboot is strongly consistent. In other words, ρ∞(Uboot, Un) → 0 (almost
surely).

(2) If T is continuously ρr-Frechet differentiable, then the Bootstrap estimator
Uboot is strongly consistent.

These results guarantee the fact that the Bootstrap distribution Uboot is con-
sistent for many estimators such as the mean and the median.

2.2 Notation

Let the original signal be represented by an I×J matrix D0 such that the value
of the (i, j)-th element is D0,i,j , where i = 1, ..., I, j = 1, ..., J . In this context,
each element is the value of a DCT2 coefficient. There are also K independently
watermarked documents which will be used to make statistical inference with
regard to the original signal. These matrices are denoted by Dk, where k =
1, ..., K. Similarly, Dk,i,j represents the (i, j)-th element of the k-th matrix, also
a DCT2 coefficient.

The Bootstrap is performed by sampling from K existing signals. See [8] for
a discussion of the theoretical properties of the Bootstrap procedure. The prob-
abilistic framework for determining a confidence interval for D0,i,j is obtained
by sampling n many elements with replacement from D1,i,j, . . . , DK,i,j , where
n < K followed by calculating some measure of centrality from this sample. This
procedure is repeated B times to create B possible values of the given statistic.

1 ‖ h ‖∞ is the sup-norm of a function h on Rp, if ‖ h ‖∞= supx |h(x)|.

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 365

For our simulation, the K signals are created by adding samples taken from
N(0, 1) to some of the elements of the original signal. For some subset S ⊂
{(i, j) : i = 1, ..., I, j = 1, ..., J}, we let

Dk,i,j = D0,i,j + αWk,i,j , (i, j) ∈ S, (2)

for some appropriate constant α, where Wk,i,j is a sequence of numbers from
N(0, 1). The constant α can be viewed as the standard deviation of the added
noise.

Using a simulation technique described in the next section, we calculate confi-
dence intervals to determine the average span of each interval and the empirical
percentage of the times that the original signal is contained in the interval.

2.3 Algorithms

We propose five simple algorithms to calculate confidence intervals for the orig-
inal signal. There are three parameters shared by all proposed algorithms: the
number of watermarked signals (K), the number of Bootstrap iterations (B),
and the number of samples per iteration (n), hereafter referred to as “sample
size”. The basic framework of all algorithms is described in Algorithm 0.

Let (i, j) be a typical element of the signal. There are K associated values of
this element, one in each of Dk,i,j , where k = 1, ..., k. In this paper, we sample n
of the elements with replacement. Next, we calculate two types of measurements.
First, a metric that reflects the distance to a pre-assigned measure of centrality.
Second a central statistic such as the mean. Finally, this process is repeated B
times to generate B bootstrapped observations. Let Ci,j be the list of B values in
increasing order. Let C

(p)
i,j , p ∈ (0, 1) be the value in Ci,j so that [pB] of the values

are smaller than C
(p)
i,j . The median of those B values (C(0.5)

i,j) is the bootstrapped
median.

Additionally, we calculate associated confidence intervals. Let γ ∈ (0, 1). The
Bootstrap (1− γ)-confidence interval for (i, j) is defined as

(C(γ/2)
i,j , C

(1−γ/2)
i,j). (3)

The average confidence span is defined as∑
(i,j)∈S

(
C

(1−γ/2)
i,j − C

(γ/2)
i,j

)
|S|α , (4)

where S is the subset of the signal that has been modified by the watermarking
process. The appearance of α in the denominator is motivated by the fact that,
in the initial watermark process, the signals were magnified by a scale of α.
Since we know the original signal, we can also calculate the percentage of the
confidence intervals that actually capture D0,i,j, the value of the original signal.
For any (1− γ)-confidence interval, this can formally be stated as∑

(i,j)∈S V
(1−γ)
i,j

|S| , (5)

366 S. Behseta, C. Lam, and R.L. Webb

where

V
(1−γ)
i,j =

{
1 when Di,j ∈ (C(1−γ/2)

i,j , C
(γ/2)
i,j)

0 otherwise.

Algorithm 0: The General Approach

(0.1) For the element (i, j), sample with replacement n many observations with
n < K.

(0.2) Define a Metric M which can be implemented pointwise on each of the
IJ elements. Thus, the metric can be presented as Mi,j , for i = 1, ..., I and
j = 1, ..., J .

(0.3) Calculate a statistic Ri,j based on the implemented metric on the set of
n sampled elements.

(0.4) Repeat steps (2), (3), and (4), B many times.
(0.5) Consider an appropriate quantile or an appropriate measure of centrality

of the probability distribution of RB
i,j , along with a variability measure as-

sociated with it. The superscript B here is to emphasize the number of the
Bootstrap repetitions.

(0.6) Form a pointwise 1−γ percentile level confidence interval for the statistic.
In other words, form a confidence interval for the element (i, j) with C

(γ/2)
i,j ,

and C
(1−γ/2)
i,j as its lower and upper bounds respectively.

(0.7) Calculate the pointwise width (span) of the confidence interval of step
(7).

(0.8) Calculate the percentage of the confidence intervals covering the actual
element of the signal D′.

Algorithm 1: Detection Via Boostrapping the Mean

(1.3) Take Ri,j =
∑

l Dl,i,j

n , where l represents the bootstrapped sample.
(1.5) Consider Median(RB

i,j) as the measure of centrality.

Algorithm 2: Detection Via Boostrapping the Median

(2.3) Take Ri,j = Medianl(Dl,i,j).
(2.5) Consider Median(RB

i,j) as the measure of centrality.

Algorithm 3: Detection Via Boostrapping the Geometric Mean

(3.3) Here, we take Ri,j = n
√∏

l(Dl,i,j).
(3.5) Consider Median(RB

i,j) as the measure of centrality.

Algorithm 4: Detection Via Closeness to Average

(4.2) Define Mi,j = inf l |Dl,i,j −
∑n

l=1 Dl,i,j

n |.
(4.5) Consider Median(RB

i,j) as the measure of centrality.

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 367

Algorithm 5: Pairwise Comparisons

(5.2) Calculate u = 1, ...,
(
n
2

)
many distances |Dl,i,j−Dm,i,j|, where 1 ≤ m < l ≤

n. Order the distances and label them as Mi,j(1), ..., Mi,j(u) where Mi,j(1)

represents the smallest distance. Let
(
Dl,i,j(r), Dm,i,j(r)

)
correspond to the

pair of values belong to Mi,j(r).

(5.3) If n ≥ 5, let Ri,j =
∑ 3

r=1

(
Dl,i,j(r)+Dl,i,j(r)

)
6 .

If n = 4, let Ri,j =
∑2

r=1

(
Dl,i,j(r)+Dl,i,j(r)

)
4 .

If n ≤ 3, let Ri,j =

(
Dl,i,j(1)+Dm,i,j(1)

)
2 .

(5.5) Consider Median(RB
i,j) as the measure of centrality.

Note that the watermark sequence is inserted into a subset of the original sig-
nal. This fact can be used to improve the efficiency of the simulation. Specifically,
the Bootstrap procedure could be performed on the entire set of K watermarked
signal. However, this will increase the computational complexity of the simula-
tion. Restricting our analysis to this subset will not change the results as the
rest of the signal is not important to the watermark analysis. This restriction
will greatly decrease the time required for each simulation.

3 Results

3.1 Simulation

To investigate the performance of the proposed algorithms, we perform a se-
ries of simulations. These simulations produce two outputs. The first output is
the pointwise coverage of the confidence intervals. Our empirical findings are
consistent with the Bootstrap theory [9,16]. Additionally, we determine the av-
erage span of each confidence interval. This output is used to determine which
algorithms generate tighter bounds while still maintaining high coverage.

We organize the results around three parameters shared by all the algorithms:
1–the number of Bootstrap iterations B, 2–the sample size n, and 3–the number
of watermarked copies K. Our simulations show that all algorithms remain con-
sistent for different combinations of parameter values (B=50, 100, 1000, n=3, 5,
7). Additionally, we found that increasing K greatly decreases the average span
and increases the coverage. Most importantly, the average span of the confidence
intervals remains small while the coverage of the confidence intervals increases.
This suggests that a collusion attack might be feasible with a small number of
colluding documents.

We perform simulations to calculate the coverage and the average span of each
confidence interval with K = 10, 15, 20 independently watermarked copies using
sample sizes n = 3, 5, 7. Each simulation was repeated for B = 50, 100, 1000
iterations to ensure the stability of the result. The selected results are presented
in the Appendix.

368 S. Behseta, C. Lam, and R.L. Webb

(a) (b) (c)

Fig. 1. (a) The original Lena picture (b) the significant parts (c) a watermarked
version

We convert the “Lena” picture (Figure 1(a)) into a signal of DCT2 coeffi-
cients. We watermark the lowest frequency coefficients, excluding the constant
coefficient. In Figure 1(b), we show the analog representation of the coefficients
that have been watermarked. In Figure 1(c), we include the picture with the
watermark inserted. In Figure 2, we demonstrate the reconstructed picture ob-
tained via replacing each DCT2 coefficient with the median of algorithms 1,2,
and 5 respectively.

To quantify the reconstructive quality of Figures 2(a), 2(b), and 2(c), we
calculated the sequence W ∗ by reversing the watermarking process with the
reconstructed signal D∗ using

W ∗ =
D∗ −D0

α
. (6)

This recovered watermark is then compared to one of the original watermarks
Wi, 1 ≤ i ≤ K, using the similarity metric in equation (1). The similarity
metric reveals that almost all of our algorithms perform the same. For example,
comparing a watermarked image with itself using the above equations yield the
result of 146.87. When this is done repeatedly, all results are clustered around
147.6 =

√
21777 where 21777 is L, the length of the watermark. When two

independently created watermarked pictures are compared using this algorithm,
the results are clustered around zero [3]. When the median of the confidence
intervals is used to construct W ∗, then

sim(Wi, W
∗) ≈ 147.6

k
,

where Wi is the watermark associated with one of the documents used to create
W ∗.

All of these simulations have been performed using the optimization described
at the end of section 2 on freely available software. In terms of complexity, with
a watermark of size L on a Bootstrap of B repetitions per signal and n samples
per repetition, the algorithm runs in time O(LBn).

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 369

Algorithm 1 Algorithm 2 Algorithm 5

Fig. 2. The reconstructed image produced from 100 Bootstrap iterations with a sample
size of 7 and a population of 20 using algorithms 1, 2, and 5

3.2 Numerical Results

The tables in the Appendix detail the output of the previously described algo-
rithms. Each table represents a different algorithm with an indicated number of
watermarked pictures as an input. Tables have not been included for algorithms
three and four because these algorithms produced results that were indistin-
guishable from algorithm one. Each algorithm was tested with 10, 15, and 20
watermarked documents. Within each table, the columns are organized in cate-
gories of 50, 100, and 1000 Bootstrap iterations and subcategories of 3, 5, and
7 samples per Bootstrap iteration. Each row indicates the percentile confidence
interval with confidence levels 30, 50, 70, 80, 90, 95, and 99. For example, in
table A1, these results refer to algorithm one performed with ten independently
watermarked documents. In column 100, sub-column 5, and row 90, we see that
the 90 percentile confidence interval contained the correct value 92.9% of the
time and the average span of the intervals was 1.26. For a formal definition of
the percentile confidence interval, see equation (3).

All of the algorithms perform well even with a small number of watermarked
pictures and a low number of Bootstrap iterations. However, there are differ-
ences worth discussing. The primary result concerning the coverage is that the
number of Bootstrap iterations quickly leads to diminishing returns. Running
the Bootstrap procedure 1000 times does not yield better results than doing it
100 times. Most differences are much less than 10%. The difference between 100
Bootstrap iterations and 50 iterations is greater, but low iteration results are
still impressive.

The number of independently watermarked documents does play a large role
in the process. The most significant differences occur at the lower confidence
intervals. For example, with 10 watermarked documents, using algorithm 1 with
100 Bootstrap iterations and a sample size of 5, the middle half of the sam-
ples contained the true value 59.6% of the time. In the same situation with 20
documents, the result improves to 75.8%.

The span also varies greatly with the different parameters of each algorithm.
The results were similar to those of the percentage coverage, so there will not be

370 S. Behseta, C. Lam, and R.L. Webb

as great an emphasis on each of the different effects of the parameters. The most
important result is that the number of Bootstrap iterations does not change the
span much and that the size of the population of watermarked pictures does
have a positive correlation with the span.

Clearly, the precision of the result will decrease as the percentile confidence
interval increases as there is a positive correlation with average span. Prag-
matically, one would like to strike a balance between the percentile confidence
interval and the precision. As shown in table A9, at lower percentile confidence
intervals with small span, algorithm 5 still produces satisfactory results. This
trend continues to hold with fewer Bootstrap iterations and smaller numbers of
watermarked documents.

In the end, the objective is to get a high coverage and a low span. To quantify
this goal we look at the ratio of the coverage to the span. Referencing the tables in
the Appendix, it is clear upon inspection that algorithm 1 produces the greatest
ratio of coverage to span. This ratio increases greatly with the population of
watermarked pictures because algorithm 1 produces smaller spans with larger
populations of watermarked pictures in each Bootstrap iteration, and larger
samples will produce a better ratio. For specific examples refer to table A7.

The median of the outputs from each Bootstrap iteration forms the recon-
structed image. When watermarked, the PSNR of an image is about 38.4dB.
After the process is completed all algorithms produce an image with PSNR
above 40dB. These PSNR values are close to the values obtained from the sim-
ple mean or median algorithm. However, using the similarity metric, we find that
our proposed methods perform at least as good as the simple mean or median

0 10 20 30 40 50

0
10

20
30

40

Index of watermarked copy

S
im

ila
rit

y
sc

or
e

Fig. 3. Similarity values of the reconstructed image with 20 colluding images when
the noise distribution is skewed to the right. The similarity values for the image re-
constructed with the simple mean are represented with circles. The similarity values
for the image reconstructed with the median are represented with crosses. The simi-
larity values for the image reconstructed with algorithm 5 are represented with boxes.
The similarity values with 30 other independently watermarked images are shown for
comparison.

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 371

attacks. For example, when the colluders possess images in which some of the
watermarked signals contain outliers, our method improves the similarity results
significantly. This is due to the fact that our proposed statistical procedure is
non-parametric. Consequently, the Bootstrap-based algorithms perform better
than the median or the mean attack specifically in the presence of extreme values
[9]. To elaborate, we generate noise from a right-skewed Gamma(1, 1/5) distri-
bution. Under this scenario, the attack in algorithm 5 improves the similarity
metric by approximately 36% when compared to the mean and by approximately
7% when compared to the median (see figure 3).

4 Discussion

In this paper, we used the simple equal-tail two-sided Bootstrap percentile con-
fidence interval which has second order accuracy. There have been theoretical
improvements to this method. Examples include the Bootstrap bias-corrected
percentile, the Bootstrap accelerated bias-corrected percentile and the hybrid
Bootstrap confidence intervals (See Shao [16] for a comprehensive theoretical
discussion).

We demonstrate the use of resampling to acquire measures of variation associ-
ated with a collusion. One should recognize that in principle, the reconstruction
of the original document can be done with simple averaging [3]. However, in
the process of Bootstrap, we obtain more information about the original unwa-
termarked document. We believe that Bootstrap resampling methods presented
here could open up avenues of research by providing methods for quantifying
the probability that the signal is contained in a given interval. This will allow
researchers to use many nonparametric methods, resampling being only one of
them.

We observe that the Bootstrap works with small sample sizes, low number of
iterations and modest number of watermarked copies. Most importantly, while
keeping a high PSNR value, the Bootstrap method lowers the value of the similar-
ity metric in comparison with frequently used attacks such as the mean and the
median. These are reassuring results. We discuss the statistical inference using
the multiple testing adjustment and the use of alternative confidence intervals
in another paper. We are currently investigating the use of the Bootstrap on
collusion attacks on watermarked motion pictures, where there is a high amount
of signal redundancy. We conjecture that the Bootstrap methodology will be
more effective at reconstructing the original signal in these cases.

Acknowledgements

We would like to thank Christopher Gutierrez, Joseph Sutton, and Max Velado
for their help in the preparation of this paper.

372 S. Behseta, C. Lam, and R.L. Webb

References

1. Cannons, J., Moulin, P.: Design and Statistical Analysis of a Hash-Aided Image
Watermarking System. IEEE Transactions on Image Processing 13(10), 1393–1408
(2004)

2. Comesaña, P., Pérez-Freire, L., Pérez-González, F.: The Return of the Sensitivity
Attack. In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS,
vol. 3710, pp. 260–274. Springer, Heidelberg (2005)

3. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum water-
marking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687
(1997)

4. Delaigle, J.F., De Vleeschouwer, C., Macq, B.: Watermarking algorithm based on
a human visual model. Signal Processing 66, 319–335 (1998)

5. Dong, P., Brankov, J.G., Galatsanos, N.P., Yang, Y., Davoine, F.: Digital Wa-
termarks Robust to Geometric Distortions. IEEE Transactions on Image Process-
ing 14(12), 2140–2150 (2005)

6. Doërr, G., Dugelay, J.: Countermeasures for Collusion Attacks Exploiting Host
Signal Redundancy. In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW
2005. LNCS, vol. 3710, pp. 216–230. Springer, Heidelberg (2005)

7. Doërr, G., Dugelay, J.: Security Pitfalls of Frame-by-Frame Approaches to Video
Watermarking. IEEE Transactions on Signals Processing 52(10), 2955–2964 (2004)

8. Efron, B.: The Jackknife, the Bootstrap and other Resampling Plans. Society for
Industrial and Applied Mathematics, Philadelphia (1982)

9. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall,
New York (1993)

10. Ergun, F., Kilian, J., Kumar, R.: A Note on the Limits of Collusion-Resistant
Watermarks. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 140–
149. Springer, Heidelberg (1999)

11. Furon, T.: A Survey of Watermarking Security. In: Barni, M., Cox, I., Kalker, T.,
Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 201–215. Springer, Heidelberg
(2005)

12. Khayam, S.A.: The Discrete Cosine Transform (DCT): Theory and Application.
Michigan State University (2003)

13. Kiyavash, N., Moulin, P.: A Framework for Optimizing Nonlinear Collusion Attacks
on Fingerprinting Systems. In: 40th Annual Conference on Information Sciences
and Systems, pp. 1170–1175 (2006)

14. Kiyavash, N., Moulin, P.: On Optimal Collusion Strategies for Fingerprinting. In:
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 5, p. V (2006)

15. Podilchuk, C.I., Delp, E.J.: Digital Watermarking: Algorithms and Applications.
Signal Processing Magazine 18(4), 33–46 (2001)

16. Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, New York (2005)

17. Soriano, M., Fernandez, M., Cotrina, J.: Fingerprinting Schemes: Identifying the
Guilty Sources Using Side Information. In: Barni, M., Cox, I., Kalker, T., Kim, H.-
J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 231–243. Springer, Heidelberg (2005)

18. Vila-Forcén, J.E., Voloshynovskiy, S., Koval, O., Pérez-González, F., Pun, T.: Prac-
tical Data-Hiding: Additive Attacks Performance Analysis. In: Barni, M., Cox, I.,
Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 244–259. Springer,
Heidelberg (2005)

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 373

19. Vinod, P., Bora, P.K.: A New Inter-Frame Collusion Attack and a Countermeasure.
In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710,
pp. 147–157. Springer, Heidelberg (2005)

20. Wang, Z., Wu, M., Zhao, H., Liu, K.: Resistance of Orthogonal Gaussian Finger-
prints to Collusion Attacks. In: Proceedings of International Conference on Multi-
media and Expo., vol. 1, pp. 617–620 (2003)

21. Wolfgang, R.B., Podilchuk, C.I., Delp, E.J.: Perceptual Watermarks for Digital
Images and Video. Proceedings of IEEE 87(7), 1108–1126 (1999)

22. Wu, M., Trappe, W., Wang, Z., Liu, K.: Collusion-resistant Fingerprinting for
Multimedia. IEEE Signal Processing Magazine 21(2), 15–27 (2004)

23. Zhao, H., Wu, M., Wang, Z., Liu, K.: Forensic Analysis of Nonlinear Collusion
Attacks for Multimedia Fingerprinting. IEEE Transactions on Image Process-
ing 14(5), 646–661 (2005)

24. Zhao, H., Wu, M., Wang, Z., Liu, K.: Nonlinear Collusion Attacks on Independent
Fingerprints for Multimedia. In: Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 5, pp. 664–667 (2003)

25. Zhu, W., Xiong, Z., Zhang, Y.: Multiresolution Watermarking for Images and
Video. IEEE Transactions on Circuits and Systems for Video Technology 9(4),
545–550 (1999)

Appendix: Selected Results

Table A1. The table of coverage and span for the Mean Algorithm (1) with a popu-
lation of size 10. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .467,.386 .376,.282 .312,.226 .472,.378 .378,.280 .321,.222 .481,.376 .373,.272 .319,.217
50 .703,.682 .594,.506 .514,.415 .719,.691 .596,.513 .514,.418 .722,.690 .601,.515 .522,.419
70 .869,1.07 .775,.804 .699,.664 .882,1.07 .788,.800 .709,.660 .891,1.07 .794,.803 .717,.663
80 .932,1.32 .851,.995 .790,.828 .936,1.32 .862,.995 .793,.828 .942,1.33 .866,1.00 .801,.827
90 .969,1.62 .921,1.24 .867,1.04 .972,1.65 .929,1.26 .879,1.05 .977,1.68 .936,1.28 .891,1.06
95 .983,1.98 .956,1.53 .923,1.29 .983,1.93 .959,1.49 .926,1.25 .988,1.96 .966,1.51 .933,1.27
99 .989,2.12 .968,1.65 .940,1.38 .991,2.19 .975,1.71 .952,1.44 .996,2.46 .986,1.92 .971,1.62

Table A2. The table of coverage and span for the Median Algorithm (2) with a
population of 10. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .458,.465 .376,.356 .318,.287 .461,.459 .350,.321 .281,.243 .466,.465 .244,.201 .255,.200
50 .698,.814 .610,.648 .544,.562 .698,.795 .634,.667 .571,.597 .657,.696 .657,.693 .645,.695
70 .872,1.28 .788,1.02 .713,.851 .881,1.27 .805,1.04 .717,.831 .886,1.25 .855,1.17 .649,.707
80 .932,1.60 .873,1.27 .814,1.08 .933,1.61 .883,1.26 .834,1.13 .943,1.69 .889,1.25 .886,1.26
90 .969,2.02 .936,1.61 .893,1.37 .978,2.01 .942,1.64 .900,1.36 .979,1.94 .966,1.83 .888,1.26
95 .987,2.47 .969,2.02 .945,1.72 .990,2.45 .971,1.94 .945,1.67 .992,2.78 .978,1.94 .968,1.89
99 .992,2.64 .978,2.17 .962,1.86 .996,2.81 .984,2.26 .971,1.94 .999,3.01 .996,2.82 .977,1.99

374 S. Behseta, C. Lam, and R.L. Webb

Table A3. The table of coverage and span of the Pairwise Comparison Algorithm (5)
with a population of size 10. Span is indicated second and is expressed in terms of
multiples of the standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .596,.695 .502,.442 .511,.466 .605,.687 .512,.435 .525,.458 .650,.689 .524,.431 .528,.450
50 .833,1.22 .747,.788 .756,.822 .850,1.21 .761,.786 .771,.826 .884,1.24 .770,.793 .780,.825
70 .952,1.89 .902,1.25 .910,1.30 .967,1.88 .921,1.24 .925,1.30 .977,1.93 .928,1.25 .930,1.30
80 .983,2.37 .952,1.55 .961,1.62 .986,2.38 .964,1.55 .963,1.62 .983,2.27 .967,1.56 .972,1.62
90 .995,2.80 .982,1.98 .984,2.06 .998,2.93 .986,2.00 .987,2.08 .999,3.01 .989,2.04 .990,2.11
95 .998,2.95 .993,2.43 .993,2.49 .998,3.00 .994,2.41 .995,2.47 .999,3.01 .997,2.44 .998,2.51
99 .998,2.99 .996,2.60 .996,2.64 .999,3.01 .996,2.75 .997,2.78 .999,3.01 .999,3.00 .999,3.00

Table A4. The table of coverage and span for the Mean Algorithm (1) with a pop-
ulation of 15. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .549,.428 .456,.330 .396,.277 .567,.429 .468,.330 .403,.278 .582,.430 .472,0.331 .407,0.276
50 .807,.748 .701,.576 .625,.484 .821,.749 .713,.577 .636,.485 .838,.752 .723,0.578 .641,.487
70 .943,1.14 .878,.880 .819,.741 .951,1.15 .887,.882 .827,.743 .958,1.15 .897,0.885 .837,.746
80 .983,1.41 .954,1.08 .923,.915 .987,1.41 .960,1.09 .930,.916 .989,1.42 .966,1.09 .937,.920
90 .992,1.77 .973,1.38 .951,1.16 .994,1.79 .978,1.39 .957,1.17 .996,1.80 .982,1.39 .962,1.18
95 .997,2.19 .989,1.71 .977,1.45 .998,2.10 .990,1.63 .978,1.38 .998,2.11 .992,1.64 .983,1.39
99 .997,2.18 .989,1.71 .977,1.45 .999,2.29 .994,1.79 .985,1.52 .999,2.44 .996,1.92 .992,1.62

Table A5. The table of coverage and span for the Median Algorithm (2) with a
population of 15. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .544,.472 .456,.370 .400,.306 .554,.464 .455,.356 .405,.299 .555,.469 .401,.287 .392,.280
50 .785,.826 .693,.657 .630,.553 .799,.835 .698,.653 .635,.566 .827,.884 .690,.618 .688,.616
70 .920,1.30 .866,1.03 .813,.877 .946,1.31 .890,1.03 .835,.888 .962,1.37 .882,.980 .877,.967
80 .969,1.62 .935,1.28 .895,1.10 .977,1.63 .941,1.29 .904,1.10 .982,1.68 .961,1.36 .890,1.01
90 .990,2.06 .974,1.64 .953,1.40 .994,2.08 .977,1.65 .960,1.40 .994,2.09 .987,1.77 .963,1.37
95 .997,2.54 .990,2.05 .979,1.75 .998,2.48 .991,1.97 .980,1.69 .9992,2.45 .993,1.90 .989,1.81
99 .998,2.73 .993,2.21 .987,1.90 .9996,2.88 .997,2.31 .991,1.97 1.00,3.40 .999,2.50 .998,2.31

Table A6. The table of coverage and span of the Pairwise Comparison Algorithm (5)
with a population of 15. Span is indicated second and is expressed in terms of multiples
of the standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .682,.712 .583,.437 .589,.455 .695,.697 .593,.430 .603,.450 .704,.661 .607,.426 .608,.439
50 .901,1.23 .821,.779 .826,.807 .915,1.24 .840,.781 .846,.812 .934,1.27 .851,.782 .854,.810
70 .982,1.93 .951,1.23 .951,1.28 .988,1.93 .963,1.24 .964,1.27 .991,1.86 .971,1.23 .972,1.28
80 .995,2.39 .982,1.54 .981,1.59 .997,2.39 .987,1.54 .988,1.59 .999,2.47 .989,1.54 .989,1.59
90 .999,2.93 .994,1.96 .994,2.03 .9997,3.07 .996,1.98 .998,2.05 1.00,3.37 .997,2.01 .998,2.07
95 .9997,3.25 .998,2.47 .998,2.52 1.00,3.34 .999,2.39 .999,2.46 1.00,3.41 .9992,2.43 .9996,2.51
99 1.00,3.34 .999,2.66 .999,2.71 1.00,3.40 .9997,2.79 .9995,2.84 1.00,3.41 1.00,3.30 1.00,3.31

A Bootstrap Attack on Digital Watermarks in the Frequency Domain 375

Table A7. The table of coverage and span for the Mean Algorithm (1) with a popu-
lation of size 20. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .606,.396 .500,.292 .430,.235 .622,.392 .508,.287 .434,.232 .630,.385 .510,.283 .434,.229
50 .853,.702 .754,.527 .667,.433 .859,.713 .758,.533 .671,.436 .873,.712 .770,.535 .685,.438
70 .961,1.11 .908,.840 .849,.695 .973,1.10 .918,.835 .866,.690 .978,1.11 .928,.835 .877,.692
80 .985,1.37 .959,1.04 .917,.866 .991,1.37 .963,1.04 .925,.865 .993,1.38 .968,1.04 .931,.865
90 .996,1.71 .983,1.31 .961,1.09 .998,1.73 .988,1.32 .969,1.10 .998,1.76 .992,1.34 .977,1.12
95 .999,2.10 .994,1.62 .982,1.35 .9991,2.04 .996,1.57 .988,1.31 .9994,2.07 .998,1.59 .992,1.33
99 .9996,2.25 .997,1.74 .990,1.46 .9997,2.34 .998,1.82 .994,1.52 1.00,2.63 .9995,2.04 .999,1.72

Table A8. The table of coverage and span for the Median Algorithm (2) with a
population of 20. Span is indicated second and is expressed in terms of multiples of the
standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .602,.475 .508,.367 .446,.307 .612,.463 .515,.360 .455,.305 .613,.463 .491,.327 .486,.320
50 .834,.828 .754,.654 .695,.558 .848,.831 .759,.658 .693,.554 .876,.841 .741,.611 .719,.574
70 .957,1.31 .912,1.03 .870,.881 .969,1.31 .927,1.03 .884,.881 .978,1.39 .942,1.08 .881,.846
80 .988,1.63 .963,1.29 .934,1.10 .991,1.62 .968,1.29 .937,1.10 .994,1.66 .974,1.32 .951,1.12
90 .996,2.06 .987,1.64 .972,1.40 .998,2.08 .992,1.65 .979,1.41 .9993,2.17 .996,1.73 .987,1.43
95 .9992,2.57 .996,2.05 .990,1.76 .9996,2.48 .997,1.99 .991,1.69 .9998,2.60 .999,2.04 .997,1.76
99 1.00,2.77 .998,2.22 .997,1.90 1.00,2.88 .9992,2.31 .996,1.97 1.00,3.39 1.00,2.67 .9993,2.23

Table A9. The table of coverage and span of the Pairwise Comparison Algorithm
(5) with a population of size 20. Span is indicated second and is expressed in terms of
multiples of the standard deviation.

50 100 1000
3 5 7 3 5 7 3 5 7

30 .722,.714 .625,.431 .639,.448 .752,.700 .645,.428 .656,.441 .777,.687 .661,.420 .659,.430
50 .935,1.24 .867,.768 .869,.793 .949,1.24 .883,.771 .882,.793 .957,1.24 .899,.771 .897,.794
70 .990,1.93 .969,1.22 .971,1.25 .996,1.94 .978,1.22 .977,1.26 .997,1.92 .985,1.22 .985,1.26
80 .998,2.39 .991,1.51 .992,1.57 .9993,2.40 .995,1.52 .994,1.57 .9995,2.38 .996,1.52 .996,1.57
90 .9998,2.98 .997,1.93 .998,2.00 1.00,3.07 .999,1.95 .999,2.01 1.00,3.05 .9994,1.97 .9997,2.04
95 1.00,3.39 .9993,2.44 .9992,2.50 1.00,3.48 .9994,2.35 .9998,2.42 1.00,3.66 .9997,2.38 .9998,2.46
99 1.00,3.52 .9994,2.64 .9997,2.70 1.00,3.63 .9998,2.77 1.00,2.82 1.00,3.66 1.00,3.22 1.00,3.27

Improved Data Hiding Technique for Shares in

Extended Visual Secret Sharing Schemes

Rabia Sirhindi, Saeed Murtaza, and Mehreen Afzal

College of Signals, National University of Sciences and Technology, Pakistan
msis-5.rabia@mcs.edu.pk, smurtaza-mcs@nust.edu.pk,

mehreenafzal@hotmail.com

Abstract. An improved data hiding technique is proposed in this pa-
per to hide the shares of a secret image in an Extended Visual Secret
Sharing (EVSS) scheme. It is based on Least Significant Bit (LSB) sub-
stitution with a little modification that the embedding capacity varies
with each pixel of the host image and depends upon the surrounding
pixels’ color difference. This not only increases the embedding capac-
ity of the host image as compared to simple LSB substitution but also
yields high Peak Signal to Noise Ratio (PSNR) values for host and stego
images. Moreover, results indicate that the proposed data hiding pro-
cess improves the security of camouflage images in EVSS schemes since
shares are completely hidden in the cover images without any trace of
their presence, unlike most of the previous share hiding approaches, thus
preventing shares from alteration during transmission.

Keywords: Visual cryptography, extended visual secret sharing, data
hiding, LSB encoding, adaptive LSB encoding.

1 Introduction

Steganography is the art of hiding secret messages in apparently harmless carrier
messages such that the very existence of the secret is concealed. Unlike cryptog-
raphy, which uses codes and ciphers to change the structure of secret information,
steganography uses data hiding techniques rendering the message invisible. Use
of steganographic methods on cryptographically treated secret messages provides
an added layer of security since an enciphered message might arouse suspicion
where as a camouflaged and invisible message does not.

Visual cryptography, first introduced by Naor et al. in [1], is a new method
of encrypting data which is taken in the form of black and white images i.e.,
pictures, text, handwriting, etc. The idea is based upon secret sharing schemes
with the exception that now the secret data is an image. A dealer divides the
secret image among n number of participants where it can only be recovered
when k or more participants (k ≤ n) stack their respective pieces together. Any
less than k participants gather no information about the secret when there pieces
are stacked together. These pieces of the secret data (here an image) are called
shares and the phenomena is called Visual Secret Sharing (VSS) as shown in

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 376–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Data Hiding Technique 377

Fig. 1. The image becomes visible when k participants stack the transparencies
containing shares and the decryption is performed by the human visual system.
The basic concept of visual cryptography proposed in [1] is applicable to black
and white images. A number of extensions have been proposed, though, which
also deal with grayscale and color images [3,4,5,8]. In addition, schemes have
been developed that share and hide a secret image in multiple significant cover
images [6,7,8]. The shares are, thus, camouflaged in meaningful but innocent-
looking cover images possessing no trace of the original secret information. This
form of VSS is called Extended Visual Secret Sharing (EVSS)[2]. It improves
the security of secret image because now the random looking black and white
content of the share images is concealed in colourful images.

(b)

(a)

(d)

(c)

Fig. 1. (2, 2) visual secret sharing. (a) Original Image I of size 120x120, (b)-(c) Shares
SH1 and SH2 of size 240x240, (d) Recovered image RecI by stacking SH1 and SH2.

This article proposes a data hiding technique that can be employed in an
EVSS scheme to hide secret image shares in meaningful color images. It uses
adaptive LSB substitution in which the number of bits to be hidden is calcu-
lated individually for each pixel and is based on the difference in surrounding
pixel values. The purpose is to ensure that variances introduced by embedded
data in the solid colour areas of host image do not become noticeable. Therefore,
areas with little difference in pixel intensities are packed with lesser number of
share bits than those with greater difference values. The prime advantage of us-
ing a different data hiding method is that it gives improved PSNR values over
the previous techniques. The stego images produced using this technique, do
not disclose any information about the hidden data that becomes noticeable to
human eyes. This is especially useful in visual authentication applications [9],
[10] (such as document authentication, etc.) since it prevents the shares from
man-in-the-middle attacks. Not only is the information now encoded in cover

378 R. Sirhindi, S. Murtaza, and M. Afzal

image, but also it is scrambled enough to resist an interception-modification
attack as described in [10].

The remaining paper is structured as follows. Section 2 provides an insight into
some existing EVSS schemes and share hiding technique used in these schemes.
Section 3 covers a detailed description of data hiding in images by simple LSB
and adaptive LSB substitution. This followed by the proposed data hiding ap-
proach in section 4, which is based on adaptive LSB and calculates the number
of bits individually for each pixel in the host image. Section 5 presents some
analysis and results based on Peak Signal to Noise Ratio (PSNR) values of stego
and host images and finally section 6 concludes the article.

2 Extended Visual Secret Sharing Schemes and Share
Hiding Principle

Some advanced secret sharing schemes will be seen in this section based on mod-
ified visual cryptography, which use significant images called cover or shadow
images to hide the secret image. These innocent looking images reveal no infor-
mation about the original image, until they are stacked. The stacking operation
constructs an image that is neither of the two covers. This form of visual cryptog-
raphy also called extended visual cryptography is more secure since the confusing
and meaningless copies of shares produced in basic VSS schemes may invite at-
tempted attack. The following subsections briefly discuss some of the existing
EVSS schemes.

2.1 Chang and Chen’s Scheme

This secret sharing scheme generates two shares of the colored secret image I
such that each pixel is expanded into two txt sub-pixel blocks (where M=txt is
bounded by the number of colors in the secret image), one for each share, which is
subsequently hidden in the cover image pixels. It uses a Color Index Table (CIT)
that stores each color present in the secret image against an index or code value
which is used to successfully retrieve this color information when reconstructing
the original image from two camouflage images. A detailed description on how
the shares are created can be found in [6].

2.2 Chang and Yu’s Scheme

Chang et al. provide an algorithm to share secret gray images in multiple images
in the scheme proposed in [7]. Each pixel’s gray value in secret image is encoded
into an 8-bit binary string k = (k1k2k3 · · ·k8). Two pixel shares are created from
this binary value, producing two 3x3 sub-pixel blocks for the original pixel, one
for each participant. After repeating the process for all pixel in the secret im-
age, the two shares constructed are of size 3M x3N (where M x N is the size
of original image). The secret image is recovered using XOR operation between

Improved Data Hiding Technique 379

corresponding sub-pixel blocks in binary shares hidden in the two camouflage
images. More detail on sharing and recovering algorithms can be seen in [7].

2.3 Hiding Technique Used in Previous Schemes

Our main focus in this paper is on the share hiding techniques used to hide
data contained in binary shares produces as a result of applying secret sharing
schemes. In the previously described two schemes, once the sub-pixel blocks of
original image pixel are obtained, these are hidden in the cover images by simply
filling colors k1 and k2 from corresponding pixels of covers O1 and O2. This is
done in such a way that only the sub-pixel locations containing a 1 (color black
in share) are filled with the color of corresponding pixel in cover image. The
phenomenon is illustrated in Fig. 2. Thus, the process of hiding a share in cover
image is fairly simple and straight forward. It does not involve any encoding of
data in the host image, rather fills the sub-pixel blocks in the binary share with
colors from corresponding cover image pixels in the spatial domain.

3 Data Hiding Techniques

Data hiding techniques are employed to conceal the existence of secret data. The
secret information can be embedded in digital media (text, images, video, audio,
etc) in such a way that its presence is barely discernible to human perception.
Data hiding techniques have gained significant interest in recent years and a
number of techniques have been proposed for various applications such as tamper
proofing, copyright protection, authentication and watermarking. In this article
it is used in the context of VSS schemes and authentication applications involving
visual cryptography. The following subsection covers some very basic data hiding
techniques.

3.1 Least Significant Bit (LSB) Encoding

The simplest of all data hiding techniques is the Least Significant Bit (LSB)
encoding or substitution. It uses the LSB plane of the cover or container image
to hide secret data. The secret message is embedded into the k rightmost least
significant bits of the original image. If the cover image is grayscale, each pixel
value can be represented as an 8-bit binary value. The secret message (text,
image, etc) is first converted to a binary bit stream and then k bits are read at
one time to be embedded into given cover image pixel pi,j as follows,

p′i,j = pi,j − pi,j mod 2k ⊕ m (1)

This process is repeated until all bits have been embedded into cover image
where the number of secret bits per pixel is fixed for each pixel. The quality of
the stego image produced as a result of LSB substitution depends upon number
of bits embedded per pixel, where the former degrades as the latter increases.
Results on PSNR values for 1 to 5 bits per pixel are given in [11].

380 R. Sirhindi, S. Murtaza, and M. Afzal

Color k1 of pixel
at point (1,1)

(a)
Sub-pixel block
corresponding to
pixel at (1,1) in cover
image

(b)

Pixel block at spatial
locations (1,1), (1,2), (2,1)
and (2,2) in camouflage
image

(c)

Fig. 2. Hiding share in cover image by simple color filling technique. (a) Cover image
C of size 100x100, (b) Share SH1 of size 200x200, (c) Camouflage image C’ with share
SH1 hidden.

4 Proposed Data Hiding Technique to Hide Shares

In this section, an Adaptive LSB (A-LSB) substitution technique is proposed for
hiding secret image shares in cover images. It differs from simple LSB in the way
number of bits to be replaced in each cover image pixel is calculated. Data hiding
using neighborhood pixel information is proposed in [12] where it works along
with Optimal Pixel Adjustment Process (OPAP) because the original scheme is
unable to extract the hidden data completely from stego image. Here, however,
OPAP is not performed which improves the computation time and the data is
recovered successfully in its original form also. The reason LSB is chosen for
hiding is that data has to be recovered properly and losslessly since the shares
are required to reconstruct the secret image.

An RGB container image C of size M xN is taken and its green plane Cg is
extracted for the data embedding. This is because human eyes are less sensitive
to green as compared to red and blue. 65% receptor cones over the retinal surface
of human eyes are sensitive to red, 33% to green and only 2% to blue; however
these are the most sensitive [13]. If data is embedded in all three color channels
of the image, the noise becomes visible to human eyes and quality of stego image
deteriorates. Each share is a monochrome image with pixel values equal to 0 or
1. This two dimensional image is converted to one dimensional array of bits that
are subsequently embedded in the cover image. The following subsections discuss
hiding and extraction process in detail.

Improved Data Hiding Technique 381

4.1 Embedding Algorithm

The embedding process is similar to that of LSB substitution except for one
additional step. Once Cg is extracted from the cover image, the number of bits
for each green pixel is calculated as a logarithm of difference between its upper
and left neighbors. This difference value denoted by Gd, represents the change
in color intensities from one adjacent pixel to another. Based on this value, the
number of bits to be embedded is calculated for each pixel(Equation 2). This
method ensures that more data is embedded in the noisy regions of the host
image than those have monotone color patterns.

Gd = pUpper − pLeft (2)

The number of potential storage bits Nb is decided based on Gd. It can range
from 1 to 4. If bit positions beyond four LSBs are used, the quality of stego
image degrades. Moreover, four bits are embedded only in noisy areas of the
cover image where the effect is unnoticeable.

Nb = 1 if − 1 ≤ Gd ≤ 1 (3)

Nb = log2(Gd) if Gd ≥ |1| (4)
After calculating number of bits for the pixel, Nb bits from the data to be

hidden are embedded in the pixel using Equation 1. When all data bits from
the share are embedded in the cover image, the original green component Cg

of cover image is replaced with the new green channel C′
g. This forms the stego

image C’.

4.2 Extraction Algorithm

To extract data from stego image, the same procedure is repeated again. First
the green component containing hidden information is extracted from the stego
image C’. Potential number of secret data bits is calculated for each pixel in C′

g

using Equations 3 and 4. Then, Nb rightmost bits of the pixel are extracted from
the 8-bit binary string. When data from all pixels is calculated, it is converted
back from bit stream to a two dimensional form of a share.

5 Experimental Results

Some results of embedding secret image shares in color images are presented in
this section. A black and white secret image of dimensions 100x100 is shared
using a (2,2) VSS scheme to generate two shares SH1 and SH2 of size 200x200
pixels each. These are hidden in the two cover images C1 (Pepper) and C2
(Hills) as shown in Fig. 3(a) and (b), using two data hiding techniques. The first
set of images (Fig. 3(g) and (h)) are obtained using the proposed data hiding
approach based on pixel value differencing. The second set (Fig. 3(c) and (d))
is produced as a result of applying the previous data hiding technique as given in

382 R. Sirhindi, S. Murtaza, and M. Afzal

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3. Hiding SH1 and SH2 in cover images (a)-(b) Original cover images C1 and C2 of
size 200x200, (c)-(d) Camouflage images C1’ and C2’ obtained using previous coloring
technique, (e)-(f) Stego images of size 200x200 obtained from LSB substitution with 4
bits per pixel,(g)-(h) Stego images of size 200x200 obtained from A-LSB substitution

Table 1. Hiding Capacity and PSNR values for proposed data hiding scheme with
share size of 200x200 pixels

Image Image Size Embedded Hiding PSNR

Data Size Capacity (in dB)

in bits) in bits)

Lena.jpg 256x256 40000 131472 45.4707

Baboon.jpg 256x256 40000 197909 41.0476

Hills.jpg 256x256 40000 78473 48.8608

Autumn.jpg 256x256 40000 189739 41.7013

Pepper.jpg 256x256 40000 103197 45.5479

Bridge.jpg 256x256 40000 191964 41.2171

Improved Data Hiding Technique 383

section 2.3 of this article. A scaled down version of the cover images are required
for the second method as they are later expanded to form camouflage images of
size 200x200.

The noise in the second set of camouflage images can easily be seen without
any zooming in, clearly indicating the presence of some hidden information in the
image. Although the image is still significant, the quality is much deteriorated.
On the contrary, stego images generated from the proposed data hiding solution
appear very similar to the original covers. This is further supported by the PSNR
values for six different images in Table 1. Hiding capacity refers to the number of
bits that can be hidden in the image using A-LSB and PSNR is the Peak Signal
to Noise Ratio of the stego-images obatined.

6 Discussion

The results in Table 1 show that employing A-LSB for data hiding of shares
produced in a VSS scheme achieves high PSNR values and larger embedding
capacity as compared to existing schemes. The table below shows the data hiding
capacity for different images of size 256x256 pixels. This definitely is better than
simple LSB where a fixed number of bits are embedded in all pixels irrespective
of their location in the image i.e., whether they are in a solid fill area or a noisy
one. PSNR values greater than 40 dB prove that the quality of original image is
preserved.

This scheme is better than the others from a security point of view also because
stego images produced reveal no information about hidden data as compared
to previous technique (Fig. 3(c) and (d)). Even when compared to simple LSB

1 1.005 1.01 1.015

x 10
4

0

1

2

3

4

5

6

Pixel No. (10000-10150)

B
it

C
ap

ac
ity

 o
f
P

ix
el

 (
in

 b
its

)

BaboonNb

HillsNb

LenaNb

PepperNb

Fig. 4. Distribution of bits in four different host images for 150 randomly chosen pixels

384 R. Sirhindi, S. Murtaza, and M. Afzal

(a)

(c)

(b)

(d)

Fig. 5. Tamper detection in document authentication

(a)

(c)

(b)

Fig. 6. Extracted share and stacking reults

(Fig. 3(e) and (f)), the distribution of number of bits Nb per pixel varies greatly
with different images. This is shown in Fig. 4 where distribution of bits in ran-
domly chosen 150 pixels of four images is given.

Improved Data Hiding Technique 385

6.1 Application in Document Authentication

With this data hiding scheme, the modification attacks against document shares
in document authentication discussed in [9,10] are easily detected. Resuts
obatined in this respect are given in Fig. 5. The steganographic image containing
hidden share is shown in Fig. 5(a). A random 5x5 pixel region is selected in the
area containing hidden information. The green plane values are changed so that
the change is reflected in the stego-image. Now, this modified stego-image is used
to extract the share. Small black spots can be seen in the retrieved (Fig. 6(a))
as compared to a uniform share structure as seen in Fig. 1(b)-(c). Moreover,
when the two document shares are stacked together, the image that is revealed
clealr shows noise from the point where modification was done to the very end
(Fig.6(b)). This easily helps detect if the document was tampered with. Also,
the share structure shows some visually perceptible noise.

7 Conclusion

This article proposes a new data hiding technique for EVSS schemes. It is based
on a modified version of LSB substitution in which the number of bits to be
hidden is determined individually for each pixel depending upon the difference
of adjacent pixels. The purpose of using this scheme for hiding shares produced
from a VSS scheme is to reduce the noise introduced in the cover image when
data is hidden in it. Experimental results indicate that the proposed data hiding
strategy gives improved PSNR values as compared to the previous scheme where
noise is clearly visible in camouflage images. Moreover, the distribution of hidden
bits per pixel is not uniform, as seen in simple LSB substitution. Thus, it can be
concluded that afore mentioned technique improves the security of shares when
hidden in cover images as compared to when they are transmitted in clear. It
also prevents the modification and interception attacks discussed in [10].

References

1. Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

2. Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.: Extended Schemes for Visual
Cryptography. Theoretical Computer Science 250(1-2), 143–161 (2001)

3. Verheul, E., Tilborg, H.V.: Constructions and Properties of k out of n Visual Secret
Sharing Schemes. Designs, Codes and Cryptography 11(2), 179–196 (1997)

4. Rijmen, V., Preneel, B.: Efficient Color Visual Encryption for Shared Colors of
Benetton. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070. Springer,
Heidelberg (1996)

5. Lukac, R., Plataniotis, K.N.: Color Image Secret Sharing. IEE Electronic Let-
ters 40(9), 529–530 (2004)

6. Chang, C., Tsai, C., Chen, T.: A New Scheme for Sharing Secret Color Images in
Computer Network. In: Proc. International Conference on Parallel and Distributed
Systems, pp. 21–27 (2000)

386 R. Sirhindi, S. Murtaza, and M. Afzal

7. Chang, C.C., Yu, T.X.: Sharing a Secret Gray Image in Multiple Images. In: Proc.
International Symposium on Cyber Worlds: Theories and Practice, pp. 230–237
(2002)

8. Sirhindi, R., Afzal, M., Murtaza, S.: An Extended Secret Sharing Scheme for Color
Images with Fixed Pixel Expansion. In: Proc. International Conference on Global
e-Security. CCIS, vol. 12, pp. 81–89. Springer, Heidelberg (2008)

9. Fischer, I., Herfet, T.: Visually Authenticated Communication. In: International
Symposium on System and Information Security, pp. 471–474 (2006)

10. Fischer, I., Herfet, T.: Visual Document Authentication using Watermarks and
Text Transformations. Journal of Computers 2(5), 44–53 (2007)

11. Chan, C.K., Cheng, L.M.: Hiding data in images by simple LSB substitution.
Pattern Recognition 37, 469–474 (2004)

12. Li, S.L., Leung, K.C., Chan, C.K.: Data Hiding in Images using Adaptive LSB
Substitution based on Pixel Value Differencing. In: Proc: IEEE First International
Conference on Innovative Computing, Information and Control (2006)

13. Gonzalez, R.C., Woods, R.: Digital Image Fundamentals. Addison-Wesley, Reading
(1992)

Efficient Multi-authorizer Accredited

Symmetrically Private Information Retrieval

Mohamed Layouni1, Maki Yoshida2, and Shingo Okamura2

1 School of Computer Science, McGill University, Montreal, Canada
2 Department of Multimedia Engineering, Graduate School of Information Science

and Technology, Osaka University, Osaka, Japan

Abstract. We consider a setting where records containing sensitive per-
sonal information are stored on a remote database managed by a storage
provider. Each record in the database is co-owned by a fixed number of
parties called data-subjects. The paper proposes a protocol that allows
data-subjects to grant access to their records, to self-approved parties,
without the DB manager being able to learn if and when their records are
accessed. We provide constructions that allow a Receiver party to retrieve
a DB record only if he has authorizations from all owners of the target
record (respectively, from a subset of the owners of size greater than a
threshold.) We also provide a construction where owners of the same
record do not have equal ownership rights, and the record in question is
retrieved using a set of authorizations consistent with a general access
structure. The proposed constructions are efficient and use a pairing-
based signature scheme. The presented protocol is proved secure under
the Bilinear Diffie-Hellman assumption.

1 Introduction

Achieving a good quality of service and a high operational efficiency have al-
ways been a top priority for governments and businesses alike. Over the years,
organizations both from the public and private sectors have experimented with a
variety of technical choices and policies to improve the quality of their services.
One technical choice that seems to be turning into a trend is the widespread
adoption of information technologies and the continuous migration of services
from the traditional paper-based world to the electronic world. The latter has a
number of advantages, among which we note the greater convenience and speed
to access data, which in turn translate into shorter processing delays, less errors,
better statistics, higher cost-efficiency, and better auditing and fraud detection
mechanisms.

Despite all the above benefits, users are still showing a certain reluctance
and skepticism towards newly introduced electronic systems. The reason for this
skepticism is mainly attributed to the lack of assurances about the way sensitive
user data is handled, and the implications that may result from it on users’
privacy.

To reduce this lack of trust, it is important that the new systems be designed
in a way that gives users increased control over their data. Research on this topic

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 387–402, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 M. Layouni, M. Yoshida, and S. Okamura

received a significant attention in the past (e.g., [1,2,3,4,5,6]). More recently, a
partial solution that contributes to reinforcing user’s control over their data,
has been proposed in [7]. This solution, called accredited symmetrically private
information retrieval (ASPIR), assumes a setting where sensitive information
belonging to users (data-subjects) is stored on a remote database DB managed
by a party called a Sender. The setting includes an additional party called a
Receiver who retrieves records from the database. The construction in [7], allows
a Receiver to retrieve data owned by the user (data-subject), from a database DB
managed by the Sender, such that the following three requirements are satisfied:
(1) Privacy for the data-subject: the Receiver can retrieve a data record only
if he has a valid authorization to do so from the record owner, (2) Privacy for
the Receiver: the Sender is convinced that the Receiver’s query is authorized by
the owner of the target DB record, without learning any information about the
content of the query, or the identity of the record owner, and (3) Privacy for the
Sender: the Receiver cannot retrieve information about more than one record
per query. For example, the Receiver cannot use an authorization from user U
to learn information about database records not belonging to U .

The constructions in [7] cover a setting where each record in the database
is owned by a single user. In many applications, data records are the property
of several parties simultaneously rather than a single one. For example, in the
healthcare domain, a medical procedure is performed by a doctor on a patient
within the premises of a hospital. It may be natural in some jurisdictions that
all three parties, namely the patient, doctor, and hospital, have a right to the
database record documenting the medical procedure. As a result, a Receiver
(e.g., a second doctor) who wants to have access to the above record, needs an
authorization from all three record owners. With the obtained authorizations,
the Receiver should be able to retrieve the target record subject to the following
conditions: (1) the Receiver can retrieve the record in question only if he has the
approval of all record owners, (2) the Sender is convinced that the Receiver’s
query is approved by the owners of the target data, without learning any infor-
mation about the index of the target data, or the identity of the authorizers,
and (3) the Receiver cannot retrieve information about records other than the
one defined in the submitted query.

The ASPIR constructions of [7] rely on privacy-preserving digital creden-
tials [4] to protect the anonymity of the authorizer with respect to the Sender.
The digital credential primitive has been used in addition to hide the index of
the retrieved record, and to guarantee the unforgeability of the issued authoriza-
tions. While highly versatile, the digital credentials of [4] do require a certain
amount of computations from the different participants, especially the authoriz-
ers. In addition, the construction in [7] assumes that each record owner possesses
a digital credential of the type in [4], and that he is willing to use it to issue
authorizations.

In this work, we extend the ASPIR protocol of [7] to a context where each
database record can have multiple owners. The protocol we present in this paper
has a neater and more generic design, and uses SPIR primitives in a black-box

Efficient Multi-authorizer ASPIR 389

fashion, unlike the construction in [7] which works specifically for Lipmaa’s SPIR
scheme [8]. Our construction is more efficient than the one in [7], and uses a
lightweight pairing-based signature scheme similar to that in [9] instead of digital
credentials. In this work, we also propose a t-out-of-n threshold multi-authorizer
ASPIR variant, where records can be privately retrieved by a Receiver as long
as he has authorizations from t out of the n owners of the target record.

The paper finally treats a setting where the owners’ rights to a record are not
necessarily equal. For example one could imagine a setting where an authoriza-
tion from the patient is sufficient to access his medical record, while authoriza-
tions from both the doctor and hospital are necessary to access the same record.
The latter could be useful in cases of emergency where the patient is unable to
grant an authorization.

2 Related Work

The problem of managing personal data according to privacy policies defined
by the data owners, has been considered by a number of authors. In [10,11],
Bagga et al. propose a primitive called policy-based encryption. Policy-based
encryption allows a user to encrypt a message with respect to an access policy
formalized as a monotone Boolean expression. The encryption is such that only
a user having access to a qualified set of credentials, complying with the policy,
is able to successfully decrypt the message. The context in [10,11], however, is
different from the one in this paper, since the goal there is to allow the user
to send a secret message to a designated set of players defined by a policy. In
our context, the target data is already stored in a database, and the goal is to
allow parties authorized by the data owners to retrieve this data, without the
database manager learning which data has been retrieved or the identity of the
data owners.

In [12], Song et al. present a scheme allowing keyword search on encrypted
data. Their setting consists of a user, and a server storing encrypted data owned
by the user. The server can process search queries on the user’s stored ciphertext,
only if given proper authorization from the user. The scheme in [12] also sup-
ports hidden user queries, where the server conducts the search without learning
anything about the content of the query. Although related to our context, it is
not clear how the work in [12] can be applied to the problem we describe in this
paper, since delegating querying capabilities to a third party (e.g., a Receiver)
may require the user to reveal his encryption key, and thus share all of his past
and future secrets. Besides, it is not clear how the scheme in [12] can hide the
identity of the data-owner from the server, or how it can impose restrictions
(e.g., wrt. time or usage) on the search capabilities delegated to a third party.

Finally, in [13] Aiello et al. consider a scenario where users privately retrieve
data from a database containing a set of priced data items. The proposed proto-
col is called priced oblivious transfer, and allows a user U, who made an initial
deposit, to buy different data items, without the database manager learning
which items U is buying, subject to the condition that U’s balance contains

390 M. Layouni, M. Yoshida, and S. Okamura

sufficient funds. We believe the construction in [13] is the first to consider im-
posing additional requirements on oblivious transfer protocols. While interesting
in their own right, the added requirements do not address the issue of protecting
the identity of the data owners.

3 Summary of Contribution and Paper Organization

We propose a multi-authorizer accredited SPIR scheme where data records
stored on a Sender’s database can be retrieved by a Receiver only if (1) the
latter has authorizations to do so from the target record owners, and (2) with-
out the Sender learning information about the index of the retrieved record or
the identity of any of the record owners. In addition, the proposed scheme allows
record owners to encode, in the issued authorizations, any privacy policy they
want to enforce on their data, including the Receiver’s identity, an expiry date
etc. The paper also proposes a variant scheme for t-out-of-n threshold access,
where a Receiver is able to retrieve a data record only if it has authorizations
from at least t out of the n owners of the record. Finally, the paper treats a
setting where owners of a record have unequal rights. In this setting, records
are retrieved in accordance with a general access structure reflecting the non-
uniformity of owners’ rights.

In Section 4, we introduce few definitions, and describe the SPIR primitive
which we use as a building block in our construction. In Section 5, we present
our main multi-authorizer ASPIR construction. In Section 6, we evaluate the
security and privacy of the proposed scheme. In Section 8, we briefly describe an
extension to t-out-of-n threshold access, and treat the more general case where
owners have unequal rights in Section 9. We conclude in Section 11.

4 Preliminaries

The construction we present uses a pairing-based signature scheme similar to [9],
and relies on the hardness of the Bilinear Diffie-Hellman Problem (BDH). We
first introduce bilinear maps, and BDH, and describe the pairing-based signature
and SPIR building blocks.

Definition 1 (Admissible bilinear pairings). Let (G1,×) and (G2,×) be
multiplicative groups of the same prime order q. Assume that the discrete log-
arithm problem in G1 or G2 is hard, an admissible bilinear pairing is a map
e : G1 ×G1 → G2 satisfying the following properties:

– Bilinearity: For all P, Q ∈ G1, and α, β ∈ Z∗
q, e(Pα, Qβ) = e(P, Q)αβ.

– Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) �= 1G2 .
– Computability: Given P, Q ∈ G1, there is an efficient algorithm to compute

e(P, Q).

Definition 2 (Bilinear Diffie-Hellman Problem). Let e : G1 × G1 → G2

be an admissible bilinear map, and let P be a generator of G1. For a, b, c ∈ Z∗
q,

given the tuple (P, P a, P b, P c) output e(P, P)abc.

Efficient Multi-authorizer ASPIR 391

4.1 Pairing-Based Signature Scheme

Let e : G1×G1 → G2 be an admissible bilinear map, and let P be a generator of
G1. Assume the signer has a private key sk := x ∈ Z∗

q , and a corresponding public
key pk := P x. To sign a message m, the signer computes σ := H(m)x, where H :
{0, 1}∗ → G1 is a public collision-resistant one-way function. The verifier accepts
σ′ as a valid signature on m′ with respect to pk, only if e(σ′, P) = e(H(m′), pk)
holds.

4.2 Symmetrically Private Information Retrieval

A private information retrieval scheme or PIR for short, involves two players: a
Sender and a Receiver. The Sender manages a database DB, and answers queries
on DB submitted by the Receiver. The main goal of PIR schemes is to allow the
Receiver to retrieve a DB record of his choice without the Sender learning the
content of his query, and without resorting to the trivial and inefficient method
where the Sender just returns the whole database back to the Receiver. The
property of hiding the content of the Receiver’s query from the Sender is called
Privacy for the Receiver.

PIR schemes are mainly concerned with providing Privacy for the Receiver.
There are settings however, where the Sender too is interested in controlling
access to his database. For example, the Sender could be a multimedia provider
with a business model based on charging a fee for every piece of content accessed
in his database. A solution to this type of settings can be obtained by using
Symmetrically Private Information Retrieval schemes or SPIR for short.

A SPIR scheme allows a Receiver to efficiently retrieve records from the
Sender’s database such that the following two properties are assured:

– Privacy for the Receiver: the sender does not learn any information about
the index of the target record

– Privacy for the Sender: the Receiver does not learn any information on the
database content, other than the target record.

The above properties, namely Privacy for the Receiver, and Privacy for the
Sender can be either perfect, statistical or computational. For example, Lipmaa
proposes in [8] a SPIR scheme that is computationally private for the Receiver
and perfectly private for the Sender.

A significant number of PIR and SPIR schemes can be found in the literature
(e.g., [14,15,16,8,17]) with various performance levels, and a multitude of features
such as :

– Single-DB (e.g., [15]) vs. multiple-DB Senders (e.g., [14].)
– Use of algebraic properties (e.g., homomorphic encryption [8] and φ-assump-

tion [16]) vs. non-algebraic properties (e.g., existence of one-way trapdoor
permutation [15].)

– Index-based (e.g., [8,16]) vs. keyword-based queries (e.g., [18].)

More information on these and other differences can be found in [19,20]. For
the purpose of this paper however, we do not discuss these features any further,
and use SPIR schemes in a black-box fashion.

392 M. Layouni, M. Yoshida, and S. Okamura

Notations. In the remainder of this paper we assume that we have a SPIR scheme
denoted SPIR. Let s be the secret index of the record the Receiver is interested in.
The Receiver uses the public information, and possibly his private information
to compute a SPIR query encoding s. We denote by QSPIR the query the Receiver
submits to the Sender. Let RSPIR be the Sender’s answer to the Receiver’s query.
The Receiver then uses his private information and s, to recover DB[s] from
RSPIR.

5 Protocol Description

The multi-authorizer accredited SPIR protocol we propose relies on the two
building blocks described above. We start by describing a first construction in
section 5.2, and then present a more efficient one in section 5.3. We assume the
public parameters of the above building blocks are already known to all parties:
the Sender, the Receiver, and the Authorizers.

5.1 Settings

We assume that multiple parties play the Authorizer role, as opposed to one
single party as in [7]. Without loss of generality, we assume that we have three
types of Authorizers A,B, and C. For example, A could represent the Patients,
B the Doctors, and C the Hospitals. In addition, our setting contains a database
DB of size N managed by the Sender. Each record in DB belongs to a triplet of
parties (A, B, C) from the set A×B×C. The owners (A, B, C) of a given record
may or may not have the same rights (depending on the privacy laws in place.)
Section 9 treats the case where owners have unequal rights.

Next we assume that each party has an identifier ID, and that each record in
the database is labeled with the identity of its owners, e.g., (IDA, IDB, IDC). We
also assume the existence of a publicly known one-to-one correspondence between
ID triplets and the indexes of DB record, denoted index : A× B × C → [1, N].
Finally we assume that each DB record indexed by j, and corresponding to
identity triplet (IDj,1, IDj,2, IDj,3), contains a field with the owners’ public keys
(pkj,1, pkj,2, pkj,3) := (P xj,1 , P xj,2 , P xj,3) stored in it.

5.2 First Construction

Let (A, B, C) be a tuple of owners who are willing to authorize a Receiver RecID,
to retrieve their record indexed by s := index(IDA, IDB, IDC), according to a
usage policy P . Each of the owners first provides the Receiver with a signature
σi(Pm) := (Pm)xi , for Pm := H (s,RecID,P). Next, the Receiver prepares a
SPIR query QSPIR for index s, and submits RecID, P , and QSPIR to the Sender.
Upon receiving this information, the Sender first authenticates1 RecID and

1 The receiver can be authenticated using conventional X.509 public key certificates
for example. In case the identity of the receiver needs to be protected, then privacy-
preserving credential systems (e.g., [4,5,6]) can be used instead.

Efficient Multi-authorizer ASPIR 393

verifies that the submitted query is compliant with usage policy P .2 If one of
these checks fails the Sender aborts, else it proceeds with query. Next, for every
Authorizer type3, the Sender chooses a random blinding factor δi ∈ Z∗

q , (for the
purpose of our description we have i ∈ [1, 3].) For each record DB[j], the Sender
computes Pmj := H (j,RecID,P) and DB′[j] := DB[j]×

(∏3
i=1 e((Pmj)δi , pkj,i)

)
.

The Sender then executes the SPIR scheme on QSPIR and DB′, and returns the
response RSPIR to the Receiver along with (P)δ1 , (P)δ2 , and (P)δ3 . The Receiver
first recovers DB′[s] from RSPIR, and then computes

DB0[s] = DB′[s] /

3∏
i=1

e
(
σi(Pm), (P)δi

)
= DB[s]×

3∏
i=1

e
(
(Pm,s)δi , pks,i

)
/

3∏
i=1

e
(
(Pm)xi , (P)δi

)
= DB[s]×

(
3∏

i=1

e
(
(Pm,s)δi , P xs,i

)
/ e
(
(Pm)xi , P δi

))
(∗)
= DB[s]×

(
3∏

i=1

e
(
(Pm)δi , P xi

)
/ e
(
(Pm)xi , P δi

))
= DB[s]

(∗): the equality holds because for s = index(IDA, IDB, IDC), the keys xs,i are
no other than the secret keys xi of owners (A, B, C). Similarly Pm,s = Pm.

In the above solution, the Sender is required to (1) make a number of pair-
ings linear in the number of authorizer types (to compute each e((Pmj)δi , pkj,i),
i ∈ [1, n]), and (2) return (P)δi for each authorizer type. This results in com-
putational and communication complexities linear in the number of authorizer
types. We improve these complexities in the next section.

5.3 Improved Construction

Let (A, B, C) be a tuple of owners who are willing to authorize a Receiver RecID,
to retrieve their record indexed by s := index(IDA, IDB, IDC), according to a
usage policy P . Each of the owners first provides the Receiver with a signature
σi(Pm) := (Pm)xi , for Pm := H (s,RecID,P). The Receiver aggregates the σi’s
into one single signature Sig(Pm) :=

∏
u∈{A,B,C}σu(Pm). He then prepares a

SPIR query QSPIR for index s, and submits RecID, P , and QSPIR to the Sender as
in the first construction. The Sender processes the Receiver’s query as in the first
construction, except that here it chooses a single random blinding factor δ ∈ Z∗

q ,

2 The policy P can be any Boolean statement of the form: “Receiver should be a
practicing surgeon accredited by the College of Physicians AND Retrieval date
prior to 31 July 2009” for instance. The policy can be encoded using state of the art
XML format for example.

3 As noted earlier, to keep the description simple we assumed three types A, B, and C.

394 M. Layouni, M. Yoshida, and S. Okamura

Receiver (RecID) Public Info Sender (Database DB)

(Pm, σu(Pm)), u ∈ {A, B, C}, for Pm := H(s,RecID, P),
where s := index(IDA, IDB , IDC), and P := {usage policy}

{pku}u∈{A,B,C} � {pks,i}1≤i≤3, e(·, ·), P, G1 = 〈P 〉, G2, q, SPIR scheme

Sig(Pm) =
∏

u∈{A,B,C}

σu(Pm) =
∏

u∈{A,B,C}

(Pm)xu =(Pm)

∑
u

xu

Q = QSPIR(s)
Q, RecID, P−−−−−−−−−−−−→

If RecID, P satisfied continue
else abort
Choose δ ∈R Z

∗
q

For j := 1 to N do :
Pmj = H(j,RecID, P)
DB′[j] = DB[j] ×

e
(
Pmj ,

∏3
u=1 pkj,u

)δ

Execute SPIR scheme on DB′ and Q

SPIR-recover DB′[s] from Res
Res, P δ

←−−−−−−−− Let Res = RSPIR(Q, DB′)

Output DB0[s] := DB′[s] / e(Sig(Pm), P δ)

Fig. 1. Multi-Authorizer ASPIR scheme (improved construction)

and for each 1 ≤ j ≤ N , computes DB′[j] := DB[j] × e
(
Pmj ,

∏3
u=1 pkj,u

)δ

.
The use of a single blinding factor δ for all types of Authorizers will reduce the
Sender’s computational complexity from linear in the number of Authorizer types
to constant. A similar reduction is achieved in the size of the Sender’s response
which passes from linear in the number of Authorizer types to constant.

Finally, the Sender executes the SPIR scheme on QSPIR and DB′, and returns
the response RSPIR to the Receiver along with δP . The Receiver then recov-
ers DB′[s] from RSPIR, and computes DB0[s] = DB′[s] /e(Sig(Pm), P δ), thereby
using the aggregate signature Sig(Pm) as if it was a “decryption key”. This ap-
proach of using signatures as decryption keys is of general interest, and could be
useful in the wider context of access control. A summary of the whole protocol
is given in Figure 1.

It can be easily checked that DB0[s] computed by the Receiver is the desired
record DB[s].

DB0[s] = DB′[s] / e(Sig(Pm), P δ)

= DB[s]× e(Pm,

3∏
u=1

pku)δ / e((Pm)
∑3

u=1
xu , P δ)

= DB[s]× e(Pm, P
∑3

u=1
xu)δ / e((Pm)

∑3

u=1
xu , P)δ

= DB[s]

Efficient Multi-authorizer ASPIR 395

Remark. The usage policy P encoded in Pm can be any privacy policy the owners
want enforced on their record. This may include usage limitations such as an
expiry date, a description of what is considered an acceptable usage scenario
etc. Note that by binding authorizations to a specific Receiver exclusively, the
protocol is able to prevent pooling attacks4.

6 Security and Privacy Evaluation

Definition 3 (Valid Authorization). Let (A, B, C) be the owners of a record
in the Sender’s DB, indexed by s = index(IDA, IDB, IDC). For a given usage
policy P, a Receiver is said to have a valid authorization under P, from owner
O ∈ {A, B, C}, if and only if the Receiver has a valid signature from O on
Pm = H (s,ReceiverID,P), and P is satisfied at the time the authorization is
used.

Definition 4 (Secure ASPIR protocols). An ASPIR protocol is said to be
secure if (1) the protocol satisfies the “privacy for Receiver” and “privacy for
Sender” properties usually provided by conventional SPIR schemes, and (2) a
Receiver cannot retrieve a given record with non-negligible probability unless he
has authorizations from all owners of that record. For the special cases of thresh-
old ASPIR (resp., ASPIR with unequal ownership rights), we require the Receiver
to have authorizations from a subset of the owners of size greater than a threshold
(resp., a subset that is part of a given access structure.)

Theorem 1. Assuming the Bilinear Diffie-Hellman problem is hard and the
SPIR primitive secure, the protocol of Figure 1 is a secure ASPIR protocol.

Proof. The protocol of Figure 1 is by assumption based on a secure SPIR primi-
tive. By examining the exchange of messages, it is easy to see that the protocol
of Figure 1 satisfies the “privacy for Receiver” and “privacy for Sender” prop-
erties already provided by the underlying SPIR primitive. In the following we
examine the second security criterion of definition 4.

We show that if an Adversary AASPIR can retrieve a record that AASPIR is
not authorized to obtain then the Bilinear Diffie-Hellman problem can be solved.
In other words, we show how to construct an Adversary ABDH that uses AASPIR

to solve the Bilinear Diffie-Hellman problem.
Let s be the index of the record targeted by the Adversary AASPIR playing

the role of a malicious Receiver. Let (IDA, IDB , IDC) be the identity tuple of the
corresponding owners, i.e., s = index(IDA, IDB, IDC). The Adversary AASPIR

submits a query and retrieves record DB[s] from the Sender’s response without
having all required authorizations from owners tuple (A, B, C). In the absence of
authorizations from owners tuple (A, B, C), the best scenario for the adversary
is to have valid signatures from two (out of the three) owners. Without loss of
generality, assume he has signatures from A and B.
4 Pooling attacks occur when different receivers combine their authorizations in order

to gain access to records they were not able to get access to, each on his/her own.

396 M. Layouni, M. Yoshida, and S. Okamura

For any given instance (P ′, (P ′)a, (P ′)b, (P ′)c) of the BDH problem, the Ad-
versary ABDH obtains (abc) · e(P ′, P ′) by interacting with AASPIR and playing
the role of the owners A and B, and the Sender as follows.

1. ABDH chooses random elements xA, xB of Z∗
q and sets P = P ′, pkA =

(P ′)xA , pkB = (P ′)xB , and pkC = (P ′)c.
2. ABDH gives P and {pki}i∈{A,B,C} to AASPIR.
3. ABDH sets Pm = (P ′)b for the parameters s, RecID, and P (the hash function

H is assumed as a random oracle in this proof).
4. ABDH computes signatures σA(Pm) = (Pm)xA and σB(Pm) = (Pm)xB , and

gives them to AASPIR , along with s, RecID, and usage policy P .
5. AASPIR submits Q := QSPIR(s), RecID, and usage policy P to ABDH .
6. ABDH sets :

– DB0[j] := e
(
Pm, ((P ′)a)(xA+xB)

)
for all j.

– P δ := (P ′)a

ABDH then executes SPIR on DB0 and Q and returns Res = RSPIR =
SPIR(DB0, Q) and P δ to AASPIR .

7. AASPIR computes (this step could be done earlier)

Sig(Pm) :=
∏

i∈{A,B,C}
σi(Pm) := (P ′)b(xA+xB+c)

8. AASPIR recovers DB0 = DB0[s] from Res and computes

DB = DB0 / e(Sig(Pm), P δ)

= e
(
Pm, (P ′)a(xA+xB)

)
/ e((P ′)b(xA+xB+c), (P ′)a)

= e
(
(P ′)b, (P ′)a(xA+xB)

)
/ e((P ′)b(xA+xB+c), (P ′)a)

= e (P ′, P ′)ab(xA+xB)
/ e(P ′, P ′)ab(xA+xB+c)

= e (P ′, P ′)(ab(xA+xB)−ab(xA+xB+c))

= e (P ′, P ′)−(abc)

9. ABDH outputs DB−1 = e (P ′, P ′)abc

ABDH can solve the BDH problem using AASPIR. Therefore, assuming the BDH
problem is hard, computing a record without all the required valid authorizations
is unfeasible.

The above proof can be straightforwardly generalized to the case where records
belong to n owners, for n arbitrary. Similar theorems can be proved for the
protocol variants of Sections 8, and 9.

Efficient Multi-authorizer ASPIR 397

7 Performance Analysis

In this analysis we focus mainly on exponentiation operations; group operations
such as multiplications are significantly cheaper. A pairing operation can be
reduced to a single exponentiation of size less than the group order (as noted
in [21]), and is therefore considered as a small-size exponentiation.

It is worth noting at this point that all SPIR schemes require Ω(|DB|) com-
putations form the Sender; if this is not the case, then the Sender will not touch
at least one record in the database, and thus can safely infer that the untouched
records are not being sought in the Receiver’s query, thereby violating the Re-
ceiver’s privacy. As a result of this observation, the Sender’s overall computations
cannot be expected to drop below this linear lower bound.

Let n be the number of owners of each record in the Sender’s database, and let
N be the database size. In addition to the basic operations required by the un-
derlying SPIR scheme, our protocol requires : (a) each owner of the target record
to perform one pre-computable exponentiation in G1, (b) the Receiver to per-
form a pre-computable n-point multiplication in G1 (to compute Sig(Pm)), and
one pairing, and (c) the Sender to perform N exponentiations and N pairings.
Despite the increase in functionalities, the protocol we propose does not lead
to higher computational cost compared to that of the underlying SPIR scheme
(which is linear in N .) Similarly, our communication performance is equivalent
to that of the underlying SPIR scheme, since we increase the amount of ex-
changed data only by a small constant. This is negligible, since the best known
communication complexity for SPIR achieved so far is O

(
log2(N)

)
[17,8].

8 Extension to Threshold Access

In some applications it may be useful to provide a mechanism to allow a Receiver
to privately recover a certain record as long as he has authorizations from t out
of the n record owners. As in the basic case, the Sender should not learn the
identity of the Authorizers or the index of the retrieved record. We do this using
ideas similar to those in [22]. In the following, we only point out the changes
from the basic protocol of section 5.

Assume the record owners jointly select a master secret key MSK := x ∈ Z
∗
q ,

and distribute it verifiably among themselves in a (t, n)-secret sharing scheme.
We note that there is no need for a third party in the secret sharing procedure.
The n record owners can generate secret key MSK, and privately distribute
the shares among themselves without help from a trusted third party using
protocols such as [23,24]. The secret generation is such that no shareholder knows
MSK individually. Due to space limitations we do not expose the details of
those schemes here. Let xu, u ∈ [1, n] be the n secret shares, and (sku, pku) :=
(xu, P xu), u ∈ [1, n] the private/public key pairs of the record owners. The
master secret key x can be written as a Lagrange interpolation of any subset of
shares xu, of size greater or equal to t. Let MPK := P x be the corresponding
master public key. Finally we assume that each DB record indexed by j, and

398 M. Layouni, M. Yoshida, and S. Okamura

corresponding to identity triplet (IDj,1, · · · , IDj,n), contains a field with the
master public key MPKj stored in it. Note that given the owners’ public keys
(pkj,1, · · · , pkj,n), anyone can reconstruct the corresponding master public key
MPKj by simple Lagrange interpolation.

A Receiver holding authorizations (Pm, σu(Pm)) from at least t record owners
{u1, · · · , ut}, can reconstruct a signature on Pm with respect to the master public

key MPK, by computing Sig(Pm) =
∏t

v=1 σuv (Pm)Luv = (Pm)
∑t

v=1
Luv xuv =

(Pm)x, where Luv denote the appropriate Lagrange coefficients5. The Receiver
then proceeds with the protocol as in the basic case, and submits QSPIR, RecID,
and usage policy P to the Sender.

The Sender checks the consistency of the submitted query with the Receiver’s
identity and usage setting, and chooses a random blinding factor δ ∈ Z∗

q . For each
record in the database indexed by j, the Sender computes Pmj , and DB0[j] =
DB[j]×e (Pmj ,MPKj)

δ. The rest of the protocol is similar to the one in Section 5.

9 Extension to Authorizers with Unequal Rights

Up to this point we have assumed that the owners of a given record all have equal
rights. In other words, if a record belongs to (A, B, C) then an authorization
from A is worth exactly the same as one from B or C. In some settings however,
owners of a record do not have equal rights. For instance in the healthcare
context, a medical record belonging to (patient A, doctor B, hospital C) should
be accessible only if authorizations are provided, say from A alone, or B and C
together. Authorizations from B or C alone are not sufficient. More generally,
for a record R owned by a set O = {A1, · · · , An}, we denote by A ⊂ 2O the
subsets of O whose authorizations are sufficient to access R. The set A is called
a generalized access structure. In the following we show how secret sharing with
a generalized access structure [25] can be used to realize multi-authorizer ASPIR
in a context where owners have unequal rights to their record.

Consider a database record R, and assume R’s owners agree on a generalized
access structure A. Using a method similar to that of Section 8, R’s owners
jointly select a master secret key MSK := x ∈ Z∗

q , and split it into shares among
themselves, according to the access structure A. The secret generation and
distribution are such that no shareholder knows MSK individually, and no help
from a secret sharing dealer is needed. More details on how this is done are
given in the example below. Each owner ends up with a share of information on
MSK, that he uses as a signing key. The master public key MPK corresponding
to MSK is stored in a field within record R, as in the threshold construction
of Section 8. A Receiver then obtains signatures from a subset of owners as
in the threshold case. Next, the Receiver combines the partial signatures using
Lagrange interpolation in order to recover a valid signature with respect to mas-
ter key MPK. Recovering this signature is possible only if the Receiver obtains
partial signatures from a set of owners that is part of the access structure A.
5 The values of the Luv ’s depend only on the values of the uv’s.

Efficient Multi-authorizer ASPIR 399

Example. Let R be a record belonging to (A1, A2, A3, A4), who agree on access
structure A = {{A1, A2, A3}, {A1, A4}, {A2, A4}, {A3, A4}}. Let x ∈ Z∗

q be the
master secret key MSK that (A1, A2, A3, A4) select jointly. Let (x1, x2, x3, x4)
be shares of x in a (4, 4)-threshold secret sharing scheme. Assume we have a
mechanism to securely distribute share tuples (x2, x4) to A1, (x3, x4) to A2,
(x1, x4) to A3, and (x1, x2, x3) to A4. It can be easily seen that the distributed
share tuples do satisfy the access structure A. Further details on how share
tuples are determined in the general case, can be found in [25].

The received xi’s are used by the owners as private signing keys to issue
authorizations. For example, a Receiver authorized by {A1, A4} ∈ A, obtains
(Pm, σ2(Pm), σ4(Pm)) from A1, and (Pm, σ1(Pm), σ2(Pm), σ3(Pm)) from A4,
where σi(Pm) = (Pm)xi for 1 ≤ i ≤ 4. The Receiver then computes the sig-
nature on Pm with respect to master key MPK, by interpolating the σi’s as
follows : σ(Pm) =

∏4
v=1(σv(Pm))Lv , where Lv denote the appropriate Lagrange

coefficients. The reconstructed signature is later used by the Receiver to “de-
crypt” DB′[s] as in the original ASPIR protocol of Section 5. The rest of the
protocol remains the same as in the threshold case.

Now we give a brief overview on how the master secret x is jointly selected by
(A1, A2, A3, A4), and how the shares are generated and distributed. For 1 ≤ i ≤
4, owner Ai chooses si ∈R Z∗

q , and generates a random 3rd-degree polynomial in
Zq, fi(X) = si +

∑3
j=1 aijX

j . Let f(X) =
∑4

i=1 fi(X). If we set x =
∑4

i=1 si,
then {xj = f(j), 1 ≤ j ≤ 4} is valid set of (4,4)-threshold shares of x. Note
that x is uniquely determined at this point, and yet unknown to any of the
Ai’s individually. Next, the share tuples are distributed as follows. Consider for
instance the share tuple (x2, x4) intended for A1. For 2 ≤ i ≤ 4, owner Ai

sends (fi(2), fi(4)) to A1. Next, A1 obtains the desired shares by computing
xj =

∑4
i=1 fi(j), for j ∈ {2, 4}. The remaining share tuples for A2, A3, and

A4 are distributed in the same way. The share distribution above can be made
verifiable using the technique of [23].

10 The Case of an Owner Tuple Possessing Multiple
Records

So far, we have assumed that each tuple (A, B, C) could own at most one single
record. In the following we briefly discuss the case where a tuple of owners
may possess k ≥ 1 records. The goal now is to allow these owners to issue an
authorization to the Receiver so that he can retrieve their k records. One trivial
way to do this is as follows. First, add one argument to the index (. . .) function,
specifying the rank of record. For example, si = index (A, B, C, i) will now denote
the index of the ith record (among k) belonging to (A, B, C). The owners now
give the Receiver an authorization for each DB[si], and the retrieval proceeds as
in the basic case.

To avoid the issuing of multiple authorizations, we can use the following
method. The value of Pm in the authorization issued to the Receiver is now com-
puted as Pm = H(IDA, IDB, IDC ,RecID,P), and each of the owners provides the

400 M. Layouni, M. Yoshida, and S. Okamura

Receiver with a signature σi(Pm) := (Pm)xi . The Receiver then aggregates the
σi’s into one single signature Sig(Pm) :=

∏
u∈{A,B,C}σu(Pm) as in section 5.3.

A similar modification is required on the Sender’s side as well. For j ∈ [1, N],
the Sender computes the Pmj ’s rather as Pmj = H(IDj,1, IDj,2, IDj,3,RecID,P).
Note that the identities IDj,u, u ∈ [1, 3], of the record owners are readily avail-
able to the Sender along with the corresponding public keys pkj,u, u ∈ [1, 3].
The Sender then computes DB′[j] from DB[j] as in section 5.3 using the new
value of Pmj instead. As a result of the above modifications, we note that for
all indexes si = index (IDj,1, IDj,2, IDj,3, i), i ∈ [1, k] , referencing the records
belonging owner tuple (IDj,1, IDj,2, IDj,3), the value of Pmj is the same, and the
entries DB[si] are all encrypted with the same “key”: e(Pmj ,

∏3
u=1 pkj,u)δ. The

Receiver finally SPIR retrieves the entries DB′[si] one by one, and decrypts them
using his aggregate signature Sig(Pm) as in the basic case.

In the above scheme, the Receiver SPIR retrieves the the DB′[si]’s sepa-
rately. This can be improved using a method based on the hybrid encryption
paradigm [26]. First we modify the setting to include two databases DB1 and
DB2. Each entry in DB1 is used to store a key corresponding to a triplet of own-
ers. The database DB2 on the other hand, is used to store the actual owners’
records encrypted under the keys kept in DB1, using some data encapsulation
mechanism (DEM)6[26]. DB2 is such that the records belonging to a given tuple
of owners are all encrypted under the same key. In order to grant access to their
records, the owners (A, B, C) give the Receiver an authorization to retrieve their
encryption key from DB1 (using the construction of section 5.3.) And using this
key, the Receiver decrypts all the DB2 records belonging to (A, B, C). Note that
if DB2 can be made public, the Receiver does not need to run the SPIR scheme
again to retrieve the encrypted records.

11 Conclusion

The paper presents a special access control protocol for databases containing
sensitive personal data. In particular, the described constructions allow a Re-
ceiver to retrieve a record in the database, if and only if (a) he has authorizations
from all (resp. a threshold portion of) the target record owners, and (b) the con-
text in which the database is queried, is consistent with a usage policy chosen
by the owners of the target record, and embedded in authorizations issued to
the Receiver. The above is achieved without the database manager being able to
learn any information about the index of the target record or the identity of its
owners. The proposed construction is proved secure under the BDH assumption.
The paper also presents a construction where the owners of a record do not have
equal ownership rights. The protocol we propose in this paper is more efficient
than the one in [7] and can be constructed with any SPIR primitive. Despite the
increase in functionality, the presented protocol does not lead to a complexity
higher than that of the underlying SPIR.

6 Note that DEM could be any symmetric-key encryption scheme (e.g., AES.)

Efficient Multi-authorizer ASPIR 401

Acknowledgments. The first author thanks the IWT-SBO project (ADAPID)
“Advanced Applications for Electronic Identity Cards in Flanders”, and the
Universitary Mission of Tunisia in North America for their support.

References

1. Golle, P., McSherry, F., Mironov, I.: Data collection with self-enforcing privacy. In:
ACM Conference on Computer and Communications Security, pp. 69–78 (2006)

2. Ateniese, G., de Medeiros, B.: Anonymous e-prescriptions. In: WPES, pp. 19–31
(2002)

3. Yang, Y., Han, X., Bao, F., Deng, R.H.: A smart-card-enabled privacy pre-
serving e-prescription system. IEEE Transactions on Information Technology in
Biomedicine 8(1), 47–58 (2004)

4. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

5. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

6. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

7. Layouni, M.: Accredited symmetrically private information retrieval. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 262–277.
Springer, Heidelberg (2007)

8. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

10. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 72–87. Springer, Heidelberg
(2005)

11. Bagga, W., Molva, R.: Collusion-free policy-based encryption. In: Katsikas, S.K.,
López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176,
pp. 233–245. Springer, Heidelberg (2006)

12. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.
44–55. IEEE Computer Society, Los Alamitos (2000)

13. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

14. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

15. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

16. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

402 M. Layouni, M. Yoshida, and S. Okamura

17. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

18. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Cryp-
tology ePrint Archive, Report 1998/003 (1998)

19. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information
retrieval: Techniques and applications. In: Public Key Cryptography, pp. 393–411
(2007)

20. Gasarch, W.I.: A survey on private information retrieval (column: Computational
complexity). Bulletin of the European Association for Theoretical Computer Sci-
ence 82, 72–107 (2004)

21. Boyen, X.: A promenade through the new cryptography of bilinear pairings. In:
IEEE Information Theory Workshop—ITW 2006, pp. 19–23. IEEE Press, Los
Alamitos (2006)

22. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1991)

24. Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without
the assistance of a mutually trusted party. In: Damg̊ard, I.B. (ed.) EUROCRYPT
1990. LNCS, vol. 473, pp. 266–282. Springer, Heidelberg (1991)

25. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science) 72(9), 56–64 (1989)

26. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report2001/112 (2001), http://eprint.iacr.org/

http://eprint.iacr.org/

Specification of Electronic Voting Protocol

Properties Using ADM Logic: FOO Case Study

Mehdi Talbi1,2, Benjamin Morin1, Valérie Viet Triem Tong1, Adel Bouhoula2,
and Mohamed Mejri3

1 Supélec, Équipe SSIR (EA 4039), Avenue de la Boulaie, Cesson-Sévigné, France
firstname.lastname@supelec.fr

2 Digital Security Unit, Higher School of Communication, Tunis, Tunisia
bouhoula@planet.tn

3 LSFM Research Group, Computer Science Department, Université Laval,
Sainte-Foy, Qc., Canada
momej@ift.ulaval.ca

Abstract. It is a well known fact that only formal methods can provide
a proof that a given system meets its requirements. For critical sys-
tems (e.g. nuclear reactors, aircraft), the use of these methods becomes
mandatory. Electronic voting is also one of these critical systems since
the stakes are important: democracy. In this context, we propose in this
paper, the use of the ADM logic in order to specify security properties
(fairness, eligibility, individual verifiability and universal verifiability) of
electronic voting protocols. These properties are first specified in a gen-
eral form, and then adapted to the FOO protocol as a case study. Our
goal is to verify these properties against a trace-based model. The choice
of the ADM logic is motivated by the fact that it offers several features
that are useful for trace analysis. Moreover, the logic is endowed with a
tableau-based proof system that leads to a local model checking which
enables an efficient implementation.

1 Introduction

The multiple benefits of e-voting (electronic voting) push many governments to
change their traditional methods and to move toward the e-democracy. In fact,
electronic voting allows, amongst others, to reduce the cost of the vote, to get
the results faster and more accurately, to improve the accessibility and to reduce
the risk of human errors. Over the last years, several e-voting systems have been
proposed and studied. In particular, there is a strong interest in Internet voting
systems since they make the vote more convenient and there is a hope that they
could increase the participation rate. Like e-commerce, Internet voting is based
on cryptographic protocols, however it must meet several and complicated secu-
rity properties (fairness, eligibility, anonymity, receipt-freeness, individual and
universal verifiability) making them more challenging than electronic commerce
applications. Some of these properties can even seem contradictory at first sight.
For example, the voter must be able to verify that his vote was really counted

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 403–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

404 M. Talbi et al.

(individual verifiability), and at the same time cannot prove to a third party
(coercer) that he voted as agreed (receipt-freeness).

In the literature, we distinguishes two schemes of voting protocols: those based
on blind signatures [1,2,3], and those based on homomorphic encryption [4,5].
These techniques attempt in two different ways to reach the properties of elec-
tronic voting protocols. However, the complexity of these properties makes it
difficult to prove that an e-voting protocol respects even a part of them.

The main intent of this work is to show how to use ADM logic [6], special
variant of the µ-calculus modal logic [7], in order to specify four properties of
e-voting protocols: fairness, eligibility, individual and universal verifiability. Our
specification is dedicated to voting protocols based on blind signatures. First, the
properties will be specified in a general form, and then they will be adapted to
the FOO protocol [1] as a case study. Our intention is to verify these properties
against a trace-based model. More precisely, we want to check the satisfaction
relation t |= φ, where t is a finite trace representing a valid execution of the
analyzed protocol, and φ an ADM formula characterizing a property of the
protocol in question.

The remainder of this paper is organized as follows: Section 2 discusses related
work. Section 3 gives an informal description of the FOO protocol. Section 4 in-
troduces some notations used to specify a protocol and presents the model of
the FOO protocol. Section 5 presents the ADM logic. Section 6 gives the spec-
ification of electronic voting properties in the ADM logic. Section 7 introduces
the tableau-based proof system of ADM, and gives a concrete example showing
how it can be used to check properties against the FOO model. Finally, some
concluding remarks on this work and future research are ultimately sketched as
a conclusion in Section 8.

2 Related Work

The literature is rich in works dealing with formal verification of security pro-
tocols. However, there are only few formal works [8,9,10,11,12,13,14] related to
electronic voting protocols. This is mainly due to their lack of maturity com-
pared to other ones such as key distribution or authentication protocols, and to
the complexity of the involved techniques. Indeed, they involve advanced crypto-
graphic primitives (e.g. bit commitment, blind signature), and rely on complex
channels (e.g. anonymous, private).

Process algebra and model-checking remain the main formal techniques used
for the verification of electronic voting protocols. In these approaches, the proto-
col is basically specified using the most suitable process algebra (e.g. ACP [15],
applied π-calculus [16]), and properties are specified using the most appropriate
logic (e.g. CTL [17], µ-calculus), or defined in terms of observational equivalence.
For instance, Kremer and Ryan propose in [10,13] to use the applied π-calculus
in order to verify four properties (eligibility, fairness, anonymity and receipt-
freeness) of electronic voting protocols. The analyzed protocol (FOO in [13]) is
specified first in the applied π-calculus, and the properties are then specified,

Specification of Electronic Voting Protocol Properties 405

generally, in terms of observational equivalence. The anonymity property, for
example, is stated as follows: the protocol FOO satisfies the anonymity property
if the process where two voters vote v1 and v2 (respectively), is observationally
equivalent to the process where the two voters swap their votes. In [14], Mauw
et al. use the ACP process algebra to specify the FOO protocol, and propose a
method to measure the anonymity property.

Knowledge-based logics have been also used in [8,11,12] to formally analyze
e-voting protocol. For instance, in [11] we can find a formalization of anonymity
property using an epistemic logic. This property is expressed, with regard to a
simplified version of the FOO protocol (specified as Kripke structure), using the
PDL logic [18]. This logic offers, among others, the possibility to write properties
allowing to reason about the knowledge of an agent a of the system (e.g. Alice)
with respect to a proposition p (e.g. “Bob voted Yes”).

In our work, we use a trace-based model to represent a protocol since traces
constitute the simplest and most natural execution model considered so far in
the literature. Also, many automatic trace generators are available in the litera-
ture, and they can be adapted for Internet voting protocols. Moreover, a security
flaw in a cryptographic protocol is usually illustrated by a trace that violates a
security property. We use the ADM logic to specify electronic voting properties,
as it offers several features that are useful for trace analysis (linearity, recursion,
temporal modalities). It was used in [6] to specify classical security properties
such as secrecy and authentication, but also to specify electronic commerce prop-
erties such as good atomicity and money atomicity. This last property aims to
ensure that the number of credit() actions in the trace is equal to the number
of debit() actions. This feature (counting actions), which is not possible with
other logics such as µ-calculus, is helpful to specify the universal verifiability
property for example. Indeed, in such a property one has to verify if the number
of occurrences of an action a (cast(v)) is equal to the number of occurrences of
an action b (publish(v)). In this paper, we focus on the specification of four elec-
tronic voting properties: fairness, eligibility, individual and universal properties.
Anonymity and receipt-freeness properties will be considered in a later paper.

3 FOO Protocol

We will take the FOO protocol proposed by Fujioka et al. in [1] as a case study,
in order to validate our specification on a concrete example, but also to com-
plete the formal analysis made by previous works [8,9,11,13,14], notably by the
specification of the universal verifiability property. We give here a brief informal
description of the protocol.

The protocol takes place in three phases: registering, voting and results
publishing. Principals involved in the protocol are: Voters Vi ∈ Lvoter, i ∈
{1 . . . n} (Lvoter represents the list of eligible voters), an administrator A, and a
collector C. The role of authority A in the protocol is to provide tokens (blind
signature) for legitimate voters. The role of collector C is to collect the votes
and to publish election results. Let (pka, ska) be the public/private key pair

406 M. Talbi et al.

associated with A, and (pkvi, skvi) the public/private key pair associated with
the voter Vi. Let Lvote be the list of possible votes. For example, Lvote =
{yes, no} in the case of a referendum. The variable vi ∈ Lvote represents the
vote of Vi.

The FOO protocol starts by a registration phase. A voter Vi ∈ Lvoter

chooses his vote vi, computes the commitment {vi}ri using a random key ri.
Then, he blinds the obtained value using the key bi (generated randomly), and
finally digitally signs the blinded committed vote using his private key skvi, and
sends the signed message to the administrator A, together with his identity. A
checks if the voter Vi is an eligible voter (i.e. Vi ∈ Lvoter), has not registered
yet, and that the received signature is valid. If all these verifications succeed,
then A registers the voter Vi, “blindly” signs the blinded committed vote sent
by the voter using his secret key ska, and sends this signature to the voter Vi.
Vi then, verifies the signature of A, and if this test succeeds, “unblinds” the
signature received from A to obtain a committed vote digitally signed by A.
This signed message represents the token allowing the voter to cast his vote
during the second phase of the protocol (i.e. voting phase).

The voting phase starts after a fixed deadline (e.g. all voters have registered).
The signed committed vote obtained during the first phase is sent anonymously
to the collector C, which checks the validity of the signature. If this test succeeds,
C registers V ’s vote (i.e. ({vi}ri, {{vi}ri}ska)) as element elemi of the list of
registered votes.

The last phase of the protocol (Results Publishing) starts after a fixed
deadline (e.g. reception of all encrypted votes). The collector C publishes the
list of all encrypted votes (i.e. ({vi}ri, {{vi}ri}ska, elemi), i ∈ {1, . . . , p1}, p1 �
|Lvoter|). The voter Vi can verify that his vote is in the list published by C. If
it is the case, Vi sends anonymously the key r−1

i together with element elemi

identifying his vote. The Collector C decrypts the i-th element of the list of
encrypted votes, verifies the validity of Vi’s vote (vi ∈ Lvote), and registers the
vote of Vi (i.e. {vi}ri, {{vi}ri}ska, r−1

i , vi). At the end of this stage (i.e. after
a fixed deadline), collector C publishes the list of correctly opened votes (i.e.
({vi}ri, {{vi}ri}ska, r−1

i , vi), i = {1, . . . , p2}, p2 � |Lvoter|).
Based on the description given above, we give in the next section the model

of the FOO protocol.

4 Model

Our intention is to specify electronic voting properties, and then to check them
against a protocol model. In this section, we give some notations for protocol
specification and use them to model the FOO protocol.

4.1 Notations for Protocol Specification

An electronic voting protocol can be viewed as a particular example of crypto-
graphic protocols. They consist on communication steps (send and receive) and
computation steps (e.g. checking the signature of a message) allowing entities to

Specification of Electronic Voting Protocol Properties 407

exchange messages, through communication channels (e.g. public, anonymous),
in order to achieve a given goal (e.g. authentication, sharing a secret, voting). In
order to verify our properties, it is fundamental to have a simple representation
of protocols that captures all the information needed to perform their analysis.
This representation comprises the format of exchanged messages, the structure of
external and internal actions, and the representation of communication channels.
In this paper, we will use notations proposed in [6] where a protocol P is defined
as a finite sequence of statements of the form given by Table 1.

Table 1. Protocol Representation

0
BBBBBBBBB@

.
i − act(p1, ..., pn)

.
i − A � B : m
i − B � A : m

.
i − act(q1, ..., qm)

.

1
CCCCCCCCCA

Table 2. Message Syntax

m ::= M | v | (m, m′) | {m}k | k

The statement given in Table 1 is the representation of the execution of a pro-
tocol P at a step i. More precisely, an execution step of a protocol is represented
as an execution of an external action (send or receive), optionally preceded and
followed by a set of internal actions. An internal action is a computation step. It
is represented in the form i-act(p1, ..., pn) to denote execution of the action act
over the set of parameters {p1, ..., pn}. An external action is a communication
step. It takes the form i-A � B : m (resp. i-A � B : m) to denote the fact that
A sends to (resp. receives from) B the massage m at step i. Format of messages
is given by the BNF-grammar given by Table 2. We use capital letter to denote
principals (e.g. Vi represents the voter i). v is a variable (e.g. vote). (m, m′)
is used to denote a composed message. Finally, {m}k represents an encrypted
message m with the key k. A key can be symmetric (k ∈ Sym Keys), private
(k ∈ Sec Keys), public (k ∈ Pub Keys) or a blinder key (k ∈ Bln Keys). Al-
though “blinding” is similar to symmetric key encryption, we introduce the set
Bln Keys in order to model some properties of blinded signed messages. Thus,
{m}k represents committed message as well as blinded messages and signed
messages. We assume that each signed message {m}sk is sent with message m.

Finally, in our specification, a channel is by default anonymous. Information
sent through anonymous channels can be intercepted by an intruder, but cannot
be traced back to the sender. This characteristic can be achieved by use of Mix
Nets introduced by Chaum in [19]. If the channel is non anonymous (public
channel), then we will add the identity of the sender to the message sent.

4.2 FOO Protocol Model

The adopted model is a trace-based model, where a trace is a sequence of actions
(external and internal actions) representing a valid execution of the protocol. A
trace is said valid if all the messages sent by the intruder can be derived from

408 M. Talbi et al.

the intruder’s cumulated knowledge, and all the involved principals respect the
protocol. The set of traces T is defined as follows:j

ε ∈ T (empty trace)
If τ ∈ T and a is an action, then τ.a ∈ T (concatenation)

A protocol can be modelled as a subset of traces P of all possible traces T .
The set P is built up using the same formalism as that proposed by Paulson
in [20] where a trace t ∈ P , resulting from the execution of a given protocol,
is built up inductively through a set of inference rules (premise

conclusion). These rules
are interpreted as follows: if the conditions of the premise are fulfilled, then
the conclusion will be executed. Table 3 gives the set of rules related to the
FOO protocol. The rule init is relative to the initialisation of the protocol. This
means that we start first with an empty trace. Rules Vrequest token, Vcast vote and
Vsend key model the role of voters in the protocol. For example, the rule Vcast vote

means that if the trace contains the reception of blinded signed message from the
authority A, if this signature is valid (i.e. the side condition Asign holds), and
if the voter V respects the deadlines, then the trace can be extended with the
sending of the vote of V to collector C. Rules Aregister voter and Aprovide token

model the role of authority A in the protocol. Similarly, rules Csave encrypted vote,
Cpublish encrypted vote, Csave vote, and Cpublish vote model the role of collector C
in the protocol. We distinguish three deadlines in the FOO protocol. These
deadlines are modelled by rules Deadlinei (i = 0, 1, 2) which mean that if we
reach a certain time limit denoted by Ti (i = 0, 1, 2), then the trace can be
extended with the internal action (j-Deadline(Ti)). Deadline at T0 marks the
end of the registration phase. Deadline at T1 marks the end of the voting phase.
Finally, deadline at T2 marks the end of opening ballots phase. A special care
must be taken when modelling “deadlines”. For instance, in rule Deadline0,
before extending the trace with (3-Deadline(T0)), we have to ensure first that
rule Aprovide token cannot be executed. This captures the fact that authority A
must provide a token (i.e. blind signature) for all voters that have registered
before the deadline at T0. The rule Receive states that a principal can get a
message only if it has been previously sent to her. The rule Broadcast models
message broadcasting to all voters (i.e. the receiver ‘*’ represents the set of all
voters: Lvoter(P)). Finally, the rule Intruder models the capacity of the intruder
to send a message built up from its cumulated knowledge.

When modelling cryptographic protocols we assume the presence of an in-
truder that can overhear messages, intercept messages, replay messages and
generate new messages using his cumulated knowledge. Deriving new messages
is captured by the Dolev-Yao model [21] which defines some basic rules such as
compose, decompose, decrypt and encrypt. For instance, the rule encrypt states
that if m (message) and k (key) are known to intruder, then he can deduce {m}k.
In e-voting protocols based on blind signature, we have to add an additional rule
allowing to extract a signed message from a blinded signed message:

unblind sig
b−1 ∈ M⇓ {{m}b}sk ∈ M⇓

{m}sk
b ∈ Bln Keys sk ∈ Sec Keys

With M⇓: Set of messages known to the intruder.

Specification of Electronic Voting Protocol Properties 409

Table 3. FOO Protocol Model

Init
ε ∈ P

Vrequest token
t ∈ P (3 − Deadline(T0)) �∈ t̄

t.(1 − V � A : ((V, {{v}r}b), {{{v}r}b}skv)) ∈ P

Aregister voter

8<
:

t ∈ P (1 − Save(V)) �∈ t̄
(1 − A � V : ((V, {{v}r}b), {{{v}r}b}skv)) ∈ t̄
(3 − Deadline(T0)) �∈ t̄

t.(1 − Save(V)) ∈ P V ∈ Lvoter(P) Vsign

Aprovide token
t ∈ P (1 − Save(V)) ∈ t̄ (2 − A � V : ((A, {{v}r}b), {{{v}r}b}ska)) �∈ t̄

t.(2 − A � V : ((A, {{v}r}b), {{{v}r}b}ska)) ∈ P

Deadline0
t ∈ P Āprovide token(t) (3 − Deadline(T0)) �∈ t̄

t.(3 − Deadline(T0)) ∈ P

Vcast vote

j
t ∈ P (2 − V � A : ((A, {{v}r}b), {{{v}r}b}ska)) ∈ t̄
(3 − Deadline(T0)) ∈ t̄ (4 − Deadline(T1)) �∈ t̄

t.(3 − V � C : {v}r, {{v}r}ska) ∈ P Asign

Csave encrypted vote

j
t ∈ P (3 − C � V : ({v}r, {{v}r}ska)) ∈ t̄ (3 − Deadline(T0)) ∈ t̄
(3 − Save({v}r, {{v}r}ska, elem)) �∈ t̄ (4 − Deadline(T1)) �∈ t̄

t.(3 − Save({v}r, {{v}r}ska, elem)) ∈ P Asign

Deadline1
t ∈ P (3 − Deadline(T0)) ∈ t̄ (4 − Deadline(T1)) �∈ t̄

t.(4 − Deadline(T1)) ∈ P

Cpublish encrypted vote

j
t ∈ P (3 − Save({v}r, {{v}r}ska, elem)) ∈ t̄
(4 − Deadline(T1)) ∈ t̄ (4 − C � ∗ : (((C, {v}r), {{v}r}ska), elem)) �∈ t̄

t.(4 − C � ∗ : (((C, {v}r), {{v}r}ska), elem)) ∈ P

Vsend key

j
t ∈ P (3 − V � C : ({v}r, {{v}r}ska)) ∈ t̄ (4 − Deadline(T1)) ∈ t̄
(4 − V � C : (((C, {v}r), {{v}r}ska), elem)) ∈ t̄ (6 − Deadline(T2)) �∈ t̄

t.(5 − V � C : (r−1
, elem)) ∈ P

Csave vote

8>><
>>:

t ∈ P (3 − Save({v}r, {{v}r}ska, elem)) ∈ t̄

(4 − Deadline(T1)) ∈ t̄ (5 − C � V : (r−1, elem)) ∈ t̄

(5 − Save({v}r, {{v}r}ska, r−1, v)) �∈ t̄
(6 − Deadline(T2)) �∈ t̄

t.(5 − Save({v}r, {{v}r}ska, r
−1

, v)) ∈ P
v ∈ Lvote(P)

Deadline2

j
t ∈ P (4 − Deadline(T1)) ∈ t̄ (6 − Deadline(T2)) �∈ t̄
C̄publish encrypted vote(t)

t.(6 − Deadline(T2)) ∈ P

Cpublish vote

8><
>:

t ∈ P (5 − Save({v}r, {{v}r}ska, r
−1

, v)) ∈ t̄

(6 − C � ∗ : ((((C, {v}r), {{v}r}ska), r−1), v)) �∈ t̄
(6 − Deadline(T2)) ∈ t̄

t.(6 − C � ∗ : ((((C, {v}r), {{v}r}ska), r
−1), v)) ∈ P

Receive
t ∈ P (i − X � Y : m) ∈ t̄

t.(i − Y � X : m) ∈ P

Broadcast
t ∈ P (i − X � ∗ : m) ∈ t̄

t.(i − V1 � X : m) . . . (i − Vn � X : m) ∈ P

Intruder
t ∈ P m ∈ Message(t)⇓

t.(i − Y � X : m) ∈ P

Message(t): Set of messages in the trace t
Message(t)⇓ : Set of messages deduced by the intruder from trace t

t̄: Set of components in the trace t
R̄(t): Conditions of the premise of rule R are not fulfilled in the trace t

In Table 4, we give an example of a valid trace built up inductively us-
ing the rules given in Table 3. This trace is obtained by applying successively
the rules Init, Vrequest token, Receive, Aregister voter, Aprovode token, Receive,
Deadline0, Intruder, We will show in Section 6.4 that this trace, which re-
spects the specification of the protocol, actually violates the universal verifiability
property.

410 M. Talbi et al.

Table 4. Trace Violating the Universal Verifiability Property

t =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

1-V � A : ((V, {{v}r}b), {{{v}r}b}skv)
1-A � V : ((V, {{v}r}b), {{{v}r}b}skv)
1-Save(V)
2-A � V : ((A, {{v}r}b), {{{v}r}b}ska)
2-V � A : ((A, {{v}r}b), {{{v}r}b}ska)
3-Deadline(T0)
3-C � V : ({va}ra , {{va}ra}ska)
3-Save({va}ra , {{va}ra}ska, elema)
4-Deadline(T1)
4-C � ∗ : (((C, {va}ra), {{va}ra}ska), elema)
5-C � V : (r−1

a , elema)

5-Save({va}ra , {{va}ra}ska, r−1
a , va)

6-Deadline(T2)

6-C � ∗ : ((((C, {va}ra), {{va}ra}ska), r−1
a), va)

5 ADM Logic

The ADM logic can be viewed as a special variant of µ-calculus. Although it has
initially been designed for the specification of electronic commerce properties, it
is also very appropriate for the electronic voting issue. The logic includes modal-
ities such as “necessity”, “possibility”, “before”, “after”. Moreover, it allows to
consume resources (linearity) and to specify recursive formulae. The syntax of
the ADM logic is based on patterns. A pattern is an abstraction of a trace,
where some actions are replaced by variables. The syntax of a pattern is defined
by the BNF-grammar given in Table 5. According to this syntax, a pattern is
a sequence of actions and pattern variables. ε stands for empty pattern, x is a
pattern variable and a is an action, which itself may contain variables. For ex-
ample, in pattern p = x1.(xs−Xv � A : xm).x2, we identify action variables (x1

and x2), a step variable (xs), a principal variable (Xv), and a message variable
(xm).

The syntax of the logic is defined by the BNF-grammar given in Table 6.
The symbols ¬ and ∧ represent, respectively, negation and conjunction. X is a
formula variable. νX.φ is a recursive formula. The greatest fixed point operator
ν binds all free occurrences of X in φ. There is a syntactic restriction on the
body of νX.φ which stipulates that any occurrence of X in φ must occur under
the scope of an even number of negations. Finally, [p1 	 p2] is a modal operator
indexed by the two patterns p1 and p2. It should be noted here, that the set
of pattern variables in p2 must be included in the set of pattern variables in p1

(no new variables appearing in p2). A trace t satisfies the formula [p1 	 p2]φ,
if for all substitutions σ such that p1σ = t, the new trace t1 = p2σ satisfies the
remaining part of the formula (φ). In this respect, [p1 	 p2]φ has two effects.
First, the part p1 allows us to verify if something has happened somewhere in the
trace t. Second, the part p2 allows us to modify the trace (delete some actions,
substitute some actions by others, add some actions) in such a way that the
remainder of the formula (φ) will be verified on the modified version of the trace
described by p2.

Notice that usual shortcuts such that ∨, →, ↔ can be used with their usual
meaning. Note also, that from the modal operator [−], we can derive the modal

Specification of Electronic Voting Protocol Properties 411

Table 5. Pattern Syntax

p ::= ε | x.p | a.p

Table 6. ADM Logic Syntax

φ ::= X | ¬φ | [p1 � p2]φ | φ1 ∧ φ2 | νX.φ

operator 〈−〉 (〈p1 	 p2〉φ ≡ ¬[p1 	 p2]¬φ). The formula 〈p1 	 p2〉φ is inter-
preted as follows: verify if there exists at least one substitution σ that makes
equal the analyzed trace t to the pattern p1, and the rest of the formula (φ) has
to be satisfied in the new version of the trace defined by p2σ. Similarly, from
the greatest fixed point ν, we can derive the tautology formula tt (tt ≡ νX.X)
and the least fixed point µ (µX.φ ≡ ¬νX.¬φ[¬X/X]). φ[Γ/X] represents the
simultaneous replacement of all free occurrences of X in φ by Γ .

Examples of formulae given in [6] allow to better understand the ADM logic
constructs.

6 Properties Specification

In this section, we will use the ADM logic to specify four electronic voting prop-
erties. This specification is relative to blind signature schemes [1,2,3]. Protocols
based on such schemes proceed in several steps. In a first phase, the voter con-
tacts the authority managing the election in order to obtain a signature on a
message which is generated beforehand by the voter. This signature affixed by
the authority constitutes the token which will allow the voter to cast his vote.
Hence, only legitimate voters (those which have obtained a token) can vote.

Before specifying properties, we give in Table 7 rewriting rules allowing to
simplify the specification of our properties. The idea behind these rules is to pre-
process the trace in order to reason on decrypted and atomic messages. Rules of
Table 7 allow us to derive from the trace t its normal form t↓. For example, the
normal form t↓1 , which is obtained by applying repetitively rule R1, is the trace
where all composed messages (xm1 , xm2) in t are decomposed into xm1 and xm2

messages. Transformations made by rules R2 and R3, capture the fact that if the
trace contains the message {xm}xk

followed/preceded by a message x−1
k , then

the message {xm}xk
will be replaced by xm. The only one difference between R2

and R3 is the order of messages {xm}xk
and x−1

k in the trace. Hence, the normal
form t↓123 is the trace where all composed messages (xm1 , xm2) are decomposed
into xm1 and xm2 messages, and all encrypted messages {xm}xk

are replaced by
xm messages, if the corresponding key x−1

k appear in the trace. Note that the
rewriting system is convergent, and hence the resulting normal form is unique.

For a better readability of properties, constant terms will be written in bold-
face. This will allow to avoid confusion between pattern variables and constants
in formulae. Now we are ready to specify our properties. They are firstly formu-
lated generally, then applied in the particular case of the FOO protocol.

6.1 Fairness

This property implies that the protocol should not allow the disclosure of partial
results. Such results can influence the vote of the voters not having voted yet.

412 M. Talbi et al.

Table 7. Decomposition and Decryption Rewriting Rules

R1 : x.(xi-Xs � Xr : (xm1 , xm2)).y →
x.(xi-Xs � Xr : xm1).(xi-Xs � Xr : xm2).y

R2 : x.(xi1 -Xs1 � Xr1 : {xm}xk
).y.(xi2 -Xs2 � Xr2 : x−1

k).z →
x.(xi1 -Xs1 � Xr1 : xm).y.(xi2 -Xs2 � Xr2 : x−1

k).z

R3 : x.(xi1 -Xs1 � Xr1 : x−1
k).y.(xi2 -Xs2 � Xr2 : {xm}xk

).z →
x.(xi1 -Xs1 � Xr1 : x−1

k).y.(xi2 -Xs2 � Xr2 : xm).z

The specification of this property is given by the formula FP (Lvote, T) which
means that if a vote v ∈ Lvote can be deduced by an observer, then this deduction
occurs after a special event denoted d(T), and if we remove one occurrence of v,
then the remaining trace must still satisfy the whole formula. Intuitively, a vote
v can be deduced, if it appears in the normal form of the trace given by t↓123 (i.e.
decomposition and decryption of messages in t). Hence, the trace t (i.e. trace to
be analyzed) satisfies the fairness property if the formula FP is satisfied by the
trace t↓123 .

FP (Lvote, T) ≡ νX.(
V

v∈Lvote
(〈x.(xi-Xs � Xr : v).y � ε〉tt →

〈x.d(T).y.(xi-Xs � Xr : v).z � x.d(T).y.z〉X))

The fairness property corresponding to the FOO protocol is obtained by re-
placing d(T) with the internal action (4-Deadline(T1)), since it represents the
beginning of the opening ballots phase.

6.2 Eligibility

This property means that only eligible voters can vote, and any legitimate voter
can vote only once during an election. We express this property in terms of a
subset of formulae.

The first of these formulae expresses the fact that the voting protocol must
allow each legitimate voter to vote. This property is usually referred to as democ-
racy. In the ADM logic, this property can be expressed according to the formula
given hereafter:

DP (Lvoter , A, k, T) ≡
V

V ∈Lvoter
(〈x.a.actp � ε〉 → 〈x.a.y.b.z.d(T).w � ε〉tt)

With

8<
:

a = request(V , A, xm)
b = token(A, V , xm, k)
actp = z1.(xi-act1(V , xm)).z2 . . . zp.(xi-actp(V , xm)).zp+1)

This property means that if the trace contains an action request(V, A, xm) (re-
quest for signature, on message xm, from a voter V ∈ Lvoter to an authority A),
and if certain conditions (denoted as internal actions acti(V, xm), i ∈ {1 . . . p})
hold on the pair (V, xm) (e.g. valid signature), then the trace must contain an
action token(A, V, xm, k) (representing the sending of the message {xm}k from

Specification of Electronic Voting Protocol Properties 413

A to V). This action must occur before the deadline at T . Message {xm}k
represents the message xm, blindly signed with the key k. More precisely, {xm}k
represents the token allowing the voter to cast his vote later in the next phase
of the protocol.

The democracy property corresponding to the FOO protocol is obtained by
the following substitutions:

With

8>><
>>:

a = (1-V � A : {{xv}xr}xb
)

b = (2-A � V : {{{xv}xr}xb
}ska)

d(T) = (4-Deadline(T1))
actp = z1.(1-Save(V)).z2

Action a represents the request for signature. Action b represents the token
sent by A. This action must occur before the deadline at T1 (i.e. action d(T)).
This means that A must provide a token for each legitimate voter before the
ending of the voting phase. Finally, 1-Save(V) represents the only condition to
obtain a token. Indeed, in our modelling, actions that are specific to the validity
of signatures are not reported in the trace. The same goes for the legitimacy
of the voters. However, for the sake of convenience, we grouped these actions
together, and represented them with only one action (Save(V)), obtained by the
rule Aregister voter. A trace t satisfies the democracy property, if DP is satisfied
by the normal form of the trace given by t↓1 (i.e. decomposition of messages in
the trace t).

The eligibility property implies also that only legitimate voters can vote, and
thus only eligible voters are allowed to gain a token. This property can be for-
malized in a similar way to the previously specified property (by the opposite
reasoning):

KP (A, k) ≡ νX.((〈x.b.y � ε〉tt → 〈x.a.actp.b.y � x.actp−.y〉X)

With

8>><
>>:

a = request(Xv , A, xm)
b = token(A, Xv , xm, k)
actp = z1.(xi-act1(Xv , xm)).z2 . . . zp.(xi-actp(Xv , xm)).zp+1)

actp− = z1.z2 . . . zp.zp+1

This property is interpreted in the following way: if the trace contains a token
sent by an authority A (action b), then the trace must contain a request for
this token (action a), coming from a legitimate voter (actions acti(Xv, m), i ∈
{1 . . . p} appear in the trace), and if we remove one occurrence of these actions
(a, b and acti(Xv, m), i ∈ {1 . . . p}), then the trace must still satisfy the formula.

Finally, the eligibility property implies that a legitimate voter can vote only
once. In the case of a blind signature scheme, a voter can vote several times
in two manner: by replaying his vote, or by obtaining several tokens from the
administrator. Generally, this can be checked by the formula given hereafter,
and which expresses the fact that an action a ∈ {a1, ..., an} does not appear
more than once in the trace.

IP ({a1, ..., an}) ≡ ¬(
W

a∈{a1,...,an}(〈x.a.y.a.z � ε〉tt))

414 M. Talbi et al.

The version of the formula IP corresponding to the FOO protocol is given
hereafter:

¬(〈x.a.y.a.z � ε〉tt ∨ 〈x.b.y.b′.z � ε〉tt)

With

8<
:

a = (xi-C � ∗ : {xv}xr)
b = (2-A � Xv : {{xv}xr}xb
b′ = (2-A � Xv : {{xv}x′

r
}x′

b

Action a represents the publication of encrypted votes. Thus, the first part of
the formula expresses the ability of the protocol to reject double votes. Actions
b and b′ are sending operations in which the authority A sends a token to the
same voter. Thus, the second part of the formula expresses the fact that each
legitimate voter is authorized to obtain only one token. A given trace t of the
FOO protocol satisfies the property IP , if this formula is satisfied by the normal
form of the trace given by t↓1 .

The eligibility property is given by the conjunction of the three properties
given above:

EP ≡ DP ∧ KP ∧ IP

6.3 Individual Verifiability

This property implies that the protocol allows the voter to verify that his vote
was really counted. We formalize this property in the following way: if the trace
t contains an action cast(V, v, k1, ..., km) (vote of the voter V ∈ Lvoter encrypted
with a set of keys {k1, ...km}), and if this vote is accepted by an authority C (valid
vote, valid signature, . . . represented as internal actions acti(), i ∈ {1 . . . p}),
then the trace must contain an action publish(C, v, k1, ..., km) executed by the
authority C. We specify this property (formula VIP (Lvoter, C)) in the same
manner as the democracy property defined previously. Actually, the individual
verifiability property supplements, in a certain sens, the democracy property.

VIP (Lvoter , C) ≡
V

V ∈Lvoter
(〈x.a.actp � ε〉tt → 〈x.a.y.b.z � ε〉tt)

With

8<
:

a = cast(V , xv, xk1 , ..., xkm)
b = publish(C, xv, xk1 , ..., xkm)
actp = z1.(xi-act1()).z2 . . . zp.(xi-actp()).zp+1)

The individual verifiability property corresponding to the FOO protocol is
given hereafter:

VIP (Lvoter , C) ≡
V

V ∈Lvoter
(〈x.a1.actp1.a2.actp2 � ε〉tt → 〈x.a1.y.a2.z.b.w � ε〉tt)

With

8>>>><
>>>>:

a1 = (3-V � C : ({xv}xr , {{xv}xr}ska))
a2 = (5-V � C : (x−1

r , xelem))

b = (6-C � ∗ : ((((C, {xv}xr), {{xv}xr}ska), x−1
r , xv)))

actp1 = y1.(3-Save({xv}xr , {{xv}xr}ska, xelem).y2

actp2 = y3.(5-Save({xv}xr , {{xv}xr}ska, x−1
r , xv)).y4

Specification of Electronic Voting Protocol Properties 415

In the FOO voting scheme, action cast() is realized in two steps: action a1

represents the first step (V sends his vote encrypted with r) and action a2

represents the second step (V sends the key r allowing to open his ballot).
Internal actions in pattern variables actp1 and actp2 must also occur in the
trace. They denote, that V ’s vote is valid. If all these conditions are satisfied,
then the trace must contain an action publish() (action b) which corresponds to
the publication of V ’s vote.

6.4 Universal Verifiability

The Universal verifiability is a property which guarantees that any voter can be
convinced of the validity of the published votes. This property can be formalized
in a similar way to the previously specified property (by the opposite reasoning).
Thus, for each published vote, the trace must contain a vote submitted by an
eligible voter. The formula given hereafter represents the specification of the
universal verifiability property in the ADM logic:

VUP (Lvoter , C) ≡ νX.((〈x.b.y � ε〉tt →
W

V ∈Lvoter
(〈x.a.y.b.z � x.y.z〉)X))

With

j
a = cast(V , xv , xk1 , ..., xkm)
b = publish(C, xv , xk1 , ..., xkm)

This property is interpreted in the following way: if the trace contains an
action publish() executed by an authority C, then the trace must contain an
action cast() executed by a voter V , and if we remove one occurrence of these
actions, then the remaining trace must still satisfy the formula.

The universal verifiability property corresponding to the FOO protocol is
given hereafter:

VUP (Lvoter , C) ≡ νX.((〈x.b.y � ε〉tt →
W

V ∈Lvoter
(〈x.a1.y.a2.z.b.w � x.y.z.w〉)X))

Actions a1, a2 and b in VUP are those defined previously in the individual
verifiability property.

Note that the FOO protocol does not satisfy the universal verifiability prop-
erty. Indeed, if the voter V abstains from voting after registering, then the au-
thority A can add its own vote instead of V ’s vote. The trace t corresponding to
this scenario is given by Table 4. In this case, it is clear that the trace t does not
satisfy the universal verifiability property. Indeed, t contains a published vote
({va}ra , {{va}ra}ska, r−1

a , va) which does not correspond to any vote submitted
by an eligible voter V (the trace t does not contain the participation of a voter
V having voted ({va}ra , {{va}ra}ska) during the voting phase).

7 Formal Verification of Properties

In this section we describe briefly the tableau-based proof system, and show,
through a concrete example, how we can use it to verify if a trace of the FOO
protocol satisfies or not a given formula.

416 M. Talbi et al.

Table 8. Tableau-Based Proof System

R¬ H, b, e, σ � t ∈ ¬φ
H, ¬b, e, σ � t ∈ φ

R∧
H, b, e, σ � t ∈ (φ1 ∧ φ2)

H, b1, e, σ � t ∈ φ1 H, b2, e, σ � t ∈ φ2
b1 × b2 = b

Rν
H, b, e, σ � t ∈ νX.φ

H[X �→ H(X) ∪ t], b, e, σ � t ∈ φ[νX.φ/X] t �∈ H(X)

R[]
H, b, e, σ � t ∈ [p1 � p2]φ

H, b1, e, σ1 ◦ σ � p2σσ1 ∈ φ ... H, bn, e, σn ◦ σ � p2σσn ∈ φ
C

With C =

0
@ {σ1, ..., σn} = {σ

′|p1σσ
′ = t} �= ∅

and
b1 × ×bn = b, n > 0

1
A

0
@ ε × ε = ε

ε × ¬ = ¬
¬ × ¬ = ¬

1
A

Table 9. Successful Leafs and Unsuccessful Leafs

Successful Leaf Unsuccessful Leaf
θ = (H, ε, e, σ � t ∈ X) and t ∈ e(X) θ = (H, ε, e, σ � t ∈ X) and t �∈ e(X)
θ = (H, ¬, e, σ � t ∈ X and t �∈ e(X) θ = (H, ¬, e, σ � t ∈ X and t ∈ e(X)

θ = (H, ε, e, σ � t ∈ νX.φ) and t ∈ H(X) θ = (H, ¬, e, σ � t ∈ νX.φ) and t ∈ H(X)
θ = (H, ε, e, σ � t ∈ [p1 � p2]φ) and θ = (H, ¬, e, σ � t ∈ [p1 � p2]φ) and

{σ′|p1σσ′ = t} = ∅ {σ′|p1σσ′ = t} = ∅

The ADM logic is endowed with a tableau-based proof system that has been
proved to be sound and complete in [6] with respect to the denotational se-
mantics. In fact, this tableau-based semantics leads to a local model checking.
Rules defined in Table 8 allows to capture in a deductive way whether a trace
t satisfies a formula φ or not. The proof rules operate on sequents of the form
H, b, e, σ + t ∈ φ. H is a mapping in [V → 2T], where V is the set of variables
and T the set of traces. A special care should be devoted to the rules that handle
recursion. Mapping H is used to this end. The flag b is a variable in {ε,¬}. It
is used to remember if we are dealing with the formula φ or the formula ¬φ.
Environment e is a mapping in [V → 2T]. It is used to give a semantic to the
formula X and to deal with recursive formulae. Finally, σ is a substitution, t a
trace, and φ a formula.

A sequent θ has a successful tableau if there exists a finite tableau having θ
as a root and all its leaves are successful. A leaf θ is successful when it meets one
of the conditions given in the first column of Table 9. It is unsuccessful when it
meets one of the conditions given in the second column.

Rules of Table 8 are interpreted as follows:

– R¬: verifying if a trace t satisfies or not a formula ¬φ, amounts to verify if
t satisfies or not the formula φ and then to decide for the formula ¬φ. Flag
b is used to this end.

– R∧: proving that the sequent H, b, e, σ + t ∈ (φ1 ∧ φ2) has a successful tab-
leau, amounts to verify that the sequent H, b1, e, σ + t ∈ φ1 and the sequent
H, b2, e, σ + t ∈ φ2 have successful tableaux for some b1 and b2 such that
b = b1 × b2.

– Rν : proving that the sequent H, b, e, σ + t ∈ νX.φ has a successful tableau,
amounts to prove that the sequent H [X &→ H(X) ∪ t], b, e, σ + t ∈ φ[νX.φ/X]
has a successful tableau. Moreover, the condition t �∈ H(X) must hold.

Specification of Electronic Voting Protocol Properties 417

– R[]: this rule means that if {σ1 . . . σn} = {σ′|p1σσ′ = t} and for all i ∈
{1 . . . n}, p2σσi satisfies φ, then we deduce that t satisfies φ.

Now, suppose that we want to verify if the trace t of the protocol FOO given
in Table 4 is satisfied or not by the formula φ given hereafter:

φ ≡ ¬(〈x.b.y.b′.z � ε〉tt)

With

(
b = (2-A � Xv : ((A, {{xv}xr}xb

), {{{xv}xr}xb
}ska))

b′ = (2-A � Xv : ((A, {{xv}x′
r
}x′

b
), {{{xv}x′

r
}x′

b
}ska))

Actions b and b′ are sending operations in which the authority A sends a
token to the same voter. Thus, the formula φ expresses the fact that each legit-
imate voter is authorized to obtain only one token. Note that, φ is a subpart
of the formula IP specified in the previous section (subformula of the eligibility
property), and presented here in a slightly different way.

To prove that the trace t satisfies the formula φ, we have to transform first φ
according to the standard abbreviations of formulae. Thus, we have:

¬(〈x.b.y.b′.z � ε〉tt) ≡ [x.b.y.b′.z � ε]¬νX.X

Now, proving that the formula φ is satisfied by the trace t, amounts to show
that the sequent ∅, ε, ∅, ∅ + t ∈ [x.b.y.b′.z 	 ε]¬νX.X leads to a successful leaf.
This is proved directly, given that the following condition is satisfied:

θ = (H, ε, e, σ � t ∈ [p1 � p2]φ) and {σ′|p1σσ′ = t} = ∅.

Indeed, there is no substitutions σ such that (x.b.y.b′.z)σ = t. We conclude
that the particular trace t satisfies the formula φ.

An implementation of the tableau-based proof system would allow to check
automatically the satisfaction relation t |= φ for every trace t of the FOO proto-
col. If we find that a trace of the FOO protocol does not satisfy a given property
then we can conclude that the FOO protocol does not guarantee this property
(it is the case for the universal verifiability property).

8 Conclusions and Future Work

In this paper we have shown that the ADM logic constitutes a promising can-
didate for the specification of electronic voting properties. Indeed, thanks to
the ADM logic modalities, we have specified four electronic voting properties
(fairness, eligibility, individual and universal verifiability), and applied them to
the FOO protocol. Moreover, from our analysis of the FOO protocol, we have
formally proved in Section 6.4 that this protocol does not satisfy the universal
verifiability property.

As future work, we plan to investigate the specification of anonymity and
receipt-freeness properties, and to give a more complete analysis of the FOO
protocol. This can be done by implementing the rules of the tableau-bases proof
system in order to check automatically the specified properties against specific
traces (generated by privileging some specific scenarios from the model associ-
ated with the FOO protocol).

418 M. Talbi et al.

References

1. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) ASIACRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

2. Juang, W.S., Lei, C.L.: A secure and practical electronic voting scheme
for real world environments. TIEICE: IEICE Transactions on Communica-
tions/Electronics/Information and Systems (1997)

3. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections.
In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361,
pp. 25–35. Springer, Heidelberg (1998)

4. Benaloh, J.C.: Verifiable secret-ballot elections. PhD thesis, Yale University (1987)
5. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.

In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

6. Adi, K., Debbabi, M., Mejri, M.: A new logic for electronic commerce protocols.
Theoretical Computer Science 291(3), 223–283 (2003)

7. Stirling, C.: Modal and temporal logics for processes. In: Proceedings of the VIII
Banff Higher order workshop conference on Logics for concurrency: structure versus
automata, pp. 149–237. Springer, Heidelberg (1996)

8. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting
protocols. In: Proceedings of TARK 2007, pp. 62–71. ACM, New York (2007)

9. Chothia, T., Orzan, S., Pang, J., Dashti, M.T.: A framework for automatically
checking anonymity with µ-CRL. In: TGC, pp. 301–318 (2006)

10. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: Proceedings of CSFW 2006, pp. 28–42. IEEE Computer Society,
Los Alamitos (2006)

11. Eijck, J.V., Orzan, S.: Epistemic verification of anonymity. Electronic Notes in
Theoretical Computer Science 168, 159–174 (2007)

12. Jonker, H., Pieters, W.: Receipt-freeness as a special case of anonymity in epistemic
logic. In: IAVoSS Workshop On Trustworthy Elections - WOTE 2006 (2006)

13. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied Pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

14. Mauw, S., Verschuren, J., de Vink, E.P.: Data anonymity in the FOO voting
scheme. Electronic Notes in Theoretical Computer Science 168, 5–28 (2007)

15. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoritical Computer Science 37, 77–121 (1985)

16. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
ACM SIGPLAN Notices 36(3), 104–115 (2001)

17. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge (1999)

18. Pratt, V.R.: Application of modal logic to programming. Studia Logica 39(2-3),
257–274 (1980)

19. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1981)

20. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (1998)

21. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1981)

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 419–434, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Publicly Verifiable Remote Data Integrity

Ke Zeng

NEC Laboratories, China
zengke@research.nec.com.cn

Abstract. More and more customers are outsourcing data storage to remote
archive service providers that are responsible for properly preserving the data.
As such, it has become crucial for an archive service to be capable of providing
evidence to demonstrate the integrity of data for which it is responsible, from
the time it receives the data until the expiration of the archival period. Pairing-
based provable data integrity (PDI) scheme is proposed that enables not only
the customer but also a third-party verifier to check remote data integrity. This
PDI scheme is provably secure and efficient. Compared to the best-known prior
art, our experiments under defined conditions show that our PDI scheme works
50 times faster in fingerprinting the data, and the resulting fingerprints are 30
times smaller in size.

Keywords: data outsourcing, integrity, public verifiability, pairing.

1 Introduction

Data storage outsourcing is a current trend on the Internet, in which data is stored
with a global archive service instead of using one’s own local storage. Internet-based
online archive services are now providing their end users, including individual
customers and businesses, huge amounts of storage space. For example, Apple’s
iDisk [1] provides 10 GB of online storage space to each .Mac member. Amazon
Simple Storage Service (Amazon S3) [2] goes even further. It provides a web services
interface that can be used to store and retrieve an unlimited amount of data, with fees
metered in GB-months and data-transfer amounts.

Yet with more and more archive services available to store customers’ digital
assets such as photos, videos, emails, and file system backups, the security of the
services that retain this tremendous amount of data becomes critical. As summarized
in the IETF’s “Long-Term Archive Service Requirements” (RFC 4810) [3], security
requirements for archive services must include non-repudiation of data existence,
integrity, and origin. Of these requirements, we will herein focus on data integrity.
Various news reports have already revealed that even the most popular service
providers may damage customers’ data [4], such as emails or photos, which may have
great personal value. Indeed, archive services are vulnerable to three classes of data
integrity threats, namely latent faults (e.g., caused by a bit error in the storage
medium), correlated faults (e.g., caused by a lack of geographic location diversity),
and recovery faults (e.g., caused by improperly debugged procedures) [4]. Thus,
archive service customers, in making the decision to outsource particular data, must
be able to evaluate the risk of losing that data.

420 K. Zeng

One solution is to empower the customers with tools that can help them
periodically conduct integrity checks of their data. Another solution, as both Shah et
al. [4] and Ateniese et al. [5] proposed, is to introduce a third-party verifier to whom
the customers could delegate the periodic task of checking data integrity. More
interestingly, the third-party verifier, who has expertise and capabilities that the
customers do not, can act as an external auditor of the archive service providers. He
can periodically check the integrity of all the data stored with the archive service
providers and then release an audit report. Based on the audit report, customers can
evaluate the risks associated with any particular archive service provider before they
decide to rely on its service. The audit report may also be beneficial to the archive
service provider. A positive audit report from a third party may assist the archive
service provider in obtaining a favorable insurance rate [4].

It is therefore a must to develop tools for customers, the third-party verifier, and
the archive service provider, such that the archive service provider can prove the
integrity of data for which it is responsible, from the time it receives the data until the
expiration of the archival period [3].

1.1 Related Work

There is a simple solution to tackle the data integrity issue. Initially, the data source
divides the data into multiple fragments and for each fragment pre-computes a
message authentication code (MAC). Whenever a verifier, be it the data source or a
third party, needs to check data integrity, he retrieves from the archive service
provider a number of randomly selected fragments and re-computes the MAC of each
fragment for comparison. This simple solution has a drawback that its communication
complexity is linear with respect to the queried data size. Moreover, in the case of a
third-party verifier, sending user data to the verifier is prohibitive because it violates
the data source’s privacy. To avoid retrieving data from the archive service provider,
one may improve this simple solution by choosing multiple secret keys and pre-
computing multiple keyed-hash MACs for the data. Thus the verifier can each time
reveal a secret key to the archive service provider and ask for a fresh keyed-hash
MAC for comparison. However, in this method, the number of times a particular data
item can be verified is limited by the number of secret keys that must be fixed a
priori. When all possible secret keys are exhausted, it is then necessary to retrieve
data from the archive service provider in order to compute new MACs.

Golle et al. [6] proposed a scheme to verify data storage commitment, a concept
that is weaker than integrity. The drawback to their proposal is that the verifier’s
public key is about twice as large as the data file.

Juels et al. [7] proposed to verify data retrievability, a concept that is similar to
integrity, by first encrypting the data file then embedding disguised blocks (so-called
sentinels) in the ciphertext. One drawback to their proposal is that it is not data format
independent, i.e., only encrypted data files can be handled. Hence their proposal is not
applicable to a general archive system. Another drawback is that it allows only a
limited number of challenges on the data files, which is determined by the number of
sentinels embedded at the preprocessing phase.

 Publicly Verifiable Remote Data Integrity 421

Schwarz et al. [8] proposed to verify data integrity using an algebraic signature.
The drawback to their proposal is that the communication complexity is linear with
respect to the queried data size. In addition, the security of their proposal is not
proven and remains in question.

Deswarte et al. [9] and Filho et al. [10] proposed to verify data integrity using an
RSA-based hash function. Their proposals have the drawback that the archive service
provider has to exponentiate the entire data file. As a reference, given a 2048-bit RSA
modulus, MIRACL library v5.3.1 [11] reports that one modular exponentiation with a
2048-bit exponent takes 21.8 milliseconds on an Intel Core2 Quad 2.66 GHz
processor1. Thus it would take 5715 seconds to generate one integrity proof for a
merely 64-MB data file. In addition, the security of their proposals remains in
question. There is no clear security reduction to the RSA problem or any well-known
variant [7].

Further to [9] and [10], Sebe et al. [12] proposed to verify data integrity by first
fragmenting the data, fingerprinting each fragment, and then using an RSA-based
hash function on the fragments. Their proposal does not require the exponentiation of
the entire file. However, the verifier has to have a local copy of the fingerprints,
whose size is linear to the number of fragments. In addition, the verifier must not be a
third party. Otherwise the secret information of the data source is divulged.

Yamamoto et al. [13] proposed to verify data integrity through batch verification of
homomorphic hash functions on randomly selected fragments of data. The drawback
to their proposal is that the verifier has to have a local copy of the hash values, whose
size is linear to the number of fragments.

Shah et al. [4] proposed allowing a third-party verifier by first encrypting the data
then sending a keyed hash of the encrypted data to the verifier. One drawback to their
proposal is that the number of times a particular data item can be verified is limited by
the number of secret keys that must be fixed beforehand. Another drawback is that
their proposal is not data format independent.

Ateniese et al. [5] proposed an S-PDP scheme (where “S” stands for “sampling”),
and an S-PDP-PV scheme (where “PV” stands for “public verifiability”) that allows a
third-party verifier. Both schemes verify data integrity by first fragmenting the data,
then fingerprinting each fragment. The data integrity proof is computed, exploiting
the homomorphism of the fingerprints (so-called homomorphic verifiable tags). Both
schemes are provably secure and data format independent. They do not require a local
copy of the data or the fingerprints and do not confine in advance the maximum
number of queries. This sampling strategy introduced by Ateniese et al. is particularly
beneficial in the third-party auditing scenario, where the archive service provider
needs to prove the integrity of huge volumes of data, e.g., 1 TB of data, to an auditor.
Sampling releases the archive service provider from having to access its entire
storage, thus largely reducing the required disk I/O overhead. In addition, Ateniese et
al. proposed to simplify the S-PDP scheme which yields E-PDP scheme. The E-PDP
scheme with weaker security guarantees, i.e., only guarantees possession of the sum
of the file blocks, is alleged more efficient than the S-PDP scheme [5].

1 Throughout this paper, MIRACL reference speeds are always measured using only 1 of the

processor’s 4 CPU cores in Windows Vista 32-bit edition.

422 K. Zeng

Unfortunately, both the S-PDP-PV scheme and the E-PDP scheme are
unsatisfactory. The S-PDP-PV scheme has the drawbacks that it generates fingerprints
that are too large in size and the time it takes to generate the fingerprints is too long as
well. As a concrete example, given a 2048-bit RSA modulus, the RSA public key e is
chosen to be a 6168 bits prime2. The S-PDP-PV scheme mandates that each fragment
be less than / 2e , otherwise the S-PDP-PV scheme is not provably secure. So a 64-
MB data file would be divided into at least 87,056 fragments, each of which has a
2048-bit-long fingerprint. Thus, the combined size of all the fingerprints is about 21.2
MB. Further, given a 2048-bit RSA modulus, MIRACL library v5.3.1 reports that one
RSA decryption takes 7 milliseconds. Since generating one fingerprint is
computationally expensive than doing two RSA decryptions, it would take the data
source at least 1218 seconds to fingerprint all the fragments of the 64-MB file.

In terms of the E-PDP scheme, Ateniese et al. [5] argued that its weaker security
guarantee is of no practical issue. However, in Section 4.2 we will prove that the
E-PDP scheme has no efficiency gain in practice.

To summarize, it seems rational to aim for a third-party-verifier-friendly data
integrity proof protocol that satisfies the following four requirements:

1. The verifier does not need a copy of the data or fingerprints.
2. It is provably secure.
3. It is data format independent.
4. The number of allowable queries is not limited in advance.

In addition, an efficient data integrity proof protocol should take the following five
factors into consideration:

1. The size of the public key
2. The computation cost for fingerprinting the data
3. The size of the fingerprints
4. The computation cost due to each protocol instance
5. The amount of communication required by each protocol instance

From this viewpoint, the S-PDP-PV scheme is the only solution we are aware of
that achieves public verifiability, but it is inefficient due to its excessively high
storage and computation consumption.

Our Contributions

We propose a pairing-based provable data integrity (PDI) scheme that is third-party-
verifier-friendly and efficient, i.e., it satisfies all the nine requirements above.

Moreover, we implement the PDI scheme to demonstrate its efficiency. In
particular, we show experimentally that it takes the PDI scheme only 22.4 seconds to
fingerprint one 64-MB file and the fingerprints collectively consume 713 KB.
Compared to the S-PDP-PV scheme (under defined conditions above), the PDI
scheme is more than 50 times faster in generating the fingerprints and the fingerprints
themselves are 30 times smaller in size.

2 Here we choose a 6168 bits prime e for the S-PDP-PV scheme because it would result in data

integrity proof that consumes 771 bytes. We will explain and justify this choice in Section 5.

 Publicly Verifiable Remote Data Integrity 423

2 Notations and Number-Theoretic Preliminaries

We first define some notations and review a few number-theoretic preliminaries.

2.1 Notations

If S is a finite set,
R

x ∈ S denotes that x is chosen from S uniformly at random.

For two algorithms ()A ⋅ and ()B ⋅ , (;) (||)()x y A B ς← denotes the joint execution of

()A ⋅ and ()B ⋅ on the same input string ς and the same random tape, and ()A ⋅ ’s

output is assigned to x and ()B ⋅ ’s to y . Let ()Ω ⋅ be an arbitrary Boolean predicate,

i.e., a function that upon input of some string ς outputs either TRUE or FALSE .

By () : ()A xς ς← Ω we denote that ()ςΩ is TRUE after ς was obtained by running

algorithm ()A ⋅ on input x .

A function ()adv κ is said to be negligible (in κ) if for every positive polynomial

()p ⋅ and sufficiently large κ , () 1/ ()adv pκ κ< .

2.2 Number-Theoretic Preliminaries

Throughout this paper, we use the traditional multiplicative group notation, instead of
the additive notation often used in elliptic curve settings.

Let
1 1

g=G and
2 2

g=G be two finite cyclic groups with additional group

=G g such that
1 2

p= = =GG G where p is a large prime. Bilinear map

1 2
:e × → GG G is a function, such that it is: bilinear – for all

1 1
h ∈ G ,

2 2
h ∈ G ,

and for all ,
p

a b ∈ Z ,
1 2 1 2

(,) (,)a b abe h h e h h= ; non-degenerate –
1 1
h∃ ∈ G ,

2 2
h∃ ∈ G

such that
1 2

(,)e h h ≠ I where I is the identity element of G ; and computable –

there exists an efficient algorithm for computing e .
We suppose there is a setup algorithm ()Setup ⋅ that, upon input of security

parameter 1κ , outputs the above settings of the bilinear map and writes this as

1 2 1 2
(, , , , , ,) (1)p g g e Setup κ←GG G . We omit g from the expression as it is easy to

see that
1 2

(,)e g g=g .

q-SDH Assumption. For all probabilistic polynomial time (p.p.t.) adversaries A ,

()adv κ defined as follows is a negligible function:

2

1 2 1 2

1/()
2 2 2 1

(, , , , , ,) (1); ;

Pr (,) (, , ,) : ()
q

R p

a a a a x
p

p g g e Setup a

x y g g g x y g adv

κ

κ+

← ∈
⎡ ⎤← ∈ ∧ = =⎢ ⎥⎣ ⎦

GG G
"

Z
ZA

The q-SDH assumption has been shown to hold in generic bilinear groups by
Boneh et al. [14].

424 K. Zeng

KEA1 Assumption. For any p.p.t. adversaries A , there exists a p.p.t. extractor E ,

such that ()adv κ defined as follows is a negligible function:

1 2 1 2 1

1

(, , , , , ,) (1); ; ;

Pr (, ;) (||)() : ()
R p R

x x

p g g e Setup x h

Y C h Y Y C C h adv

κ

αα κ

← ∈ ∈
⎡ ⎤← ∈ ∧ = ∧ ≠ =⎢ ⎥⎣ ⎦

G

E

G G G
G

Z
A

Informally, the KEA1 assumption says that the only way any adversary can output
xY C= from xh is to pick some

p
α ∈ Z , let C hα= and let ()xY h α= .

q-KEA Assumption. For any p.p.t. adversaries A , there exists a p.p.t. extractor E ,

such that ()adv κ defined as follows is a negligible function:

{ }
{ } { }

1 2 1 2 1

1

(, , , , , ,) (1); ; ;

Pr (, ;) (||)() :) ()j

q
R p j R

x x
j j j

j

p g g e Setup x h

Y C h Y Y C C h adv

κ

αα κ

← ∈ ∈
⎡ ⎤
⎢ ⎥← ∈ ∧ = ∧ ≠ =⎢ ⎥
⎣ ⎦

∏

G

E

G G G

G

Z

A

In the example case of 2q = , the 2-KEA assumption (referred to as KEA3
assumption in [15] and XKEA assumption in [16]), says that the only way any

adversary can output xY C= from
1
xh and

2
xh is to pick some 2

1 2
(,)

p
α α ∈ Z , let

1 2

1 2
C h hα α= and let 1 2

1 2
() ()x xY h hα α= .

It is proved in [15] that the KEA3 assumption is a natural extension of KEA1.
Following that, the q-KEA assumption is trivially provable as a natural extension of
the KEA1 assumption as well.

The KEA1 assumption has been shown, by Abe et al. [16] and also by Dent [17]
independently, to hold in generic (bilinear) groups. In [16], Abe et al. further proved
Lemma 1 as shown below.

Lemma 1. Under the KEA1 assumption, for any p.p.t. adversaries A , there exists a

p.p.t. extractor E , such that ()adv κ defined as follows is a negligible function:

{ }
{ } { } { }

1 2

2
1 2 1 2 1 2 1

1 2 1 2

1 1 2

(, , , , , ,) (1); ; , ;

(, ; ,) (||)(,) :
Pr ()

 (), 1,2, ,i i

R p R

x x
i i i i

x
i i i i

p g g e Setup x h h

Y C h h
adv

i Y Y C C h h i n

κ

α α

α α
κ

← ∈ ∈
⎡ ⎤←⎢ ⎥ =⎢ ⎥∃ ∈ ∧ = ∧ ≠ =⎢ ⎥⎣ ⎦

G

E

G G G

G …

Z
A

Lemma 2, below, is a natural extension of Lemma 1. The proof technique for Lemma
1 applies to Lemma 2 as well.

Lemma 2. Under the KEA1 assumption, for any p.p.t. adversaries A , there exists a

p.p.t. extractor E , such that ()adv κ defined as follows is a negligible function:

{ }
{ } { } { } { }

1 2 1 2 1

1

(, , , , , ,) (1); ; ;

(, ;) (||)() :
Pr ()

 (), 1,2, ,ij

q
R p j R

x
i i ij j

x
i i i i j

j

p g g e Setup x h

Y C h
adv

i Y Y C C h i n

κ

α

α
κ

← ∈ ∈
⎡ ⎤←⎢ ⎥
⎢ ⎥ =⎢ ⎥∃ ∈ ∧ = ∧ ≠ =
⎢ ⎥⎣ ⎦

∏

G

E

G G G

G …

Z
A

 Publicly Verifiable Remote Data Integrity 425

3 Provable Data Integrity Scheme

We start with the definition and description of our provable data integrity (PDI)
scheme, followed by its security analysis, discussion, and performance evaluation.

3.1 Definition

A PDI scheme is a collection of four algorithms, ()KeyGen ⋅ , ()Fingerprint ⋅ ,

()GDIP ⋅ , and ()VDIP ⋅ .

(,) (1)pk sk KeyGen κ← . This probabilistic algorithm takes as input security

parameter 1κ , and returns public key pk and private key sk .

(,) (, ,)k
k i k
z T Fingerprint pk sk← F . This algorithm takes as input public key pk ,

private key sk , and a file
k
F . Let

k
FN denote

k
F ’s file reference, which is, for

example, the file name of
k
F plus a unique serial number. The file

k
F is an ordered

collection of super-blocks k
i
M while each super-block k

i
M is an ordered collection of

file blocks ik
j
m . This algorithm returns a file key

k
z for

k
F and the fingerprint k

i
T

for k
i
M . There is a one-to-one mapping between

k
z and

k
FN . The length of the file

block and the number of file blocks that one super-block can aggregate are
determined by certain parameters of pk .

V (, , ,T,)GDIP pk FN chal← F . This algorithm takes as input public key pk , a

file F that is an ordered collection of super-blocks
i
M , the file reference FN of

F , an ordered collection of fingerprints { }T
i
T= for { }iM , and a challenge chal .

It returns a data integrity proof V .
{TRUE,FALSE} (, , , ,V)VDIP pk FN z chal← . This algorithm takes as input

public key pk , a file reference FN , a file key z , a challenge chal , and the data
integrity proof V . It returns TRUE if the integrity of the file F determined by
FN is verified as correct, or FALSE otherwise.

Based on the PDI scheme, a PDI system could be easily constructed in three
phases, Setup, Store, and Challenge.

Setup: A client’s public key and private key are initialized by invoking ()KeyGen ⋅ .

The client publishes his public key.

Store: A client in possession of a file runs ()Fingerprint ⋅ to fingerprint the file and

stores the file and its fingerprints with the server. The client deletes the file and the
fingerprints from his local storage.

Challenge: Any one, a third party or the client himself, can verify integrity of the
client’s file by invoking ()VDIP ⋅ , which requires to challenge the server and the

426 K. Zeng

server executing ()GDIP ⋅ to respond. It is notable that this phase can be executed an

unlimited number of times.

3.2 The PDI Scheme

Now we start to depict our PDI scheme. For simplicity, we regard

1 2 1 2
(, , , , , ,) (1)p g g e Setup κ←GG G and pseudo random functions *

1
: {0,1}

p
prf → Z ,

*
2 1
: {0,1}prf → G , *

3 2
() : {0,1}prf φφ → Z as system parameters.

KeyGen(·): Select 3(, ,)
R p

sk x s t= ∈ Z . Compute
2
xY g= , s

s
Y Y= ,

2 2
s

s
g g= ,

1 (,)

1

prf j t

j
h g= , and s

j j
S h= , 1,2, ,

B
j n= … . Choose a positive integer loglen p<

that determines the length in bits of each file block and another positive integer
B
n

which determines the number of file blocks that one super-block contains.

Finally, output (, ,)sk x s t= and { }()2
, , , , , ,
s s j j B

pk Y Y g h S len n= .

Given pk , a file F with file reference FN can be divided into /N Flen len⎡ ⎤= ⎢ ⎥⎢ ⎥

file blocks
i
m , each of which is len bits long, where Flen is the length of F in

bits. And every
B
n consecutive file blocks constitute one super-block. In other words,

the file F is logically divided into N file blocks and organized into /
SB B
n N n⎡ ⎤= ⎢ ⎥⎢ ⎥

super-blocks. Notice that the file F will be logically padded with zero in the case

that Flen N len< ⋅ or ()
SB B

Flen n n len< ⋅ ⋅ .

Fingerprint(·): Upon input of (, ,)sk x s t= , { }()2
, , , , , ,
s s j j B

pk Y Y g h S len n= , and a

file F with file reference FN , select
R p

z ∈ Z as F ’s file key and execute the

following for each super-block
i
M of F , 1,2, ,

SB
i n= … :

a) Compute a locator
2 1
(, ,)

i
W prf i z FN= ∈ G .

b) Compute
1 (1)

1

(,)
B

B

n

i i n j p
j

R prf j t m − ⋅ +
=

= ⋅ ∈∑ Z and
1

1 1
()iR x z

i i
T W g += ⋅ ∈ G .

Finally, output the file key z and the fingerprints { } 1
T SBn

i
T= ∈ G .

Notice that (1)

1 1

1
1

() ()
B

i n ji B

n
mR x z x z

i i i j
j

T W g W h − ⋅ ++ +

=

= ⋅ = ⋅∏ for all 1,2, ,
SB

i n= … .

GDIP(·): Upon input of { }()2
, , , , , ,
s s j j B

pk Y Y g h S len n= ; a file F with file

reference FN , file key z , and fingerprints { }T
i
T= ;

1 2
(, , ,)chal l ψ γ γ= , where

1 lψ≤ ≤ and 2
1 2

(,)
R p

γ γ ∈ Z ; execute the following:

 Publicly Verifiable Remote Data Integrity 427

a) Compute / 1lφ ψ⎡ ⎤= +⎢ ⎥⎢ ⎥ .

b) For each 1,2, ,k ψ= … execute the following atomic proof procedure once
(i.e., repeat the atomic proof procedure independently ψ times).

1) Consider there to be 2φΦ = buckets in logic. For each bucket, initialize a

packed fingerprint
v
T =O
G

, and packed file blocks 0
vj
e = , where O is

the identity of
1

G , 0,1, , 1v = Φ−… , 1,2, ,
B

j n= … .

2) For each super-block
i
M and its corresponding fingerprint

i
T , randomly

assign them into one bucket and add them to the bucket’s packed file
blocks and packed fingerprint, respectively. Specifically, for each

1,2, ,
SB

i n= … , conduct the following:

i. Compute
3 1 2
(, ,)prf i k φσ γ= ∈ Z .

ii. Compute *
i

T Tσ =
G

 (i.e., compute
i

T Tσ ⋅
G

 and store back to Tσ

G
).

iii. For each 1,2, ,
B

j n= … , compute
(1)

 mod
Bj i n j

e m pσ − ⋅ ++ = .

3) Initiate a transformed fingerprint
1k

Τ = ∈O G and transformed file

blocks 0
j
E = , 1,2, ,

B
j n= … .

4) Assign each bucket a random number to randomize its packed fingerprint
and packed file block, then add them to the transformed fingerprint and the
transformed file blocks, respectively. Specifically, for each

0,1, , 1v = Φ−… , conduct the following:

i. Compute
3 2 2
(, ,)

v
a prf v k φγ= ∈ Z .

ii. Compute * va

k v
TΤ =
G

.

iii. For each 1,2, ,
B

j n= … , compute mod
j v vj
E a e p+ = ⋅ .

5) Compute
1

1

B
j

n
E

k j
j

S
=

Η = ∈∏ G as the knowledge proof of the transformed

file block
k

Τ .

Finally, output the data integrity proof (,)
k k

Τ Η , 1,2, ,k ψ= … 3.

VDIP(·): Upon input of { }()2
, , , , , ,
s s j j B

pk Y Y g h S len n= ; a file reference FN ; a file

key z ;
1 2

(, , ,)chal l ψ γ γ= , where 1 lψ≤ ≤ and 2
1 2

(,)
R p

γ γ ∈ Z ; and a data

integrity proof 2
1

(,)
k k

Τ Η ∈ G , 1,2, ,k ψ= … ; execute the following:

3 The size of the data integrity proof is proportional to the number of atomic proof procedures.

However this is of little efficiency concern in practice. See Section 5 for detailed discussion
on this matter.

428 K. Zeng

a) For each 1,2, ,k ψ= … , execute the following atomic verification procedure
once (i.e., repeat the atomic verification procedure independently ψ times).

1) Initialize a transformed locator W
k
=O .

2) Consider there to be 2φΦ = buckets in logic. For each bucket, initialize a

packed locator
v
W =O
G

, 0,1, , 1v = Φ−… .

3) Re-compute the locators, randomly assign them into the buckets, and add
them to the bucket’s packed locators. Specifically, compute

3 1 2
(, ,)prf i k φσ γ= ∈ Z and

2
* (, ,)W prf i z FNσ =

G
 for each

1,2, ,
SB

i n= … .

4) Assign the buckets random numbers to randomize their packed locators,
then add them to the transformed locator. Specifically, compute

3 2 2
(, ,)

v
a prf v k φγ= ∈ Z and W * va

k v
W −=
G

 for each 0,1, , 1v = Φ−… .

5) If
2 2 2

(,) (,) (W ,)z
k k s s k s

e g e Y g e gΗ = Τ ⋅ ⋅ , the output is TRUE , otherwise

the output is FALSE .
()VDIP ⋅ outputs TRUE if and only if all the atomic verification procedures

output TRUE .

3.3 Security of the PDI Scheme

Informally, the security of this PDI scheme is equivalent to the nonexistence of an
adversary that is capable, within the confines of a certain game, of forging the data
integrity proof on the condition that at least one file block is not present. We define
the security of the PDI scheme as an adaptive chosen-file-block game. In this model,
the adversary A is given a single public key. His goal is to output a data integrity
proof. We give the adversary the power to choose all the file blocks as well as the
super-blocks. The adversary is also given oracle access to fingerprint issuance on the
super-blocks.

Remote Data Integrity Game

Setup. The challenger runs (,) (1)pk sk KeyGen κ← , sends pk to the adversary, and

keeps sk secret.

Queries. The adversary A makes fingerprint queries adaptively; it selects file blocks
ik
j
m that form super-block k

i
M , assigns k

i
M to a file

k
F that is referenced by

k
FN ,

and sends
k

FN and k
i
M to the challenger. The challenger computes

(,) (, , ,)k k
k i k i
z T Fingerprint pk sk FN M← , stores

k
z , and sends k

i
T back to A . The

file key
k
z is not revealed to the adversary at this phase. The challenger needs to

ensure one-to-one mapping between
k
z and

k
FN . One restriction on A is that it

must not query different super-blocks with the same indexes k and i . Another
restriction on A is that the length of the file block and the number of file blocks that

 Publicly Verifiable Remote Data Integrity 429

one super-block has aggregated must comply with those being determined by the
parameters of pk .

Challenge. The adversary selects a file reference FN that determines a file F . The

file F is an ordered collection of super-blocks
i
M , each of which has a fingerprint

i
T . And each super-block

i
M is an ordered collection of file blocks i

j
m . The

challenger first outputs z that is the file key of FN , then generates a challenge chal
and asks the adversary for a data integrity proof.

Restricted Queriesx. The adversary A is allowed to continue querying fingerprints
as before, except for when adding a new super-block to F and querying the
fingerprint for the new super-block. In other words, the adversary is not allowed to
expand the content of F .

Output. The adversary A outputs a data integrity proof V .
The adversary wins the game if TRUE (, , , ,V)VDIP pk FN z chal← .

Definition (Security of PDI Scheme). The PDI scheme is secure if for any p.p.t.
adversary A the probability that A wins the Remote Data Integrity Game on a set of
file blocks is negligibly close to the probability that the challenger can extract the file
blocks by means of a knowledge extractor E .

Theorem 1. The PDI scheme that achieves public verifiability is secure under the q-
SDH assumption and the KEA1 assumption in the random oracle model.

4 Discussions

4.1 Sampling for the PDI Scheme

We can easily add the sampling strategy to the PDI scheme, yielding an S-PDI

scheme. The S-PDI scheme in addition requires a *
4
() : {0,1}

SBSB n
prf n → Z and the

challenge will contain a third key
3 R p

γ ∈ Z and a positive integer
SB
nΛ < . By

computing
1 4 3
i (1,)prf γ= ,

2 4 3
i (2,)prf γ= , up to

4 3
i (,)prf γ
Λ
= Λ , the indexes of

Λ randomly selected super-blocks are determined. Each atomic proof/verification
procedure will then only deal with the super-blocks being selected. This entails no

more than changing all 1,2, ,
SB

i n= … in ()GDIP ⋅ and ()VDIP ⋅ to
1 2
i , i , , ii

Λ
= … .

Theorem 2. The S-PDI scheme that achieves public verifiability is secure under the
q-SDH assumption and the KEA1 assumption in the random oracle model.

4.2 Knowledge Error and Its Practical Implication

The standard notion of proofs of knowledge as per [19], specifically, Definition 3 of
[19], contains a knowledge error that is the probability that the verifier might accept
even if the prover did not in fact “know” the witness. When constructing a proof of

430 K. Zeng

knowledge system, it is the knowledge error that determines the number of necessary
repetitions in practice. By repetition, the knowledge error could be reduced to an
arbitrarily small amount. For example, if the knowledge error is 1/2, Γ times of

sequential iterations may reduce the knowledge error to 2−Γ [20].
Since repetitions linearly increase the computation complexity and communication

complexity of a proof of knowledge system, quantifying the knowledge error is a
must before analyzing practical efficiency of a proof of knowledge scheme. However,
this part was missing in [5] for the E-PDP, S-PDP, and S-PDP-PV schemes.

Claim 1. The E-PDP scheme of [5] attains knowledge error no smaller than 1/2.

Proof (Sketch). The Atomic Random Subset Test method disclosed in [18] could be
used to construct a specific attack on the E-PDP scheme. Although both guarantee

that congruence *

1 1

c c

i i
i i

m M M m
= =

′ = = =∑ ∑ hold, the E-PDP scheme allows a

stronger adversary than the Atomic Random Subset Test method does. This is because
the verifier by the Atomic Random Subset Test method receives all the file blocks

i
m ′ , whereas, the verifier by the E-PDP scheme receives only *M . From this

viewpoint, what the E-PDP scheme does is no more than first choosing c file blocks
as the full set then applying subset test on the full set itself. As per Lemma 3.14 of
[18], this allows for knowledge error 1/2. □

Recall that in [5] it was shown that a challenge on 460c = randomly selected file
blocks can reach a detection probability of 99.02% in the case of failure of 1% of the
file blocks. However, calculating this probability has a precondition, i.e., all the c file
blocks must be correctly possessed by the archive service with overwhelming
probability. If with probability 1/2 that at least one of the c file blocks is incorrect,
the E-PDP scheme has to be iterated in practice. For instance, 15Γ = reiterations

reduce the knowledge error to 152− , i.e., the probability that at least one of the c file

blocks is incorrect is 152− . Thus the overall detection probability can reach
15(1 2)* 99.02% 99%−− > . As the consequence, both the computation complexity

and the communication complexity of the E-PDP scheme would be Γ times larger in
practice.

Claim 2. The S-PDP scheme (also the S-PDP-PV scheme) of [5] attains knowledge

error no smaller than 2 l− for each file block, where l determines the bit length of the

coefficients
i
a ’s.

Proof (Sketch). Very briefly, the Small Exponent Test method disclosed in [18]
could be used to construct a specific attack on the S-PDP scheme. □

4 Lemma 3.1 of [18] is originally proved over a finite cyclic group G of prime order p. It’s not

hard to generalize the proof for Lemma 3.1 to the case of a finite cyclic group of composite
order p’q’ regardless of whether p’q’ is available to the adversary or not, e.g., G=QR(N).
Theorem 3.3 of [BRG 98] can be generalized to work on QR(N) as well.

 Publicly Verifiable Remote Data Integrity 431

Claim 3. The PDI scheme attains knowledge error no smaller than 2 l− for each file
block.

Proof (Sketch). Very briefly, the atomic proof procedure and the atomic verification
procedure of the PDI scheme are in principle reusing the Bucket Test method, as per
the findings of [18]. □

Claim 4. The S-PDP scheme (also the S-PDP-PV scheme) of [5] attains knowledge

error no larger than (1) 2 lc −− ⋅ for each file block, where l determines the bit length

of the coefficients
i
a ’s and 2c ≥ is the number of the file blocks being chosen.

Proof (Sketch). Our proof reuses the proof technique that Damgard utilized to prove
his Theorem 1 in [21]. □

Claim 5. The S-PDI scheme attains knowledge error no larger than 2 lc

ψ
−⋅ for each

file block, where ψ is the number of repetitions required for the atomic
proof/verification procedure and c ψ≥ is the number of the super-blocks being
chosen.

5 Efficiency of the PDI Scheme

In order to demonstrate its efficiency, we implement the PDI scheme using MIRACL
library v5.3.1 in Windows Vista 32-bit edition. All experiments were conducted on a
Dell Precision 390 workstation with an Intel Core2 Quad 2.66-GHz processor, 4 GB
of ECC RAM, and a 400-GB RAID-0 disk array consisting of 3 SCSI drives.

The 64-MB data file we use for the experiments is AES-CBC encrypted such that
our experiment results are not necessarily subject to the entropy of the data file.

We use a pairing-friendly non-supersingular curve, as per Brezing et al. [22]. Its
parameters as listed below are provided by MIRACL library source code, wherein the
modulus q is a 256-bit prime, the group order p is a 192-bit prime, and the
embedding degree is 8. The security depends on the difficulty of a 2048-bit discrete
logarithm problem [11].

CC485D26177A1A5FCC9D53BA93DA298FD7F2F23D8FC02A8123BF24F9548A5F15

9D0261DD89CF83D5D20198162C22C942EF68622A6DF25621

0 2 14 13 7298021445, 8, , D FF

q

p

A B cof k

=
=
= = = =

We choose SHA-256 as *
1
: {0,1}

p
prf → Z and UMAC [23] as

*
3 2
() : {0,1}prf φφ → Z . And we choose SHA-256 to build *

2 1
: {0,1}prf → G .

In order to fingerprint the file, we choose 256
B
n = and 184len = , thus each

super-block contains 5888 bytes and the 64-MB file consists of 11,398 super-blocks.

432 K. Zeng

Our experiments show that the size of the public key is 32.5 KB5, generating
fingerprints takes 22.4 seconds6, and the size of the fingerprints is about 713 KB.

In order to evaluate the efficiency of generating data integrity proof and verifying
the proof, we choose 84l = and 12ψ = , which means that the atomic
proof/verification procedure will be reiterated 12 times to attain security level

84 7411398
1 2 1 2

12
− −− ⋅ > − for every 184 bits of the 64-MB data file. Each atomic

proof/verification procedure needs to handle 256 buckets.
Our experiments show that generating the data integrity proof takes 6.395 seconds,

verifying the proof takes 6.961 seconds, the size of the challenge is 50 bytes, and the
size of the data integrity proof is 771 bytes.

Recall that the S-PDP-PV scheme needs at least 1218 seconds to fingerprint a 64-
MB data file and those fingerprints collectively require 21.2 MB. It is therefore clear
that our PDI scheme is more than 50 times faster in generating the fingerprints and the
fingerprints themselves are 30 times smaller in size. It is notable that in this
comparison we choose a 6168 bits prime e for the S-PDP-PV scheme. As per the S-
PDP-PV scheme, this choice results in data integrity proof that consumes 771 bytes
([5], p.14). We note that choosing a larger e for the S-PDP-PV scheme could reduce
the size of its fingerprints and the time to generate the fingerprints as well. Whereas a
larger e at the same time increases the size of its data integrity proof. We thus
compare efficiency of the PDI scheme and the S-PDP-PV scheme on condition that
they generate the same size of data integrity proof. This comparison is appropriate at
least for the case that the amount of communication required by each protocol
instance is strictly restricted.

5.1 Speeding Up the PDI Implementation

Noting that fingerprinting can be done on multiple super-blocks simultaneously, and
the atomic proof/verification procedures run independently, parallel computation
should therefore be beneficial to the PDI scheme. Utilizing OpenMP [25] technology,
we make the fingerprinting, proof generation, and proof verification all run in parallel.
Making use of all 4 of the CPU cores of the Intel Core2 Quad 2.66 GHz processor,
our experiments show that for the 64-MB file, generating fingerprints takes 5.632
seconds, generating the data integrity proof takes 1.997 seconds, and verifying the
proof takes 1.769 seconds. Using the 4 CPU cores yields roughly a three- to fourfold
speed increase compared to using only 1 CPU core.

Another approach for speeding up the implementation of the PDI scheme is simply
reducing the intended security level. For instance, choosing 48l = and 8ψ = will

reduce the security level to 371 2−− and our experiments show that generating one
integrity proof now takes 1.279 seconds, compared to 1.997 seconds for security level

741 2−− . It is, however, more interesting to exploit the sampling strategy, i.e., make
use of the S-PDI scheme.

5 Except for storing the fingerprints, we always use point compression technology, by which

each elliptic curve point is stored as its x coordinate and the LSB of its y coordinate.
6 All experimental results on time consumptions represent the mean of 10 trials.

 Publicly Verifiable Remote Data Integrity 433

Similar to the analysis given by [5], a challenge on 460 super-blocks can reach a
detection probability of 99.02% in the case of failure of 1% of the super-blocks.
Therefore, choosing 23l = , 4ψ = , and 460 super-blocks per challenge, the overall

detection probability would be 23460
(1 2)* 99.02% 99%

4
−− ⋅ > . We implement the

S-PDI scheme and our experiments show 0.312 seconds in generating one integrity
proof and 0.077 seconds in verifying the proof, when all 4 CPU cores are utilized.
Note that in this case, the size of the data integrity proof is mere 257 bytes.

6 Conclusions and Future Work

In this paper, we present a provably secure and efficient scheme, which enables not
only the data source but also a third-party verifier to check remote data integrity.

There are still some problems yet to be resolved. First, the PDI scheme is not able
to fingerprint data file incrementally. Our Remote Data Integrity Game prohibits a
data file been modified in whatever manners once the file has been fingerprinted.
Second, in the case that the data source is malicious, a third-party verifier who dares
to be responsible for the integrity of the data is in danger because the data source can
arbitrarily manipulate the data stored with the archive service provider while the
fingerprints remain valid. Third, in the case that a third-party verifier colludes with
the archive service provider, one can easily surmise that the verifier can fabricate a
favorable audit report for a customer’s precious file even if the archive service
provider has deleted the file completely. Last but not least, it is always interesting to
find novel third-party-verifier-friendly schemes that are in the standard model.

Acknowledgements

The author is indebted to Hao Lei, Ye Tian, Li-Ming Wang, and Yu-Liang Zheng for
insightful discussions during the development of the ideas herein presented. The
author is particularly grateful to the anonymous referees for their useful comments.
The author would like to thank Min-Yu Hsueh and Toshikazu Fukushima for their
support to this research.

References

1. Apple iDisk, http://www.apple.com/dotmac/idisk.html
2. Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3
3. Wallace, C., Pordesch, U., Brandner, R.: Long-Term Archive Service Requirement, RFC

4810. IETF Network WG (2007)
4. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to Keep Online Storage

Services Honest. In: 11th Workshop on Hot Topics in Operating Systems (HotOS-XI),
Usenix (2007)

5. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.:
Provable Data Possession at Untrusted Stores. In: 14th ACM conference on Computer and
Communications Security (CCS 2007), pp. 598–609. ACM Press, New York (2007),
http://eprint.iacr.org/2007/202/

434 K. Zeng

6. Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communication and
storage complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 120–135. Springer,
Heidelberg (2003)

7. Juels, A., Kaliski, B.S.: PORs: Proofs of Retrievability for Large Files. Report 2007/243,
Cryptology ePrint archive (2007)

8. Schwarz, T.S.J., Miller, E.L.: Store, Forget, and Check: Using Algebraic Signatures to
Check Remotely Administered Storage. In: IEEE International Conference on Distributed
Computing Systems (ICDCS 2006), p. 12. IEEE Press, Los Alamitos (2006)

9. Deswarte, Y., Quisquater, J.J., Saidane, A.: Remote Integrity Checking. In: 6th IFIP TC-11
WG 11.5. In: Working Conference on Integrity and Internal Control in Information
Systems (IICIS 2003), pp. 1–11. IFIP Press (2003)

10. Filho, D.L.G., Baretto, P.S.L.M.: Demonstrating Data Possession and Uncheatable Data
Transfer. Report 2006/150, Cryptology ePrint Archive (2006)

11. MIRACL, Multi-precision Integer and Rational Arithmetic C Library,
 http://www. shamus.ie

12. Sebe, F., Ferrer, J.D., Balleste, A.M., Deswarte, Y., Quisquater, J.J.: Efficient Remote
Data Possession Checking in Critical Information Infrastructures. IEEE Transactions on
Knowledge and Data Engineering 20(8), 1034–1038 (2007)

13. Yamamoto, G., Oda, S., Aoki, K.: Fast Integrity for Large Data. In: Workshop on Software
Performance Enhancement for Encryption and Decryption (SPEED 2007), pp. 21–32.
COSIC Press (2007)

14. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

15. Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-
Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–
289. Springer, Heidelberg (2004)

16. Abe, M., Fehr, S.: Perfect NIZK with Adaptive Soundness. Report 2006/423, Cryptology
ePrint Archive (2006)

17. Dent, A.W.: The Hardness of the DHK Problem in the Generic Group Model. Report
2006/156, Cryptology ePrint Archive (2006)

18. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation
and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
236–250. Springer, Heidelberg (1998)

19. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

20. Damgard, I., Pfitzmann, B.: Sequential Iteration of Interactive Arguments and an Efficient
Zero-Knowledge Argument for NP. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.)
ICALP 1998. LNCS, vol. 1443, pp. 772–783. Springer, Heidelberg (1998)

21. Damgard, I.: On Σ-protocols, http://www.daimi.au.dk/~ivan/Sigma.pdf
22. Brezing, F., Weng, A.: Elliptic Curves Suitable for Pairing Based Cryptography. Report

2003/143, Cryptology ePrint Archive (2003)
23. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure

Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 215–
233. Springer, Heidelberg (1999)

24. Kaliski, B.: TWIRL and RSA Key Size. RSA Laboratories Technical Notes and Reports,
http://www.rsa.com/rsalabs/node.asp?id=2004

25. OpenMP, Open Multi-Processing Application Program Interface (API) Specification for
Parallel Programming, http://www.openmp.org

26. OpenSSL, The Open Source Toolkit for SSL/TLS, http://www.openssl.org

Author Index

Afzal, Mehreen 376
Ahn, Gail-Joon 174

Behseta, Sam 361
Ben-Ghorbel-Talbi, Meriam 190
Birand, Berk 33
Bouhoula, Adel 190, 403
Buhan, Ileana 294

Castrucci, Alessandro 256
Chen, Zhong 267
Choy, Jiali 157
Clark, John A. 49
Coker, George 1
Courtois, Nicolas T. 328
Cuppens, Frédéric 190
Cuppens-Boulahia, Nora 190

Debraize, Blandine 328
Di Pierro, Alessandra 81
Dong, Xun 49
Doumen, Jeroen 294, 345
Dunkelman, Orr 141

Gao, Debin 238
Gauravaram, Praveen 111
Guan, Zhi 267
Guttman, Joshua 1

Hammouri, Ghaith 33
Hankin, Chris 81
Hartel, Pieter 294, 345

Jacob, Jeremy L. 49
Jonker, Willem 345

Khoo, Khoongming 157
Kim, Chong Hee 97
Kubo, Hiroyasu 128

Lam, Charles 361
Layouni, Mohamed 387
Liao, Lijun 19

Loe, Chuan-Wen 157
Loscocco, Peter 1

Martinelli, Fabio 256
Mejri, Mohamed 403
Mori, Paolo 256
Morin, Benjamin 403
Murtaza, Saeed 376

Nan, Xianghao 267

Okamura, Shingo 387
Okeya, Katsuyuki 111
Ouyang, Jianquan 222
Öztürk, Erdinç 33

Payne, Christian 206
Pöhls, Henrich C. 279

Quisquater, Jean-Jacques 97

Reiter, Michael K. 238
Roperti, Francesco 256

Saito, Teruo 128
Saxena, Nitesh 311
Schreuders, Z. Cliffe 206
Schwenk, Jörg 19
Sedghi, Saeed 345
Sheehy, Justin 1
Shehab, Mohamed 174
Shi, Dianxi 222
Sirhindi, Rabia 376
Sniffen, Brian 1
Song, Dawn 238
Squicciarini, Anna Cinzia 174
Sunar, Berk 33
Suzaki, Tomoyasu 128

Talbi, Mehdi 403
Tang, Qiang 294
Toz, Deniz 141
Tsunoo, Yukiyasu 128

Uddin, Md. Borhan 311

436 Author Index

Veldhuis, Raymond 294
Viet Triem Tong, Valérie 403

Wang, Huaimin 222
Webb, Robert L. 361
Wiklicky, Herbert 81

Yin, Gang 222
Yoshida, Maki 387

Zeng, Ke 65, 419
Zhang, Long 267
Zhou, Ning 222

	Title Page
	Preface
	Organisation
	Table of Contents
	Invited Talk
	Attestation: Evidence and Trust
	Introduction
	Attestation
	Principles for Attestation Architectures
	Proposed Attestation Architecture
	Measurement Tools
	Domain Separation
	Self-protecting Trust Base
	Attestation Delegation
	Attestation Management
	The Elements of the Architecture

	Composable Attestation Platform
	OpenProblems
	Existing Approaches to Attestation
	Conclusion
	References

	Authentication
	A Novel Solution for End-to-End Integrity Protection in Signed PGP Mail
	Introduction
	Related Work
	Signature in PGP Format
	Goals of Our Approach
	ExtensioninPGPMail
	Header Protection Entity
	Extension in PGP Mail

	Analysis
	Prototype Implementation
	Conclusion and Future Work
	References

	Unclonable Lightweight Authentication Scheme
	Introduction
	PUF
	LPN-Based Authentication Protocols
	New Authentication Family: HB+PUF
	Security Analysis
	PUF-Based RNG
	Implementation
	Conclusion
	References

	Threat Modelling in User Performed Authentication
	Introduction
	Background
	Vulnerabilities Exploited by Passive Attacks
	Properties of Users’ Authentication Credentials
	Authentication Credentials Vulnerable to Passive Attacks
	The Authentication Security Dependency Graph

	Vulnerabilities Exploited by Active Attacks
	Sensitivity of the Authentication Credentials
	Identify Potential Impersonating Targets
	Active Attack Entry Point Analysis
	External Entity Authentication in Communication Matters

	Case Study
	Passive Attack Analysis
	Active Attacks Analysis
	Vulnerabilities at Each Entry Point
	Vulnerabilities in Communication

	Conclusions
	References

	Access with Fast Batch Verifiable Anonymous Credentials
	Introduction
	Related Work
	Preliminaries
	Notations and Number-Theoretic Preliminaries
	Honest-Verifier Zero-Knowledge (HVZK) Proof

	Fast Batch Verifiable Anonymous Credential
	Fast Batch Verifiable Anonymous Credential Scheme
	Scheme I
	Scheme II

	Revocation
	Fast Fine-Grained Revocation

	Conclusions and Future Work
	References

	Side Channel Analysis
	Quantifying Timing Leaks and Cost Optimisation
	Introduction
	The Model
	Timed Probabilistic Transition Systems
	Observing tPTS’s

	An Imperative Language
	Abstract Semantics

	Bisimulation and Timing Leaks
	Computing Approximate Bisimulation
	Computing δ for PT-Bisimulation
	A Weighted Version: δ'

	Cost Analysis
	Probabilistic Transformation
	An Example

	Related and Further Work
	References

	Method for Detecting Vulnerability to Doubling Attacks
	Introduction
	Exponentiation Algorithms and Doubling Attack
	Exponentiation Algorithms and Simple Power Analysis
	Doubling Attack
	Relative Doubling Attack

	Fundamentals of Doubling Attack
	Characteristics of Doubling Attack
	Upward vs. Downward Algorithm
	Remarks on Possible Countermeasures

	Doubling Attack on Yen et al.’s Algorithm
	Yen et al.’s Algorithm
	Proposed Attack

	Conclusions
	References

	Side Channel Analysis of Some Hash Based MACs: A Response to SHA-3 Requirements
	Introduction
	Our Approach
	Our Results and Their Significance
	Guide to the Paper

	Hash Functions
	NMAC and HMAC

	Side Channel Attacks on Hash Based MACs
	Differential Power Analysis (DPA) Attack

	DPA Analysis of $\Type-1$ Schemes
	BNMAC and Its One-Key Variants
	Enveloped Merkle-Damg˚ard (EMD) Transform
	Merkle-Damg˚ard with Permutation (MDP)
	Multilane NMAC
	O-NMAC

	DPA Analysis of $\Type-2$ Schemes
	MDC-2 Hash Function in the NMAC Setting
	Grindahl Compression Function in the NMAC Setting
	Wide-Pipe Hash Construction in the NMAC Setting

	Conclusion
	References

	Cryptanalysis
	Key Recovery Attack on Stream Cipher Mir-1 Using a Key-Dependent S-Box
	Introduction
	Description of Mir-1
	Notation and Definition
	Keystream Generation
	Initialization

	Key Recovery Attack
	Previous Distinguisher and Extended Distinguisher
	Classification of Key-Dependent S-Box
	Key Recovery Method

	Discussion
	Complexity of Attack
	Experiment
	Countermeasure

	Conclusion
	References

	Analysis of Two Attacks on Reduced-Round Versions of the SMS4
	Introduction
	A Description of SMS4
	Notation
	The SMS4 Cipher
	Properties and Definitions

	The Rectangle Attack
	The Rectangle Attack on 14-Round SMS4 from [9]
	Improving the 14-Round Attack

	Impossible Differential Attack on 16-Round SMS4
	Impossible Differential Attack
	The Previous Attack on 16-Round SMS4
	Fixing and Improving the 16-Round Attack

	Summary
	References

	Applying Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack
	Introduction
	Number of Plaintext-Ciphertext Pairs Needed for Verification
	Background: Meet-in-the-Middle Attack (MTM)
	Applying Guess-and-Determine Method to Meet-in-the-Middle Attack Using Single and Multiple Data (GD-MTM and GDD-MTM Respectively)
	Applying Time-Memory Trade-Off to Meet in-the-Middle Attack (TMTO-MTM and Rainbow-MTM)
	Applying Biryukov-Shamir Time-Memory-Data Trade-Off to Meet-in-the-Middle Attack (BS-MTM)
	Applying TMTO - Data Curve to Meet-in-the-Middle Attack (TMD-MTM)
	Conclusion
	References

	Access Control
	Beyond User-to-User Access Control for Online Social Networks
	Introduction
	Background on Social Network APIs
	Developer APIs Access Control Framework
	Social Network Profiles and Data Sets
	The Access Control Framework

	Customized Application Service Provisioning
	Optimal User Application Preferences

	Related Work
	Conclusions
	References

	Revocation Schemes for Delegation Licences
	Introduction
	System Description
	Notation and Definitions

	Revocation
	User Revocation
	Automatic Licence Revocation
	Managing Revocation

	Related Work
	Conclusion
	References

	Reusability of Functionality-Based Application Confinement Policy Abstractions
	Introduction
	Background
	Application Confinement
	Role-Based Access Control (RBAC)

	Functionality-Based Application Confinement
	Policy Abstraction
	Parameterisation
	Mandatory and Discretionary Controls

	Defining and Managing Policy
	Web Browser Case Study
	Restricting Applications
	Defining Functionalities
	Comparison with Other Mechanisms

	Discussion
	Manageability and Usability
	Scalability
	Security

	Conclusion
	References

	Towards Role Based Trust Management without Distributed Searching of Credentials
	Introduction
	Credential Affiliation in Trust Management
	ScoRT: Trust Management with Scoped-Roles
	Credential Affiliation

	Credential Management Framework
	Credential Distribution Algorithm
	Credential Revocation

	Complexity Estimation
	Related Work
	Conclusion
	References

	Software Security
	BinHunt: Automatically Finding Semantic Differences in Binary Programs
	Introduction
	Problem Definition and Overview of Our Approach
	System Architecture
	Disassembler
	Intermediate Representation
	Constructing Control Flow Graphs and Callgraphs
	Comparing the CGs and the CFGs

	Basic Block Comparison
	Symbolic Execution and Theorem Proving
	Matching Strength

	Maximum Common Induced Subgraph Isomorphism
	Definitions
	Backtracking Algorithm
	Customizations to the Backtracking Algorithm

	Case Studies
	Buffer Overflow in gzip
	Dot dot” Vulnerability in tar
	Application Folder Information Disclosure in ASP.NET

	Related Work
	Conclusion and Limitations
	References

	Enhancing Java ME Security Support with Resource Usage Monitoring
	Introduction
	Paper Structure

	Related Work
	Runtime Monitoring
	Security Policy
	Runtime Monitor Architecture

	Implementation
	Experimental Results

	Conclusion and Future Work
	References

	Pseudo-randomness Inside Web Browsers
	Introduction
	Random Number Generator
	Theory and Practice
	Break Cryptography through Weak Randomness

	Threat Model
	Design and Implementation
	System Construction
	Randomness Consumption
	Performance

	Pseudo-cookie
	Conclusion and Future Work
	References

	System Security
	Verifiable and Revocable Expression of Consent to Processing of Aggregated Personal Data
	Introduction
	Scenario
	Semantical Data, Privacy Preferences vs. Policies, and the Identified Problems
	No Verification of Consent to Data Processing
	No Verification of Consent to Aggregated Data Processing
	No Verification of Consent State Changes

	Solution
	Retaining a Verifiable Expression of Consent
	Allowing Aggregation, While Retaining a Verifiable Expression of Consent
	Allowing Status Changes of Consent by Using PKI Mechanisms
	Security in the Presence of an Attacker and Enforcement through Detection

	Discussion
	Related Work
	Performance

	Conclusion
	References

	Embedding Renewable Cryptographic Keys into Continuous Noisy Data
	Introduction
	Preliminaries
	Fuzzy Embedder
	A Practical Construction for Fuzzy Embedder
	QIM-Fuzzy Embedder from 2-Dimensional Quantization
	Description of 6-Hexagonal Tiling
	Comparison with 4-Square Tiling

	Conclusion
	References

	Automated Device Pairing for Asymmetric Pairing Scenarios
	Introduction
	Related Work
	Communication and Security Model, and Applicable Protocols
	Pairing with a Unidirectional OOB Channel
	Protocol of [14] in the DRR-OOB Model
	Protocol of [14] in the nDRR-OOB Model

	Automated d2d Channel Using LEDs and Video Camera
	Encoding Using LEDs
	Decoding Using a Video Camera
	Experimental Setup
	Experiment Results
	Other Applications of Our Implementation

	Conclusion
	References

	Applied Cryptography
	Algebraic Description and Simultaneous Linear Approximations of Addition in Snow 2.0.
	Introduction
	Preliminaries
	Notation
	Descriptive Algebraic Representation Criteria for S-Boxes
	Criteria for Conditioned Algebraic Representation of S-Boxes

	Describing Degree of the Addition Modulo 2n
	Equations with No Extra Variables
	Additional Equations

	Descriptive Algebraic Representation Criteria for S-Boxes
	Conditional Describing Degree of S-Boxes
	Probabilistic Conditional Properties of S-Boxes

	Algebraic Cryptanalysis and Application to KGSnow
	Overview of Algebraic Cryptanalysis
	Description of ElimLin and Simulations on KGSnow 2.0

	Analysis of Snow 2.0 and KGSnow 2.0
	Description of Snow 2.0
	Previous Work
	Towards an Optimal Linearizing Attack

	Conclusion
	References

	Towards an Information Theoretic Analysis of Searchable Encryption
	Introduction
	Statement of the Problem
	Description of the Problem
	Problem Instances

	Security Evaluation
	Security Parameters of the Formulation

	Analysis of Known Schemes
	Idealized SWP
	Idealized SI
	Idealized PEKS

	Related Work
	Example
	Conclusion and Future Work
	References

	A Bootstrap Attack on Digital Watermarks in the Frequency Domain
	Introduction
	Methods
	The Bootstrap Methodology
	Notation
	Algorithms

	Results
	Simulation
	Numerical Results

	Discussion
	References

	Improved Data Hiding Technique for Shares in Extended Visual Secret Sharing Schemes
	Introduction
	Extended Visual Secret Sharing Schemes and Share Hiding Principle
	Chang and Chen’s Scheme
	Chang and Yu’s Scheme
	Hiding Technique Used in Previous Schemes

	Data Hiding Techniques
	Least Significant Bit (LSB) Encoding

	Proposed Data Hiding Technique to Hide Shares
	Embedding Algorithm
	Extraction Algorithm

	Experimental Results
	Discussion
	Application in Document Authentication

	Conclusion
	References

	Security Protocols
	Efficient Multi-authorizer Accredited Symmetrically Private Information Retrieval
	Introduction
	Related Work
	Summary of Contribution and Paper Organization
	Preliminaries
	Pairing-Based Signature Scheme
	Symmetrically Private Information Retrieval

	Protocol Description
	Settings
	First Construction
	Improved Construction

	Security and Privacy Evaluation
	Performance Analysis
	Extension to Threshold Access
	Extension to Authorizers with Unequal Rights
	The Case of an Owner Tuple Possessing Multiple Records
	Conclusion
	References

	Specification of Electronic Voting Protocol Properties Using ADM Logic: FOO Case Study
	Introduction
	Related Work
	FOO Protocol
	Model
	Notations for Protocol Specification
	FOO Protocol Model

	ADM Logic
	Properties Specification
	Fairness
	Eligibility
	Individual Verifiability
	Universal Verifiability

	Formal Verification of Properties
	Conclusions and Future Work
	References

	Publicly Verifiable Remote Data Integrity
	Introduction
	Related Work

	Notations and Number-Theoretic Preliminaries
	Notations
	Number-Theoretic Preliminaries

	Provable Data Integrity Scheme
	Definition
	The PDI Scheme
	Security of the PDI Scheme

	Discussions
	Sampling for the PDI Scheme
	Knowledge Error and Its Practical Implication

	Efficiency of the PDI Scheme
	Speeding Up the PDI Implementation

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

